

Recommendation ITU-R BT.1543-1 (06/2015)

1 280 × 720, 16:9 progressively-captured image format for production and international programme exchange in the 60 Hz environment

BT Series
Broadcasting service
(television)





#### **Foreword**

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

## **Policy on Intellectual Property Right (IPR)**

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from <a href="http://www.itu.int/ITU-R/go/patents/en">http://www.itu.int/ITU-R/go/patents/en</a> where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

|              | Series of ITU-R Recommendations                                                                             |
|--------------|-------------------------------------------------------------------------------------------------------------|
|              | (Also available online at <a href="http://www.itu.int/publ/R-REC/en">http://www.itu.int/publ/R-REC/en</a> ) |
| Series       | Title                                                                                                       |
| ВО           | Satellite delivery                                                                                          |
| BR           | Recording for production, archival and play-out; film for television                                        |
| BS           | Broadcasting service (sound)                                                                                |
| BT           | Broadcasting service (television)                                                                           |
| F            | Fixed service                                                                                               |
| M            | Mobile, radiodetermination, amateur and related satellite services                                          |
| P            | Radiowave propagation                                                                                       |
| RA           | Radio astronomy                                                                                             |
| RS           | Remote sensing systems                                                                                      |
| $\mathbf{S}$ | Fixed-satellite service                                                                                     |
| SA           | Space applications and meteorology                                                                          |
| SF           | Frequency sharing and coordination between fixed-satellite and fixed service systems                        |
| SM           | Spectrum management                                                                                         |
| SNG          | Satellite news gathering                                                                                    |
| TF           | Time signals and frequency standards emissions                                                              |
| V            | Vocabulary and related subjects                                                                             |

*Note*: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.

Electronic Publication Geneva, 2015

#### RECOMMENDATION ITU-R BT.1543-1

# $1280 \times 720$ , 16:9 progressively-captured image format for production and international programme exchange in the 60 Hz environment

(Ouestion ITU-R 1/6)

(2001-2015)

#### Scope

This Recommendation defines the digital image parameters for the 1  $280 \times 720$ , 16:9 progressively-captured image format for production and international programme exchange in the 60 Hz environment.<sup>1</sup>

#### **Keywords**

Progressive,  $1280 \times 720$ 

The ITU Radiocommunication Assembly,

considering

- a) that digital content production will increasingly include a mixture of audio, video, data and interactive content:
- b) that digital production equipment is increasingly designed to operate with a variety of image formats including  $1280 \times 720$ , 16:9, progressively-captured (720/P);
- c) that production-quality conversion from progressive to other formats is easy to achieve;
- d) that 720/P format at 30/60 Hz provides a useful set of vertical-temporal/compressed bit rate options;
- e) that a 720/P production format offers an effective format for high vertical temporal resolution carried within the commonly used 1.5 Gbit/s production serial digital interface;
- f) that a maximum of commonality with the parameter values of Recommendation ITU-R BT.709 is advantageous for interchange;
- g) that the 720/P format provides a set of spatial characteristics between Recommendations ITU-R BT.601 and ITU-R BT.709, which is an efficient option for certain applications of acquisition, production and storage;
- h) that image format interoperability with computer applications is increasingly important, and the 720/P format is well matched to them,

recommends

1 that, for production and international programme exchange in the 60 Hz environment, in the  $1280 \times 720$  image format, the parameters in Annex 1 should be used.

Previous versions of this Recommendation that may contain historic information can be found on the ITU website.

#### Annex 1

## $1280 \times 720$ progressive capture system

#### Introduction

This image format is defined to have common picture parameter values independent of the picture rate including the common system reference clock frequency of 74.25 MHz. The following picture rates are specified in this Annex: 60 Hz, 60/1.001 Hz, 30 Hz, 30/1.001 Hz.

Pictures are defined for progressive capture (P) only.

