

Recommandation UIT-R BS.1114-12 (01/2022)

Systèmes de radiodiffusion sonore numérique de Terre à destination de récepteurs fixes, portatifs ou placés à bord de véhicules fonctionnant dans la gamme de fréquences 30-3 000 MHz

Série BS

Service de radiodiffusion sonore

Avant-propos

Le rôle du Secteur des radiocommunications est d'assurer l'utilisation rationnelle, équitable, efficace et économique du spectre radioélectrique par tous les services de radiocommunication, y compris les services par satellite, et de procéder à des études pour toutes les gammes de fréquences, à partir desquelles les Recommandations seront élaborées et adoptées.

Les fonctions réglementaires et politiques du Secteur des radiocommunications sont remplies par les Conférences mondiales et régionales des radiocommunications et par les Assemblées des radiocommunications assistées par les Commissions d'études.

Politique en matière de droits de propriété intellectuelle (IPR)

La politique de l'UIT-R en matière de droits de propriété intellectuelle est décrite dans la «Politique commune de l'UIT-T, l'UIT-R, l'ISO et la CEI en matière de brevets», dont il est question dans la Résolution UIT-R 1. Les formulaires que les titulaires de brevets doivent utiliser pour soumettre les déclarations de brevet et d'octroi de licence sont accessibles à l'adresse http://www.itu.int/ITU-R/go/patents/fr, où l'on trouvera également les Lignes directrices pour la mise en œuvre de la politique commune en matière de brevets de l'UIT-R, l'ISO et la CEI et la base de données en matière de brevets de l'UIT-R.

	Séries des Recommandations UIT-R
	(Également disponible en ligne: http://www.itu.int/publ/R-REC/fr)
Séries	Titre
во	Diffusion par satellite
BR	Enregistrement pour la production, l'archivage et la diffusion; films pour la télévision
BS	Service de radiodiffusion sonore
BT	Service de radiodiffusion télévisuelle
F	Service fixe
M	Services mobile, de radiorepérage et d'amateur y compris les services par satellite associés
P	Propagation des ondes radioélectriques
RA	Radio astronomie
RS	Systèmes de télédétection
\mathbf{S}	Service fixe par satellite
SA	Applications spatiales et météorologie
SF	Partage des fréquences et coordination entre les systèmes du service fixe par satellite et du service fixe
SM	Gestion du spectre
SNG	Reportage d'actualités par satellite
TF	Émissions de fréquences étalon et de signaux horaires
V	Vocabulaire et sujets associés

Note: Cette Recommandation UIT-R a été approuvée en anglais aux termes de la procédure détaillée dans la Résolution UIT-R 1.

Publication électronique Genève, 2022

© UIT 2022

Tous droits réservés. Aucune partie de cette publication ne peut être reproduite, par quelque procédé que ce soit, sans l'accord écrit préalable de l'UIT.

RECOMMANDATION UIT-R BS.1114-12

Systèmes de radiodiffusion sonore numérique de Terre à destination de récepteurs fixes, portatifs ou placés à bord de véhicules fonctionnant dans la gamme de fréquences 30-3 000 MHz

(Question UIT-R 56/6)

(1994-1995-2001-2002-2003-2004-2007-2011-2014-2015-2017-2019-2022)

Champ d'application

La présente Recommandation décrit plusieurs systèmes de radiodiffusion sonore numérique de Terre à destination de récepteurs fixes, portatifs ou placés à bord de véhicules fonctionnant dans la gamme de fréquences 30-3 000 MHz. Elle donne les principales caractéristiques de chaque système, comme le codage de la source, le codage de canal, la modulation, la structure de transmission et les niveaux seuils pour obtenir une bonne qualité de service.

Mots clés

Radiodiffusion sonore numérique, DAB, ISDB-TSB, IBOC, DRM, CDR, RAVIS

L'Assemblée des radiocommunications de l'UIT,

considérant

- a) que, dans le monde entier, la radiodiffusion sonore numérique de Terre à destination de récepteurs placés à bord de véhicules et de récepteurs portatifs ou fixes fonctionnant dans la gamme de fréquences 30-3 000 MHz et assurant une couverture nationale, régionale ou locale, suscite un intérêt croissant;
- b) que l'UIT-R a déjà adopté des Recommandations qui indiquent les exigences requises pour les systèmes de radiodiffusion sonore numérique de Terre (UIT-R BS.774) et par satellite (UIT-R BO.789) à destination de récepteurs placés à bord de véhicules et de récepteurs portatifs ou fixes;
- c) que les Recommandations UIT-R BS.774 et UIT-R BO.789 font état des avantages liés à une utilisation conjointe de systèmes de Terre et de systèmes à satellites et préconisent l'adoption d'un système de radiodiffusion sonore numérique permettant d'utiliser un récepteur commun doté de circuits à intégration à très grande échelle (VLSI, very large scale integration) communs et de fabriquer ainsi des récepteurs bon marché en grande série;
- d) que le Système numérique A, décrit dans l'Annexe 2, est conforme à toutes les dispositions des Recommandations UIT-R BS.774 et UIT-R BO.789 et qu'il a été testé en conditions réelles et a fait l'objet de démonstrations dans diverses bandes de fréquences comprises entre 200 MHz et 1500 MHz dans un certain nombre de pays;
- e) que le Système numérique F, décrit dans l'Annexe 3, est conforme à la Recommandation UIT-R BS.774 et qu'il a été testé en conditions réelles et présenté dans les bandes 188-192 MHz et 2535-2655 MHz dans plusieurs pays;
- f) que le Système numérique C, décrit dans l'Annexe 4, est conforme aux dispositions de la Recommandation UIT-R BS.774 et qu'il a été testé en conditions réelles et a fait l'objet de démonstrations dans la bande 88-108 MHz;