## 1 Opto-electronic conversion

| Item | Parameter                                                                 | Value                                                                              |                                                     |
|------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1.1  | Opto-electronic transfer characteristics before non-linear pre-correction | Assumed linear                                                                     |                                                     |
| 1.2  | Overall opto-electronic transfer characteristics at source <sup>2</sup>   | $V = 1.099 L^{0.45} - 0.09$<br>V = 4.500 L<br>where:                               | 99 for $1 \ge L \ge 0.018$<br>for $0.018 > L \ge 0$ |
|      |                                                                           | $L$ : luminance of the image $0 \le L \le 1$<br>V: corresponding electrical signal |                                                     |
| 1.3  | Chromaticity coordinates (CIE, 1931)                                      | x                                                                                  | у                                                   |
|      | Primary:                                                                  |                                                                                    |                                                     |
|      | - Red ( <i>R</i> )                                                        | 0.640                                                                              | 0.330                                               |
|      | - Green $(G)$                                                             | 0.300                                                                              | 0.600                                               |
|      | - Blue ( <i>B</i> )                                                       | 0.150                                                                              | 0.060                                               |
| 1.4  | Assumed chromaticity for equal primary signals (reference white):         | $D_{65}$                                                                           |                                                     |
|      |                                                                           | x                                                                                  | у                                                   |
|      | $- E_R = E_G = E_B$                                                       | 0.3127                                                                             | 0.3290                                              |

## **2** Picture characteristics

| Item | Parameter                | Value               |  |
|------|--------------------------|---------------------|--|
| 2.1  | Aspect ratio             | 16:9                |  |
| 2.2  | Samples per active line  | 1 280               |  |
| 2.3  | Sampling lattice         | Orthogonal          |  |
| 2.4  | Active lines per picture | 720                 |  |
| 2.5  | Pixel aspect ratio       | 1:1 (square pixels) |  |

In typical production practice the encoding function of image sources is adjusted so that the final picture has the desired look, as viewed on a reference monitor having the reference decoding function of Recommendation ITU-R BT.1886, in the reference viewing environment defined in Recommendation ITU-R BT.2035. Although some parameters listed in Recommendation ITU-R BT.2035 are intended for HDTV signal viewing, scaled viewing distances for 1 280 × 720 image format should be used.

# 3 Signal format

| Item | Parameter                                                                              | Value                                                                                                                                                                                            |  |
|------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3.1  | Conceptual non-linear pre-correction of primary signals                                | $\gamma = 0.45$ (See Item 1.2)                                                                                                                                                                   |  |
| 3.2  | Derivation of luminance signal $E'_{Y}$                                                | $E'_{Y} = 0.2126 \ E'_{R} + 0.7152 \ E'_{G} + 0.0722 \ E'_{B}$                                                                                                                                   |  |
| 3.3  | Derivation of colour-difference signal (analogue coding)                               | $E'_{CB} = \frac{E'_B - E'_Y}{1.8556}$                                                                                                                                                           |  |
|      |                                                                                        | $=\frac{-0.2126E_R'-0.7152E_G'+0.9278E_B'}{1.8556}$                                                                                                                                              |  |
|      |                                                                                        | $E'_{CR} = \frac{E'_R - E'_Y}{1.5748}$                                                                                                                                                           |  |
|      |                                                                                        | $= \frac{0.7874E'_R - 0.7152E'_G - 0.0722E'_B}{1.5748}$ $D'_R = INT [(219 E'_R + 16) \cdot 2^{n-8}]$                                                                                             |  |
| 3.4  | Quantization of <i>RGB</i> , luminance                                                 |                                                                                                                                                                                                  |  |
|      | and colour-difference signals <sup>(1), (2)</sup>                                      | $D'_G = INT[(219 E'_G + 16) \cdot 2^{n-8}]$                                                                                                                                                      |  |
|      |                                                                                        | $D_B' = INT[(219 E_B' + 16) \cdot 2^{n-8}]$                                                                                                                                                      |  |
|      |                                                                                        | $D_Y' = INT[(219 E_Y' + 16) \cdot 2^{n-8}]$                                                                                                                                                      |  |
|      |                                                                                        | $D'_{CB} = INT[(224 E'_{CB} + 128) \cdot 2^{n-8}]$                                                                                                                                               |  |
|      |                                                                                        | $D'_{CR} = INT [(224 E'_{CR} + 128) \cdot 2^{n-8}]$                                                                                                                                              |  |
| 3.5  | Derivation of luminance and colour-difference signals via quantized <i>RGB</i> signals | $D'_Y = INT \left[ 0.2126 D'_R + 0.7152 D'_G + 0.0722 D'_B \right]$                                                                                                                              |  |
|      |                                                                                        | $\left[ \left( -\frac{0.2126}{D_D'} - \frac{0.7152}{D_C'} \right) \right]$                                                                                                                       |  |
|      |                                                                                        | $D'_{CB} = INT \begin{pmatrix} -\frac{0.2126}{1.8556}D'_R - \frac{0.7152}{1.8556}D'_G \\ +\frac{0.9278}{1.8556}D'_B \\ +\frac{1.8556}{1.8556}D'_B \end{pmatrix} \cdot \frac{224}{219} + 2^{n-1}$ |  |
|      |                                                                                        | $\left[ + \frac{0.9278}{1.8556} D_B' \right]^{219}$                                                                                                                                              |  |
|      |                                                                                        | $\left[ \left( \frac{0.7874}{D'} - \frac{0.7152}{D'} \right) \right]$                                                                                                                            |  |
|      |                                                                                        | $D'_{CR} = INT \begin{bmatrix} \frac{0.7874}{1.5748}D'_R - \frac{0.7152}{1.5748}D'_G \\ -\frac{0.0722}{1.5748}D'_B \end{bmatrix} \cdot \frac{224}{219} + 2^{n-1}$                                |  |
|      |                                                                                        | $\left[ \left( -\frac{0.0722}{1.5748} D_B' \right)^{219} \right]$                                                                                                                                |  |