- que le Système numérique G, décrit dans l'Annexe 5, est conforme aux dispositions de la Recommandation UIT-R BS.774 et que ce système exploité en Mode E a été testé avec succès en conditions réelles et a fait l'objet de démonstrations dans la bande d'ondes métriques I (47-68 MHz), dans la bande d'ondes métriques II (87,5-108 MHz) et dans la bande d'ondes métriques III (174-230 MHz);
- h) que le Système numérique H, décrit dans l'Annexe 6, est conforme aux dispositions de la Recommandation UIT-R BS.774 et qu'il a été testé en conditions réelles et a fait l'objet de démonstrations dans la bande 88-108 MHz;
- *i*) que le Système numérique I, décrit dans l'Annexe 7, est conforme aux dispositions de la Recommandation UIT-R BS.774, et qu'il a été testé en conditions réelles et a fait l'objet de démonstrations dans les bandes 66-74 MHz et 87,5-108 MHz;
- *j*) qu'à la 7ème Conférence mondiale des Unions de radiodiffusion (Mexico, 27-30 avril 1992), les Unions de radiodiffusion ont décidé à l'unanimité:
- «1) qu'il fallait s'efforcer de parvenir à une norme mondiale unique pour la RAN; et
- 2) que les administrations sont instamment priées d'examiner les avantages pour le consommateur d'un codage commun de source et de canal ainsi que la mise en œuvre de la radiodiffusion sonore numérique à 1,5 GHz à l'échelle mondiale;»
- *k*) que le flux de transport MPEG-2 (TS, *transport stream*) est couramment utilisé comme conteneur d'informations codées numériques;
- l) qu'un processus de normalisation en Europe a conduit à adopter le Système numérique A (Eureka 147 comme norme ETSI EN 300 401) pour le SRS et le service de radiodiffusion sonore à destination de récepteurs placés à bord de véhicules et de récepteurs portatifs ou fixes;
- m) qu'un processus de normalisation au Japon a conduit à adopter le Système numérique F de radiodiffusion numérique à intégration de services (RNIS) pour la radiodiffusion sonore numérique de Terre (RNIS-T_{SB}) à destination de récepteurs portatifs, fixes ou à bord de véhicules;
- n) que l'on peut utiliser les techniques de RNIS (radiodiffusion numérique à intégration de services) pour mettre en œuvre des services exploitant pleinement les avantages de la radiodiffusion numérique, et que la Recommandation UIT-R BT.1306 englobe le système RNIS-T pour la radiodiffusion télévisuelle numérique par voie hertzienne de Terre;
- o) qu'un processus de normalisation aux Etats-Unis d'Amérique a conduit à adopter le Système numérique C (système IBOC) comme norme NRSC-5 pour la radiodiffusion sonore numérique de Terre à destination de récepteurs fixes, portatifs ou placés à bord de véhicules;
- p) qu'un processus de normalisation en Europe a conduit à adopter le Système numérique G (système DRM comme norme ETSI ES 201 980) pour les systèmes de radiodiffusion sonore numérique de Terre à destination de récepteurs fixes, portatifs ou placés à bord de véhicules;
- q) qu'un processus de normalisation en République populaire de Chine a abouti à l'adoption du Système numérique H (système CDR) comme norme GY/T 268.1-2013 pour la radiodiffusion sonore numérique de Terre à destination de récepteurs portatifs, fixes ou à bord de véhicules;
- r) qu'un processus de normalisation en Fédération de Russie a abouti à l'adoption du Système numérique I (système RAVIS) comme norme nationale GOST R 54309-2011 pour la radiodiffusion sonore et multimédia numérique de Terre à destination de récepteurs fixes portatifs ou à bord de véhicules,

notant

- a) que les systèmes numériques sont brièvement présentés en Annexe 1;
- *b*) que des descriptions condensées des Systèmes numériques A, C, F, G, H et I sont reproduites dans les Annexes 2, 3, 4, 5, 6 et 7, respectivement;
- c) que les descriptions complètes des Systèmes numériques A, F et C figurent dans le Manuel sur la radiodiffusion sonore numérique,

recommande

- d'utiliser les Systèmes numériques A, F, C, G, H et/ou I, décrits dans les Annexes 2, 3, 4, 5, 6 et 7 respectivement, pour les services de radiodiffusion sonore numérique de Terre à destination de récepteurs fixes, portatifs ou placés à bord de véhicules fonctionnant dans la gamme de fréquences 30-3 000 MHz, selon le cas;
- que les administrations qui souhaitent mettre en œuvre des services de radiodiffusion sonore numérique de Terre conformes à certaines ou à toutes les prescriptions énoncées dans la Recommandation UIT-R BS.774, utilisent le Tableau 1 pour évaluer les avantages respectifs des Systèmes numériques A, F, C, G, H et I en vue des choix à faire,

invite les membres de l'UIT et les fabricants de récepteurs radio à envisager de mettre au point

- 1 des récepteurs radio portatifs, multibandes et multinormes qui soient viables économiquement et qui soient conçus pour fonctionner, par sélection manuelle ou de préférence automatique, avec tous les différents systèmes de radiodiffusion analogique ou numérique actuellement utilisés dans toutes les bandes de fréquences applicables;
- des récepteurs radio numériques qui permettent de télécharger des mises à niveau de certaines de leurs fonctionnalités spécifiques (décodage, navigation, gestion etc.);
- 3 un indicateur simple du niveau de champ RF reçu et du taux d'erreurs sur les bits.

TABLEAU 1 Évaluation des performances des Systèmes numériques A, F, C, G, H et I sur la base des caractéristiques techniques et d'exploitation préconisées dans la Recommandation UIT-R BS.774

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Qualité sonore et types de réception	8 à 384 kbit/s par canal audio, par incréments de 8 kbit/s, avec jusqu'à 64 services par ensemble (mais généralement entre 10 et 20). Un décodeur audio MPEG-2 Couche II ou MPEG-4 HE-AACv2 fonctionnant normalement dans la gamme comprise entre 32 et 192 kbit/s est intégré dans les récepteurs. Pour récepteurs fixes, portatifs ou à bord de véhicules.	La gamme s'étend de la «qualité téléphonique» à la «qualité CD». Capacité audio multicanal 5.1. Décodeur MPEG-2 de type AAC (advanced audio coding) fonctionnant généralement à 144 kbit/s pour la stéréophonie. Pour récepteurs fixes, portatifs ou à bord de véhicules.	12 à 96 kbit/s, avec utilisation du décodeur HD Codec ⁽¹⁾ , divers formats audio multicanal étant pris en charge. Pour récepteurs fixes, portatifs ou à bord de véhicules ⁽²⁾ .	Débit de contenu utile de 37 à 186 kbit/s pour la totalité de l'ensemble multiplex avec quatre services au maximum dans tous les modes. Obtention d'une qualité CD à l'aide d'un décodeur audio MPEG-4 HE-AAC v2. Capacité audio multicanal 5.1. Pour récepteurs fixes, portatifs ou à bord de véhicules ⁽³⁾ .	Débit de 16 (compatible avec la qualité MF) à 320 kbit/s (qualité CD et future capacité audio multicanal 5.1). Obtention d'une qualité CD à 96 kbit/s à l'aide d'un décodeur audio DRA+ (GD/J 058-2014). Pour récepteurs fixes, portatifs ou à bord de véhicules.	Débit utile de 52 à 800 kbit/s pour l'ensemble du multiplex. Obtention d'une qualité CD à l'aide d'un décodeur audio MPEG-4 HE-AAC v2. Capacité audio multicanal et en immersion. Pour récepteurs fixes, portatifs ou à bord de véhicules.

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Efficacité spectrale supérieure à celle des systèmes à MF	Possibilité d'obtenir une qualité équivalente à la stéréo à MF dans une largeur de bande inférieure à 200 kHz; protection requise contre le brouillage dans le même canal et dans les canaux adjacents très inférieure à celle d'un système à MF.	Possibilité d'obtenir une qualité équivalente à la stéréo à MF dans une largeur de bande inférieure à 200 kHz; protection requise contre le brouillage dans le même canal et dans les canaux adjacents très inférieure à celle d'un système à MF.	Possibilité d'obtenir une qualité équivalente à la stéréo à MF et de transmettre des données sans spectre additionnel; protection requise contre le brouillage dans le même canal et dans les canaux adjacents très inférieure à celle d'un système à MF. Un entrelacement est prévu afin de réduire le brouillage dans le premier canal adjacent. Le système est plus robuste en présence de brouillage analogique ou numérique dans le même canal.	Possibilité d'obtenir une qualité équivalente à la stéréo à MF et de transmettre des données dans une largeur de bande de 100 kHz; protection requise contre le brouillage dans le même canal et dans les canaux adjacents très inférieure à celle d'un système à MF. Il est possible d'améliorer encore l'efficacité spectrale en utilisant plusieurs émetteurs sur la même fréquence (réseau monofréquence, SFN). L'efficacité est particulièrement élevée si les réémetteurs réutilisent la même fréquence.	Le système définit le mode de diffusion simultanée ainsi que le mode tout numérique, pour répondre aux différents besoins à chaque étape du passage au numérique. L'utilisation du mode de diffusion simultanée permet d'obtenir une qualité équivalente à la qualité MF stéréo (ou à la qualité CD) et de transmettre des données sans spectre additionnel; protection requise contre le brouillage dans le même canal et dans les canaux adjacents très inférieure à celle d'un système MF.	Possibilité d'obtenir une qualité équivalente à la stéréo à MF et de transmettre des données dans une largeur de bande de 100, 200, 250 kHz; protection requise contre le brouillage dans le même canal et dans les canaux adjacents très inférieure à celle d'un système à MF. Il est possible d'améliorer encore l'efficacité spectrale en utilisant plusieurs émetteurs sur la même fréquence (réseau monofréquence, SFN). L'efficacité est particulièrement élevée si les réémetteurs réutilisent la même fréquence.

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Efficacité spectrale supérieure à celle des systèmes à MF (suite)	L'efficacité spectrale est particulièrement grande lorsque les émetteurs réutilisent la même fréquence (modulation multiporteuse orthogonale avec code de correction d'erreur à convolution, multiplexage par répartition orthogonale de la fréquence codée (MROFC) avec codage convolutionnel avec correction des erreurs).	L'efficacité est particulièrement élevée si les réémetteurs réutilisent la même fréquence. Efficacité accrue par l'emploi de la modulation d'amplitude en quadrature de porteuse (MAQ-16/MAQ-64) (multiplexage par répartition orthogonale de la fréquence (MROF) avec bloc concaténé et codage convolutionnel avec correction des erreurs).		Efficacité accrue par l'emploi de la modulation d'amplitude en quadrature de porteuse (MAQ-16) en plus de la modulation MAQ-4 (multiplexage par répartition orthogonale de la fréquence (MROF) avec codage multiniveau et correction des erreurs).	Un entrelacement est prévu afin de réduire le brouillage dans le premier canal adjacent. Le système est plus robuste en présence de brouillage analogique ou numérique dans le même canal. Après l'arrêt de la radiodiffusion analogique, le système pourra utiliser un plus grand nombre de fréquences et offrir des services de meilleure qualité (par exemple plusieurs services de qualité CD et services multicanal 5.1).	Efficacité élevée obtenue par l'emploi du multiplexage par répartition orthogonale de la fréquence (MROF) avec codage multiniveau et correction des erreurs, et de la modulation d'amplitude en quadrature (MAQ) – MAQ-4, MAQ-16, MAQ-64.

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Efficacité spectrale supérieure à celle des systèmes à MF (suite)					Il est possible d'améliorer encore l'efficacité spectrale en utilisant plusieurs émetteurs sur la même fréquence (réseau monofréquence, «SFN», par exemple). L'efficacité est particulièrement élevée si les répéteurs réutilisent la même fréquence. Elle peut encore être améliorée par l'emploi de la modulation d'amplitude en quadrature de porteuse (MAQ-16) en plus de la modulation MAQ-4 (multiplexage par répartition orthogonale de la fréquence (MROF) avec codage multiniveau et correction des erreurs).	

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Performances en présence de trajets multiples et de zones d'ombre	Le système est spécialement conçu pour fonctionner en présence de trajets multiples. Il fonctionne par addition de la puissance des échos pendant un intervalle de temps donné. Ceci permet aux réémetteurs situés sur le canal de couvrir les zones d'ombre dues au terrain.	Le système est spécialement conçu pour fonctionner en présence de trajets multiples. Il fonctionne par addition de la puissance des échos pendant un intervalle de temps donné. Ceci permet aux réémetteurs situés sur le canal de couvrir les zones d'ombre dues au terrain.	Le système est spécialement conçu pour fonctionner en présence de trajets multiples. Il utilise la modulation MROF, ce qui lui permet d'être très performant en présence de trajets multiples. Ceci permet aux réémetteurs situés sur le canal de couvrir les zones d'ombre dues au terrain.	Le système est spécialement conçu pour fonctionner en présence de trajets multiples. Il fonctionne par addition de la puissance des échos pendant un intervalle de temps donné. Ceci permet aux réémetteurs situés sur le canal de couvrir les zones d'ombre dues au terrain.	Le système est spécialement conçu pour fonctionner en présence de trajets multiples. Il fonctionne par addition de la puissance des échos pendant un intervalle de temps donné. Cette fonctionnalité permet aux réémetteurs situés sur le canal de couvrir les zones d'ombre dues au terrain.	Le système est spécialement conçu pour fonctionner en présence de trajets multiples. Il fonctionne par addition de la puissance des échos pendant un intervalle de temps donné. Cette fonctionnalité permet aux réémetteurs situés sur le canal de couvrir les zones d'ombre dues au terrain.
Utilisation, dans les récepteurs, du même système de traitement du signal pour la radiodiffusion par satellite (S) et la radiodiffusion de Terre (T)	Non applicable. Radiodiffusion de Terre uniquement.	Non applicable. Radiodiffusion de Terre uniquement.	Non applicable. Radiodiffusion de Terre uniquement.	Non applicable. Radiodiffusion de Terre uniquement.	Non applicable. Radiodiffusion de Terre uniquement.	Non applicable. Radiodiffusion de Terre uniquement.

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Reconfiguration et qualité en fonction du nombre de programmes	Le multiplexage des services est basé sur 64 sous-canaux d'une capacité allant de 8 kbit/s à environ 1 Mbit/s, selon le niveau de protection contre les erreurs, et est complètement reconfigurable, de façon dynamique. Chaque sous-canal peut en outre contenir un nombre illimité de canaux de paquets de données de capacité variable.	Le multiplexage des données de charge utile est fondé sur les systèmes MPEG-2. Le débit de données audio peut être fixé au niveau permettant d'obtenir le meilleur compromis entre la qualité audio des programmes et le nombre de services. Les paramètres de transmission tels que la modulation et la correction des erreurs peuvent être reconfigurés dynamiquement par la commande de configuration de transmission et de multiplexage (TMCC, transmission and multiplexing configuration control).	Le débit du contenu peut atteindre 144 kbit/s. Les bits peuvent être réattribués dynamiquement pour les signaux audio ou les données grâce aux fonctionnalités de transport HDC, au choix du radiodiffuseur. Dans la gamme considérée, le multiplexage du contenu permet de prendre en charge jusqu'à 8 programmes audio et jusqu'à 32 services de données. Le récepteur est reconfiguré dynamiquement afin d'être adapté au mode de transmission.	Le multiplexage des services peut prendre en charge jusqu'à 4 flux, dont la capacité peut varier en fonction des besoins du radiodiffuseur, et est complètement reconfigurable, de façon dynamique. Chaque flux peut acheminer du contenu vidéo ou de données, la taille du paquet pouvant être configurée par le radiodiffuseur pour maximiser l'efficacité. Le récepteur est reconfiguré dynamiquement afin d'être adapté au mode de transmission.	Le multiplexage des services peut prendre en charge jusqu'à 15 flux, dont la capacité peut varier en fonction des besoins du radiodiffuseur, et est complètement reconfigurable de façon dynamique. Chaque flux peut acheminer des contenus vidéo ou de données, la taille du paquet pouvant être configurée par le radiodiffuseur dans un souci d'efficacité optimale. Le récepteur peut être reconfiguré dynamiquement afin d'être adapté au mode de transmission.	Le multiplexage des services peut prendre en charge plus de 20 flux, dont la capacité peut varier en fonction des besoins du radiodiffuseur, et est complètement reconfigurable, de façon dynamique. Chaque flux peut acheminer du contenu audio, vidéo et/ou de données, la taille du paquet pouvant être configurée par le radiodiffuseur pour maximiser l'efficacité. Le récepteur est reconfiguré dynamiquement afin d'être adapté au mode de transmission.