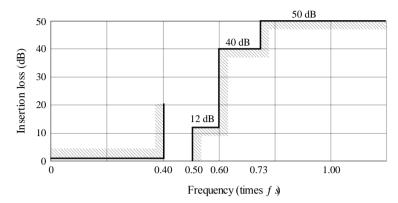
<sup>&</sup>quot;n" denotes the number of the bit length of the quantized signal.

The operator INT returns the value of 0 for fractional parts in the range of 0 to 0.4999 ... and +1 for fractional parts in the range of 0.5 to 0.9999 ..., i.e. it rounds up fractions above 0.5.

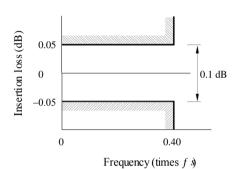
# 4 Digital representation

| Item | Parameter                                                                                | Value                             |                                                                 |
|------|------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|
| 4.1  | Coded signal                                                                             | $R, G, B \text{ or } Y, C_B, C_R$ |                                                                 |
| 4.2  | Sampling lattice: - R, G, B, Y                                                           | Orthogonal, line ar               | nd picture repetitive                                           |
| 4.3  | Sampling lattice: - $C_B$ , $C_R$                                                        |                                   | cture repetitive co-sited th alternate <sup>(1)</sup> Y samples |
| 4.4  | Number of active samples per line: - R, G, B, Y - C <sub>B</sub> , C <sub>R</sub>        | 1 280<br>640                      |                                                                 |
| 4.5  | Coding format                                                                            | Linear 8 or 10 bits/component     |                                                                 |
| 4.6  | Quantization levels:                                                                     | 8-bit coding                      | 10-bit coding                                                   |
|      | <ul> <li>Black level:</li> <li>R, G, B, Y</li> <li>Achromatic:</li> </ul>                | 16                                | 64                                                              |
|      | - Actionatic.<br>- C <sub>B</sub> , C <sub>R</sub><br>- Nominal peak:                    | 128                               | 512                                                             |
|      | -R, G, B, Y<br>$-C_B, C_R$                                                               | 235<br>16 and 240                 | 940<br>64 and 960                                               |
| 4.7  | Quantization level assignment:                                                           | 8-bit coding                      | 10-bit coding                                                   |
|      | <ul><li>Video data</li><li>Timing references</li></ul>                                   | 1 through 254<br>0 and 255        | 4 through 1 019<br>0-3 and 1 020-1 023                          |
| 4.8  | Filter characteristics <sup>(2)</sup> :  - R, G, B, Y  - C <sub>B</sub> , C <sub>R</sub> |                                   | ig. 1A<br>ig. 1B                                                |

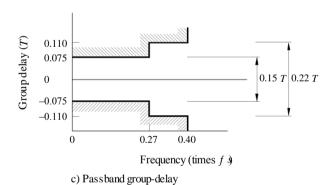
The first active colour-difference samples being co-sited with the first active luminance sample.


 $<sup>\,^{(2)}\,\,</sup>$  These filter templates are defined as guidelines.