Rec. UIT-R BS.1114-12

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Compromis étendu de la couverture/nombre de programmes	Cinq niveaux de protection pour les services audio MPEG-2 et huit niveaux de protection pour les services MPEG-4 audio et de données grâce à l'utilisation d'un codage convolutionnel discontinu pour chacun des 64 sous-canaux (correction d'erreurs directe (CED) de 1/4 à 3/4).	Quatre types de modulation et cinq niveaux de protection sont possibles (modulation de porteuse: modulation par quadrature de phase différentielle (MDP-4D), MDP-4, MAQ-16, MAQ-64; taux de codage: 1/2, 2/3, 3/4, 5/6 et 7/8).	Le système maintient une couverture uniforme pour tous les programmes. Il est possible que les porteuses secondaires aient une portée réduite en présence de brouillage dans les canaux adjacents (modulation de porteuse: MDP-4).	Deux types de modulation (MAQ-4, MAQ-16) et différents niveaux de protection (deux niveaux pour le canal SDC et quatre niveaux pour le canal MSC) sont possibles. Chaque flux peut être reconfiguré de façon dynamique. La correction d'erreurs directe (CED) est de 1/4 à 5/8.	Trois types de modulation (MAQ-4, MAQ-16 et MAQ-64) et différents niveaux de protection (quatre niveaux pour le canal MSC) sont possibles. La correction d'erreurs directe (CED) est comprise entre 1/4 et 3/4.	Trois types de modulation (MAQ-4, MAQ-16 et MAQ-64) et différents niveaux de protection (trois niveaux pour le canal MSC) sont possibles. La correction d'erreurs directe (CED) est comprise entre 1/2 et 3/4.

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Même récepteur pour différents moyens de diffusion de programme						
 Diffusion par voie hertzienne de Terre 	Permet de fournir des services locaux, sous-nationaux et nationaux par voie hertzienne de Terre avec une même modulation et un émetteur unique ou plusieurs émetteurs fonctionnant dans un réseau monofréquence pour pouvoir utiliser un récepteur commun.	Permet de fournir des services locaux, sous-nationaux et nationaux par voie hertzienne de Terre avec une même modulation et un émetteur unique ou plusieurs émetteurs fonctionnant dans un réseau monofréquence pour pouvoir utiliser un récepteur commun.	Le système utilise une antenne commune et un étage d'entrée compatible avec les services analogiques existants de radiodiffusion à MF. Il permet de fournir un service local ainsi que des services sous-nationaux et nationaux de Terre avec un émetteur unique ou plusieurs émetteurs fonctionnant dans un réseau monofréquence dans le cas de la partie numérique du mode hybride ou dans le cas du mode tout numérique.	Permet de fournir des services locaux, sous-nationaux et nationaux par voie hertzienne de Terre avec une même modulation et un émetteur unique ou plusieurs émetteurs fonctionnant dans un réseau monofréquence pour pouvoir utiliser un récepteur commun. Conçu uniquement pour être un système numérique de Terre.	Le système utilise une antenne commune et un étage d'entrée compatible avec les services de radiodiffusion analogiques existants MF. Il permet de fournir un service local ainsi que des services sous-nationaux et nationaux de Terre avec un émetteur unique ou plusieurs émetteurs fonctionnant dans un réseau monofréquence dans le cas de la partie numérique du mode de diffusion simultanée ou dans le cas du mode tout numérique.	Permet de fournir des services locaux, sous-nationaux et nationaux par voie hertzienne de Terre avec une même modulation et un émetteur unique ou plusieurs émetteurs fonctionnant dans un réseau monofréquence pour pouvoir utiliser un récepteur commun. Conçu uniquement pour être un système numérique de Terre.

Rec. UIT-R BS.1114-12

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
- Diffusion par voie hertzienne de Terre (suite)			Il permet de diffuser par le même moyen des programmes modulés en fréquence qui passent de façon transparente du numérique à l'analogique et inversement. Il permet de diffuser simultanément les mêmes programmes en mode analogique et numérique (exploitation hybride).			

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
- Exploitation mixte/hybride		Permet d'utiliser la même bande que pour la radiodiffusion sonore par voie hertzienne de Terre (mixte) ainsi que d'utiliser des réémetteurs sur le même canal de Terre pour améliorer la couverture du satellite (hybride), donc de recevoir de manière transparente tous ces canaux sur un récepteur commun.				
 Distribution par câble 	Le signal peut être acheminé de façon transparente sur le câble.	Le signal peut être acheminé de façon transparente sur le câble.	Le signal peut être acheminé de façon transparente sur le câble.	Le signal peut être acheminé de façon transparente sur le câble.	Le signal peut être acheminé de façon transparente sur le câble.	Le signal peut être acheminé de façon transparente sur le câble.

Rec. UIT-R BS.1114-12

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Capacité d'insertion de données associées au programme (DAP)	On dispose d'un canal pour les DAP, d'une capacité de 0,33 à 64 kbit/s, en réduisant d'autant la capacité de l'un quelconque des canaux audio. Seuls les récepteurs équipés de dispositifs d'affichage alphanumérique peuvent afficher les étiquettes dynamiques d'identification des programmes et des services.	Le multiplexage des données DAP est fondé sur les systèmes MPEG-2.	La capacité DAP fait partie intégrante du système et peut être assurée par le biais de la capacité de données résiduelle instantanée sans dégradation de la qualité audio ni réduction de la capacité des canaux de données. Tous les récepteurs peuvent recevoir l'étiquette dynamique de présentation du nom du programme et du nom du service sur tout dispositif d'affichage alphanumérique d'un récepteur.	L'insertion de données DAP à capacité choisie par le radiodiffuseur est disponible. Tous les récepteurs peuvent recevoir l'étiquette dynamique de présentation du nom du programme et du nom du service sur tout dispositif d'affichage alphanumérique d'un récepteur (messages textuels DRM; étiquettes d'accompagnement des programmes (Unicode));	L'insertion de données DAP à capacité choisie par le radiodiffuseur est disponible. Tous les récepteurs peuvent recevoir l'étiquette dynamique de présentation du nom du programme et du nom du service sur tout dispositif d'affichage alphanumérique d'un récepteur. Guide électronique des programmes, service d'informations textuelles évolué.	L'insertion de données DAP à capacité choisie par le radiodiffuseur est disponible. Tous les récepteurs peuvent recevoir l'étiquette dynamique de présentation du nom du programme et du nom du service sur tout dispositif d'affichage alphanumérique d'un récepteur. Guide électronique des programmes, service d'informations textuelles évolué.