# 5 Picture capture characteristics


| Item | Parameter                                                               | Value                          |                      |
|------|-------------------------------------------------------------------------|--------------------------------|----------------------|
|      |                                                                         | 60/P, 59.94/P                  | 30/P, 29.97/P        |
| 5.1  | Order of sample presentation in a scanned system                        | Left to right, top to bottom   |                      |
| 5.2  | Frame frequency (Hz)                                                    | 60, 60/1.001                   | 30, 30/1.001         |
| 5.3  | Picture rate (Hz)                                                       | 60, 60/1.001                   | 30, 30/1.001         |
| 5.4  | Samples per full line:  - R, G, B, Y  - C <sub>B</sub> , C <sub>R</sub> | 1 650<br>825                   | 3 300<br>1 650       |
| 5.5  | Nominal channel bandwidths (MHz)                                        | (For R, G, B, Y components) 30 |                      |
| 5.6  | Sampling frequency (MHz): - R, G, B, Y                                  | 74.25, 74.25/1.001             | 74.25, 74.25/1.001   |
| 5.7  | Sampling frequency <sup>(1)</sup> (MHz)  – $C_B$ , $C_R$                | 37.125, 37.125/1.001           | 37.125, 37.125/1.001 |

<sup>(1)</sup>  $C_B$ ,  $C_R$  sampling frequency is half of luminance sampling frequency.

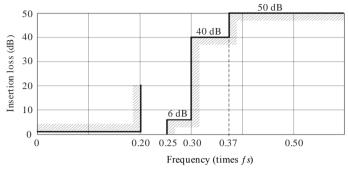

FIGURE 1A
Filter characteristics for *R*, *G*, *B* and *Y* signals



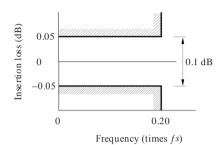
a) Template for insertion loss



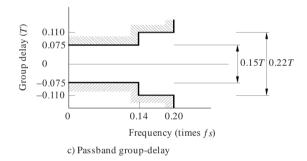
b) Passband ripple tolerance




BT.1543-01A


NOTE 1 - fs denotes luminance sampling frequency, the value of which is given in item 5.6.

NOTE 2 – Ripple and group delay are specified relative to the value at 100 kHz.


FIGURE 1B Filter characteristics for  $C_B$  and  $C_R$  signals



a) Template for insertion loss

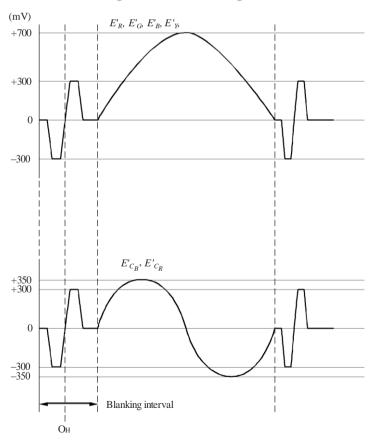


b) Passband ripple tolerance



BT.1543-01B

NOTE 1 - fs denotes luminance sampling frequency, the value of which is given in item 5.6.


NOTE 2 – Ripple and group delay are specified relative to the value at 100 kHz.

# 6 Analogue Tri Level Sync signal

The trilevel sync signal may be used as a reference signal for synchronization of devices operating on this Recommendation.

| Item | Parameter                                                 | Value                                                      |  |
|------|-----------------------------------------------------------|------------------------------------------------------------|--|
| 6.1  | Nominal level (mV):<br>$-E'_R$ , $E'_G$ , $E'_B$ , $E'_Y$ | Reference black: 0<br>Reference white: 700<br>(See Fig. 2) |  |
| 6.2  | Nominal level (mV): $- E'_{C_B}, E'_{C_R}$                | ±350<br>(See Fig. 2)                                       |  |
| 6.3  | Form of synchronizing signal                              | Tri-level bipolar<br>(See Fig. 4)                          |  |
| 6.4  | Line sync timing reference                                | $O_H$ (See Fig. 4)                                         |  |
| 6.5  | Sync level (mV)                                           | ±300 ±2%                                                   |  |
| 6.6  | Sync signal timing                                        | Sync on all components<br>(See Table 1, Figs 3 and 4)      |  |
| 6.7  | Inter-component timing accuracy                           | Not applicable                                             |  |
| 6.8  | Blanking interval                                         | (See Table 2 and Fig. 3)                                   |  |
| 6.9  | Total lines                                               | 750                                                        |  |