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Capacité d'insertion de données associées au programme (DAP) (suite)	Le décodage par langage de balisage hypertexte (HTML) de base et le décodage d'images du Groupe mixte d'experts en photographie (JPEG) sont proposés sur les récepteurs à écran graphique (1/4 VGA, video graphic array), etc.			Guide électronique des programmes, service d'informations textuelles évolué (Unicode), prenant en charge tous les types de récepteurs, déclenche l'interactivité et la géolocalisation; images associées aux programmes + petites vidéos d'information trafic avec animation.		
Souplesse d'assignation des services	Le multiplex peut être reconfiguré dynamiquement de manière transparente pour l'utilisateur.	Le multiplex peut être reconfiguré dynamiquement de manière transparente pour l'utilisateur.	Le système peut être reconfiguré automatiquement entre les signaux audio et les données de manière transparente pour l'utilisateur.	Le multiplex peut être reconfiguré dynamiquement de manière transparente pour l'utilisateur.	Le multiplex peut être reconfiguré dynamiquement de manière transparente pour l'utilisateur.	Le multiplex peut être reconfiguré dynamiquement de manière transparente pour l'utilisateur.

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Structure de multiplex compatible avec le modèle d'interconnexion des systèmes ouverts (OSI)	La structure de multiplex du système est conforme au modèle en couches OSI, notamment pour les canaux de données, sauf pour les caractéristiques différentes de protection contre les erreurs du canal audio MPEG-2 Couche II.	La structure de multiplex du système est entièrement compatible avec l'architecture de systèmes MPEG-2.	Le système est fondé sur un modèle en couches OSI à la fois pour les signaux audio et pour les données, sauf pour la protection particulière contre les erreurs offerte par le codec audio.	La structure de multiplex du système est conforme au modèle en couches OSI pour tous les services.	La structure de multiplex du système est conforme au modèle en couches OSI pour tous les services.	La structure de multiplex du système est conforme au modèle en couches OSI pour tous les services.
Capacité de services de données à valeur ajoutée	Tout sous-canal (parmi les 64 existants) non utilisé pour les services audio peut être utilisé pour des services de données indépendants des programmes.	Une capacité quelconque, pouvant aller jusqu'à la pleine capacité de charge utile, peut être attribuée pour des données indépendantes afin d'assurer la diffusion de données commerciales, de radiomessagerie, d'images fixes, etc., éventuellement sous accès conditionnel.	Une capacité quelconque, pouvant aller jusqu'à la pleine capacité de charge utile, peut être attribuée pour des données indépendantes afin d'assurer la diffusion de données commerciales, de radiomessagerie, d'images fixes, etc., éventuellement sous accès conditionnel.	Une capacité quelconque, pouvant aller jusqu'à la pleine capacité de charge utile, peut être attribuée pour des données indépendantes afin d'assurer la diffusion de données commerciales, de radiomessagerie, d'images fixes, etc., éventuellement sous accès conditionnel.	Une capacité quelconque, pouvant aller jusqu'à la pleine capacité de charge utile, peut être attribuée pour des données indépendantes afin d'assurer la diffusion de données commerciales, de radiomessagerie, d'images fixes, etc., éventuellement sous accès conditionnel.	Une capacité quelconque, pouvant aller jusqu'à la pleine capacité de charge utile, peut être attribuée pour des données indépendantes afin d'assurer la diffusion de données commerciales, de radiomessagerie, d'images fixes, etc., éventuellement sous accès conditionnel.

TABLEAU 1 (fin)

Caractéristiques préconisées dans la Recommandation UIT-R BS.774 (libellé condensé)	Système numérique A	Système numérique F	Système numérique C	Système numérique G	Système numérique H	Système numérique I
Possibilité de fabriquer des récepteurs bon marché	Permet de produire en grande série et à faible coût des récepteurs grand public.	Le système a été spécifiquement optimisé pour qu'un récepteur pour véhicule de faible complexité puisse être produit dès le départ. Un groupe de normalisation a été constitué en vue de la production de récepteurs bon marché par des techniques d'intégration à grande échelle.	Le système a été spécialement optimisé pour qu'un récepteur pour véhicule de faible complexité puisse être produit dès le départ. Les solutions de circuits intégrés de troisième génération permettent la mise en œuvre avec une seule puce compatible avec les récepteurs portables et les dispositifs mobiles de coût modique.	Permet de produire en grande série et à faible coût des récepteurs grand public.	Permet de produire en grande série et à faible coût des récepteurs grand public.	Permet de produire en grande série et à faible coût des récepteurs grand public.

On trouvera de plus amples informations sur le décodeur HD Codec (HDC) à l'adresse: www.ibiquit.com.

Les modes de fonctionnement dans la même bande dans la même voie (IBOC, *in-band on-channel*) (Système numérique C) préprogrammés dans les circuits intégrés ne sont pas utilisables à bord d'un véhicule à des fréquences supérieures à 230 MHz.

⁽³⁾ Le système a été testé avec succès dans les Régions 1 et 3. S'agissant de la Région 2, on ne dispose pas de données concernant les tests en conditions réelles permettant de démontrer la compatibilité avec la radiodiffusion analogique dans des zones où des brouillages importants se produisent dans le même canal ou dans le canal adjacent.

Annexe 1

Brève présentation des systèmes numériques

1 Présentation du Système numérique A

Le Système numérique A, également connu sous l'appellation système Eureka 147 DAB (radiodiffusion audionumérique, *digital audio broadcasting*) a été mis au point pour les applications tant par satellite que de Terre au moyen d'un même récepteur bon marché. Le système a été conçu pour des récepteurs fixes, portatifs ou à bord de véhicules avec des antennes de réception équidirectives à faible gain situées à 1,5 m au-dessus du sol. La radiodiffusion audionumérique (DAB) est utilisée pour la radiodiffusion de Terre, à destination de récepteurs portatifs et mobiles. Il offre en particulier de meilleures performances en présence de trajets multiples et de zones d'ombre, situation type d'un environnement urbain, et la puissance du récepteur du satellite requise peut être réduite par l'utilisation de répéteurs de Terre (répéteurs de complément). Le Système numérique A est capable d'offrir divers niveaux de qualité sonore, jusqu'à des niveaux de haute qualité comparables à ceux des enregistrements numériques grand public. Il peut par ailleurs offrir différents services de données et différents niveaux d'accès conditionnel et la possibilité de réorganiser de façon dynamique les différents services du multiplex.

2 Présentation du Système numérique F

Le Système numérique F, également connu en tant que système RNIS-T_{SB} est conçu pour la radiodiffusion sonore et de données de haute qualité avec une grande fiabilité même en réception mobile. Il est conçu pour être flexible et évolutif et pour présenter une grande analogie avec la radiodiffusion multimédias utilisant des réseaux de Terre. C'est un système robuste qui utilise la modulation avec MROF, l'entrelacement bidimensionnel fréquence-temps et des codes de correction d'erreur concaténés. La modulation à MROF utilisée par le système est appelée BST-MROF (BST étant la transmission à segmentation de bande). Le système présente des éléments communs avec le système RNIS-T dans la couche physique. Il comporte de nombreux paramètres de transmission tels que le système de modulation des porteuses, les taux de codage associés au code de correction d'erreur interne ainsi que la longueur de l'entrelacement temporel. Certaines des porteuses sont assignées à la commande TMCC qui transmet les informations sur les paramètres de transmission pour la commande du récepteur. Le Système numérique F peut utiliser des méthodes de codage audio à forte compression telles que MPEG-2 AAC. Enfin, il utilise les systèmes MPEG-2. Il présente des caractéristiques d'analogie et d'interopérabilité avec de nombreux autres systèmes utilisant les systèmes MPEG-2 tels que RNIS-S, RNIS-T, DVB-S et DVB-T.

3 Présentation du Système numérique C

Le Système numérique C (IBOC-DSB) est un système complètement développé. Ce système est conçu pour des récepteurs fixes, portatifs, sur téléphone mobile ou à bord de véhicules¹, les signaux provenant d'émetteurs de Terre. Il peut être mis en œuvre dans des parties non occupées du spectre, mais il présente la caractéristique importante de pouvoir offrir une diffusion simultanée de signaux analogiques et de signaux numériques dans la bande actuellement attribuée à la radiodiffusion MF.

Les modes de fonctionnement IBOC (Système numérique C) préprogrammés dans les circuits intégrés ne sont pas utilisables à bord d'un véhicule à des fréquences supérieures à 230 MHz.

Cette caractéristique devrait permettre aux radiodiffuseurs actuels utilisant la MF qui le souhaitent de passer de façon rationnelle d'une radiodiffusion analogique à une radiodiffusion numérique. Le système offre de meilleures performances en présence de trajets multiples et, par conséquent, une plus grande fiabilité que celle offerte par les systèmes analogiques existants à MF. Le Système numérique C offre une qualité audio améliorée, comparable à celle des enregistrements numériques grand public. De plus, il présente une certaine souplesse permettant aux radiodiffuseurs de proposer de nouveaux services de diffusion de données en plus des programmes audio améliorés. Enfin, il permet d'attribuer des bits entre la capacité audio et la capacité de diffusion de données afin de maximiser cette dernière.

4 Présentation du Système numérique G

Le Système numérique G, également connu sous l'appellation système Digital Radio Mondiale (DRM), a été développé pour les applications de radiodiffusion de Terre dans toutes les bandes de fréquences attribuées à l'échelle mondiale pour la radiodiffusion sonore analogique. Il est conforme aux gabarits spectraux définis par l'UIT et permet ainsi de passer progressivement de la radiodiffusion analogique à la radiodiffusion numérique. Le système est conçu pour être un système exclusivement numérique. Dans les bandes au-dessus de 30 MHz, il définit le mode de fiabilité E (également appelé DRM+) qui offre une qualité audio comparable à celle des enregistrements numériques grand public. En outre, le Système numérique G offre différents services de données, comme des images et des guides électroniques des programmes, et la possibilité de réorganiser de façon dynamique les différents services du multiplex sans perte audio.

5 Présentation du Système numérique H

Le Système numérique H, également connu sous l'appellation «Convergent Digital Radio (CDR)», a été conçu pour permettre la transition sans heurts de la radiodiffusion analogique MF actuelle à la radiodiffusion numérique. Il a été mis au point pour des récepteurs fixes, portatifs ou à bord de véhicules, les signaux provenant d'émetteurs de Terre Pendant la diffusion simultanée, le Système numérique H pourra utiliser pleinement les bandes de fréquences non utilisées du canal MF actuel et fournir plusieurs services de radiocommunication numérique additionnels. Le système offre de meilleures performances en présence de trajets multiples et, par conséquent, une plus grande fiabilité que celle qu'offrent les systèmes analogiques existants en MF. Après l'abandon de l'analogique, le Système numérique H permettra de fournir des services audionumériques de meilleure qualité (par exemple des services de qualité CD ou avec diffusion d'un son multicanal 5.1), ainsi que divers services de transmission de données, et d'assurer une couverture nationale grâce à l'utilisation d'un réseau monofréquence (SFN).

6 Présentation du Système numérique I

Le Système numérique I, également connu sous l'appellation système RAVIS (système d'informations audiovisuelles en temps réel), a été développé pour les applications de radiodiffusion de Terre dans toutes les bandes de fréquences attribuées à l'échelle mondiale pour la radiodiffusion sonore analogique MF. Il est conforme aux gabarits spectraux définis par l'UIT et permet ainsi de passer progressivement de la radiodiffusion analogique à la radiodiffusion numérique. Le système est conçu pour être un système exclusivement numérique. Il offre une qualité audio comparable, ou supérieure, à celle des enregistrements numériques grand public. En outre, le Système numérique I offre aussi un service vidéo et différents services de données, comme des images et des guides électroniques des programmes, et la possibilité de réorganiser de façon dynamique les différents services du multiplex.

Annexe 2

Système numérique A

1 Introduction

Le Système numérique A est un système de radiodiffusion numérique multiservices de haute qualité à destination des récepteurs placés à bord de véhicules et des récepteurs portatifs ou fixes. Il peut être exploité jusqu'à 3 000 MHz et utiliser différents modes de diffusion de Terre et par câble. Il s'agit d'un système de radiodiffusion numérique à intégration de services polyvalent qui offre une grande souplesse d'exploitation et permet, conformément aux exigences de souplesse d'exploitation et de diversité des services qu'imposent aux systèmes et aux services les Recommandations UIT-R BO.789 et UIT-R BS.774 appuyées par le Manuel sur la radiodiffusion sonore numérique et le Rapport UIT-R BS.1203, de nombreuses possibilités de codage des sources et des canaux, de transmettre des données associées aux programmes sonores et de fournir des services de données indépendants.

Ce système de radiodiffusion sonore et de radiodiffusion de données est particulièrement fiable, et offre une grande efficacité d'utilisation du spectre et de la puissance. Il fait appel à des techniques numériques de pointe pour l'élimination dans le signal source des redondances et des informations qui n'ont aucune incidence sur le rendu acoustique, et produit une redondance strictement contrôlée sur le signal diffusé destiné à la correction des erreurs. L'information transmise est ensuite étalée en temps et en fréquence pour que le récepteur, fixe ou mobile, restitue un signal de haute qualité même en présence de phénomènes de propagation par trajets multiples. L'amélioration de l'efficacité d'utilisation du spectre est obtenue par entrelacement de plusieurs signaux de programme, et compte tenu des possibilités de réutilisation des fréquences spécifiques à un système, on peut étendre pratiquement sans limites les réseaux de radiodiffusion en plaçant des émetteurs supplémentaires fonctionnant sur la même fréquence.

Le Système numérique A été mis au point par le Consortium Eureka 147 (DAB) et bénéficie du soutien actif de l'Union européenne de radiotélévision (UER). Il a été mis en place avec succès dans de nombreux pays européens et le passage de l'analogique au numérique devrait avoir lieu en 2017 en Norvège et entre 2020 et 2024 en Suisse. Des services usuels sont également opérationnels en Australie, et de nombreux essais ont été effectués sur tous les continents. Dans l'Annexe 2, le Système numérique A est appelé 'Système A'. Ses spécifications complètes sont données dans la norme européenne de télécommunication EN 300 401.