 $\label{eq:FIGURE 2} \textbf{Analogue levels and } \textit{O}_{\textit{H}} \, \textbf{timing reference}$ 



BT.1543-02

TABLE 1
Level and line timing specification
(See Figs 3 and 4)

| Symbol      | Parameter                                | System values         |                  |
|-------------|------------------------------------------|-----------------------|------------------|
|             |                                          | 60/P, 59.94/P         | 30/P, 29.97/P    |
| T           | Reference clock interval (µs)            | 1/74.25, 1.001/74.25  |                  |
| а           | Negative line sync width $(T)^{(1)}$     | 40 ± 3                |                  |
| b           | End of active video <sup>(2)</sup> $(T)$ | +6<br>110<br>-0       | +6<br>1760<br>-0 |
| c           | Positive line sync width $(T)$           | 40 ± 3                |                  |
| d           | Clamp period (T)                         | 110 ± 3               |                  |
| e           | Start of active video (T)                | +6<br>260<br>-0       |                  |
| f           | Rise/fall time ( <i>T</i> )              | $4 \pm 1.5$           |                  |
| $t_2 - t_1$ | Symmetry of rising edge                  | Symmetric about $T_r$ |                  |
| -           | Active line interval (T)                 | +0<br>1 280<br>-12    |                  |
| $S_m$       | Amplitude of negative pulse (mV)         | 300 ± 6               |                  |
| $S_p$       | Amplitude of positive pulse (mV)         | 300 ± 6               |                  |
| V           | Amplitude of video signal (mV)           | 700                   |                  |

 $<sup>^{(1)}</sup>$  T denotes the duration of a reference clock or the reciprocal of the clock frequency.

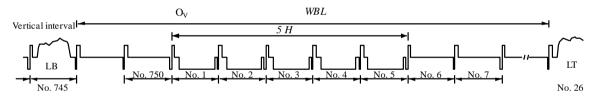

<sup>&</sup>lt;sup>(2)</sup> A line starts at line sync timing reference  $O_H$  (inclusive), and ends just before the subsequent  $O_H$  (exclusive).

TABLE 2
Frame timing specification
(See Figs 3 and 4)

| Symbol    | Parameter                       | System values |               |
|-----------|---------------------------------|---------------|---------------|
|           |                                 | 60/P, 59.94/P | 30/P, 29.97/P |
| $H^{(1)}$ | Total line interval $(T)^{(2)}$ | 1 650         | 3 300         |
| h         | Vertical sync width (T)         | 1 280 ± 3     |               |
| LT        | Top line of picture             | No. 26        |               |
| LB        | Bottom line of picture          | No. 745       |               |
| WBL       | Frame blanking interval         | 30 H          |               |
|           | Start of frame                  | No. 1         |               |
|           | End of frame                    | No. 750       |               |

- <sup>(1)</sup> H denotes the duration of a line. A line starts at line sync timing reference  $O_H$  (inclusive), and ends at just before the subsequent  $O_H$  (exclusive).
- (2) T denotes the duration of a reference clock or the reciprocal of the clock frequency (see Table 1).

FIGURE 3
Frame synchronizing signal waveform



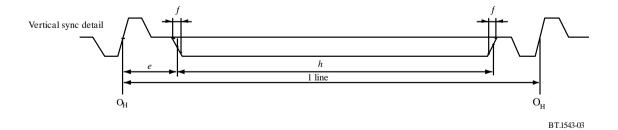
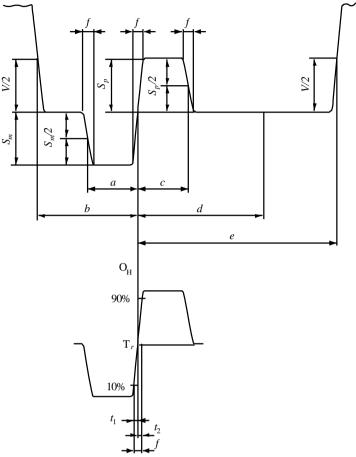




FIGURE 4
Line synchronizing signal waveform



(The waveform exhibits symmetry with respect to point T )  $_{r}$ 

BT.1543-04