2 Utilisation d'un modèle en couches

Le Système A est conforme au modèle de référence OSI décrit dans la Norme de l'Organisation internationale de normalisation (ISO) 7498 (1984). L'utilisation de ce modèle est préconisée dans la Recommandation UIT-R BT.807 et le Rapport UIT-R BT.1207. La présente Recommandation établit une analogie structurelle entre le modèle OSI et les systèmes de radiodiffusion en couches. En conséquence, le Système A est décrit par référence à ce modèle, l'analogie étant illustrée au Tableau 2.

Bien des techniques en cause sont décrites plus facilement en se plaçant au niveau du fonctionnement de l'équipement à l'émetteur, ou au point central du réseau de distribution dans le cas d'un réseau d'émetteurs.

TABLEAU 2

Interprétation du modèle OSI à plusieurs couches

Nom de la couche	Description	Caractéristiques propres au système
Application	Utilisation pratique du système	Possibilités du système Qualité du son Modes de transmission
Présentation	Conversion pour la présentation	Codage et décodage audio Présentation audio Information de service
Session	Sélection des données	Sélection du programme Accès conditionnel
Transport	Groupement des données	Services de programmes Multiplex principal de services Données auxiliaires Association de données
Réseau	Voie logique	Trames audio ISO Données associées au programme
Liaison de données	Format du signal émis	Trames de transmission Synchronisation
Physique	Transmission physique (radioélectrique)	Dispersion d'énergie Codage par convolution Entrelacement en temps et en fréquence Modulation MDP-4D MROF Transmission radioélectrique

Le Système A ayant pour but fondamental de fournir des programmes radiophoniques à l'auditeur, il est décrit ci-après dans l'ordre des couches suivantes de la couche application (utilisation de l'information de radiodiffusion) et à la couche physique (moyens d'émission radioélectrique).

3 Couche application

Cette couche correspond à l'utilisation du Système A au niveau de l'application. Elle englobe les facilités et la qualité du son offertes par le Système A donc offertes par les radiodiffuseurs à leurs auditeurs, ainsi que les différents modes de transmission.

3.1 Facilités offertes par le Système A

Le Système A produit un signal qui contient un multiplex de données numériques, correspondant à plusieurs programmes en même temps. Ce multiplex contient des données radiophoniques, ainsi que des données auxiliaires: DAP, informations sur la configuration du multiplex (ICM), informations de service. Le multiplex peut aussi acheminer des données associées à des services généraux de données qui n'ont pas nécessairement de rapport avec la transmission de programmes radiophoniques.

En particulier, l'utilisateur du Système A dispose des facilités suivantes:

- réception du signal audiofréquence (c'est-à-dire le programme) fourni par le service de programme choisi;
- options fonctionnelles du récepteur qui peuvent utiliser les données auxiliaires transmises avec le programme (par exemple, le contrôle de la plage dynamique);

- affichage d'un texte donnant certaines informations sélectionnées dans les informations de service transmises. Il peut s'agir d'informations relatives au programme choisi, ou à d'autres programmes proposés;
- options permettant de choisir d'autres programmes, d'autres fonctions de récepteur et d'autres informations de service;
- un ou plusieurs services généraux de données, par exemple, informations routières.

Le Système A offre des possibilités d'accès conditionnel, et un récepteur peut être équipé de prises de sortie pour signaux numériques (données) et audionumériques (signal sonore numérisé).

3.2 Qualité du son

En fonction de la capacité du multiplex, le nombre de services radiophoniques et le format de présentation de chacun de ces services (par exemple, stéréo, mono, ambiophonie), la qualité du son et le degré de protection contre les erreurs (et par là même, la fiabilité) peuvent être choisis en fonction des besoins des radiodiffuseurs.

Les options qualité du son sont les suivantes:

- très haute qualité, avec une marge pour traitement du son;
- qualité subjectivement transparente, suffisante pour la plus haute qualité de radiodiffusion;
- haute qualité, correspondant à celle des services à modulation de fréquence actuels;
- qualité moyenne, correspondant à celle des services à modulation d'amplitude actuels;
- qualité «voix» seulement.

Le Système A offre une qualité uniforme de réception dans les limites de couverture de l'émetteur; au-delà, la qualité diminue de manière subjectivement progressive.

4 Couche présentation

Cette couche concerne la conversion et la présentation de l'information diffusée.

4.1 Codage de la source audio

La technique de codage de la source audio d'origine utilisée est la technique ISO/CEI MPEG audio de Couche II définie dans la Norme ISO 11172-3. Ce système à compression et à codage en sous-bandes est également connu sous le nom de MUSICAM. Ce codage de la source audio a été amélioré en 1997 moyennant l'adjonction de la norme de l'ISO ISO/CEI 13818-3, qui a permis une augmentation de la qualité subjective à des débits binaires faibles. En 2007, le codage DAB+ source audio a été mis en place et fait l'objet de la norme ETSI TS 102 563, qui utilise le codec audio HE-AACv2 le plus efficace, correspondant à la norme de l'ISO ISO/CEI 14496-3. Cette possibilité de codage de la source audio constitue désormais la solution privilégiée par les radiodiffuseurs qui lancent des services utilisant le Système A, et bon nombre de radiodiffuseurs qui avaient commencé à offrir des services avec des données audio à codage MPEG-2 utilisent désormais des données audio à codage MPEG-4, pour améliorer l'efficacité d'utilisation du spectre dans le cadre de leurs activités.

Le Système A accepte plusieurs signaux MIC audio avec une fréquence d'échantillonnage de 16, 24, 32 ou 48 kHz, chacune offrant la possibilité de fournir des données additionnelles associées aux programmes (PAD/XPAD). Le nombre de sources audio possible dépend du débit binaire et du type de protection retenu contre les erreurs. Le codeur audio peut fonctionner à des débits binaires allant de 8 à 192 kbit/s par canal monophonique. En mode stéréophonique ou bicanal, le débit du codeur est le double de celui du mode monaural.

4.2 Décodage audiofréquence

Le décodage dans le récepteur, qui repose sur une technique simple de traitement du signal est simple et économique; il exige seulement des opérations de démultiplexage, d'extension et de filtrage inverse.

4.3 Présentation audiofréquence

Les signaux audiofréquence peuvent être présentés sous forme monophonique ou stéréophonique, les canaux audiofréquence peuvent aussi être groupés pour la restitution de l'effet spatial. Les programmes peuvent être reliés de manière à diffuser un même programme simultanément dans plusieurs langues. Afin de satisfaire les auditeurs en milieu bruyant et les amateurs de haute fidélité, le radiodiffuseur peut émettre un signal facultatif de commande de plage dynamique (CPD) qui peut servir, en milieu bruyant, à comprimer la plage dynamique du signal audiofréquence reproduit par le récepteur. Cette technique peut également être utilisée pour les auditeurs malentendants.

4.4 Présentation des informations associées au service

Pour chaque programme transmis par le système, on peut prévoir de visualiser les informations de service suivantes sur le récepteur:

- étiquette du programme de base (c'est-à-dire le nom du programme);
- heure et date;
- indication de programmes identiques («références réciproques») ou analogues (par exemple, dans une autre langue) diffusés dans un autre ensemble ou diffusés simultanément en modulation d'amplitude ou en modulation de fréquence;
- étiquette de service allongée pour les services associés au programme;
- informations sur le programme (par exemple, nom des artistes, des intervenants, des présentateurs);
- langue;
- type de programme (par exemple, actualités, sport, musique, etc.).

Des données relatives au réseau d'émetteurs peuvent être également insérées pour usage interne par les radiodiffuseurs.

5 Couche session

Cette couche concerne le choix et l'accès aux informations radiodiffusées.

5.1 Sélection du programme

Pour qu'un récepteur puisse avoir un accès quasi immédiat à certains services ou à tous les services, le CIR transmet des ICM relatives au contenu actuel et futur du multiplex qui sont accessibles en lecture automatique. Les données du CIR ne sont pas entrelacées dans le temps, de sorte que les ICM ne sont pas affectées d'un retard inhérent au processus d'entrelacement temporel appliqué aux services audiofréquence et aux services de données générales. Ces données sont toujours répétées fréquemment pour des raisons de fiabilité. Lorsque la configuration de multiplexage est sur le point de changer, la nouvelle information et l'indication temporelle du changement sont envoyées à l'avance dans l'ICM.

L'auditeur peut choisir les programmes en fonction des informations textuelles transmises dans l'information de service, en utilisant le nom de service du programme, l'identité du type de programme ou la langue. Les ordres de l'auditeur sont alors exécutés par le récepteur qui utilise les éléments correspondants de l'ICM.

Si d'autres sources d'un service de programme donné sont disponibles et si un service numérique n'est plus utilisable, les données de liaison contenues dans l'information de service (à savoir les «références réciproques») peuvent être utilisées pour trouver une autre solution (renvoi, par exemple, vers un service à modulation de fréquence) et se placer en l'écoute sur le programme correspondant à cette solution. Néanmoins, en pareil cas, le récepteur reviendra au service de départ dès que la réception sera possible.

5.2 Accès conditionnel

Le système est prévu pour permettre l'accès conditionnel (synchronisation et contrôle).

L'accès conditionnel peut être appliqué indépendamment à tous les composants du service, aux services proprement dits ou à l'ensemble du multiplex.

6 Couche transport

Cette couche concerne l'identification des groupes de données en tant que services de programme, le multiplexage des données pour ces services et l'association des éléments des données multiplexées.

6.1 Services de programme

On entend par service de programme un programme radiophonique accompagné ou non de services audio et/ou de données supplémentaires, qui sont diffusés par un fournisseur de service (le radiodiffuseur). La capacité totale d'un multiplex peut être affectée à un fournisseur de service (par exemple, un radiodiffuseur public national), ou répartie entre plusieurs fournisseurs de programmes (par exemple, un groupe de radiodiffuseurs indépendants à vocation commerciale, publique et communautaire).

6.2 Multiplex principal des services

Les données représentant chacun des programmes diffusés (données audionumériques avec des données auxiliaires, voire des données générales) sont protégées des erreurs par codage convolutionnel (voir le § 9.2) et entrelacement temporel. L'entrelacement temporel augmente la fiabilité de la transmission de données dans un environnement variable (par exemple, réception à bord d'un véhicule en mouvement) et impose un retard de transmission prévisible. Les données entrelacées et codées sont ensuite introduites dans le multiplexeur de service principal dans lequel, toutes les 24 ms, les données sont placées en séquence dans la trame multiplex. Le flux binaire combiné en sortie du multiplexeur, qu'on appelle canal CSP, a une capacité brute de 2,3 Mbit/s. Selon le rendement de codage choisi (qui peut différer pour chacun des composants de service), le débit net est compris entre 0,8 et 1,7 Mbit/s, sur une largeur de bande de 1,5 MHz. C'est au niveau du multiplexeur de service principal que les données synchronisées provenant de tous les services de programme utilisant le multiplex sont regroupées.

Des données générales peuvent être envoyées dans le CSP sous forme d'un flux binaire non structuré ou organisé sous la forme d'un multiplex de paquets, dans lequel plusieurs sources sont combinées. Le débit, qui peut être un multiple quelconque de 8 kbit/s, est synchronisé avec le multiplex du système, sous réserve que la capacité totale du multiplex soit suffisante et compte tenu de la demande de services audio.

Le CIR n'est pas intégré au CSP et ne subit pas d'entrelacement temporel.

6.3 Données auxiliaires

Il existe deux domaines dans lesquels des données auxiliaires peuvent être acheminées dans le multiplex du système:

- données associées au programme: il est possible de pouvoir transmettre une quantité modérée de DAP dans chaque canal audiofréquence;
- toutes les données auxiliaires restantes sont traitées comme un service distinct dans le CSP.
 La présence de ces données est signalée dans l'information de configuration de multiplexage.

6.4 Association de données

L'ICM, qui est transmise dans le CIR, décrit de façon précise le contenu actuel et futur du CSP. Les éléments essentiels de l'information de service qui concernent le contenu du CSP (pour le choix du programme) doivent être également transmis dans le CIR. Les textes plus longs, par exemple la liste de tous les programmes de la journée, doivent être transmis séparément dans le cadre d'un service de données générales. Ainsi, l'ICM et l'information de service contiennent des contributions provenant de tous les programmes diffusés.

Les DAP sont transmises dans chaque canal audio car elles comprennent surtout l'information qui est étroitement liée au programme radiophonique; elles ne peuvent donc pas être envoyées par un autre canal de transmission de données, sur lequel le temps de propagation pourrait être différent. Ces données peuvent être un texte simple ou des images relatives au contenu du programme, des informations anticipées sur le guide des programmes ou d'autres applications de données relatives au contenu audio.

7 Couche réseau

Cette couche concerne l'identification de groupes de données en tant que programmes.

7.1 Trames audio ISO

Dans le codeur de la source audio, les processus sont exécutés pendant les trames audio ISO de différentes durées qui peuvent être multiplexés dans des super trames audio adaptées à la durée de la trame du système de 24 ms (c'est-à-dire 24 ms, 48 ms et 120 ms). L'attribution des bits, qui varie d'une trame à l'autre et les facteurs d'échelle sont codés et multiplexés avec les échantillons de sous-bande dans chaque trame audio. L'unité d'assemblage de trame assemble le flux de données délivrées par le quantificateur et le codeur et y ajoute d'autres informations, comme un en-tête, les mots du code CRC pour la détection des erreurs et les DAP, qui sont acheminées avec le signal audio codé. Chaque canal audiofréquence contient une voie de DAP de capacité variable qui peut servir à acheminer une information étroitement liée au programme radiophonique.

8 Couche liaison de données

Cette couche concerne les moyens permettant la synchronisation du récepteur.

8.1 Trame de transmission

Pour faciliter la synchronisation du récepteur, le signal diffusé a une structure de trame régulière (voir la Fig. 1) comprenant une séquence fixe de symboles. Chaque trame de transmission commence par un symbole zéro pour assurer une synchronisation approximative (lorsqu'aucun signal RF n'est diffusé), suivi d'un symbole de référence fixe pour assurer une synchronisation précise, des fonctions de contrôle automatique du gain et de la fréquence et de référence de phase dans le récepteur; ces symboles constituent le canal de synchronisation. Les symboles suivants sont réservés au CIR et les

symboles restants fournissent le CSP. La durée totale de trame T_F est de 96 ms. Des précisions sur le mode de transmission sont données dans le Tableau 3.

FIGURE 1
Structure de la trame du multiplex

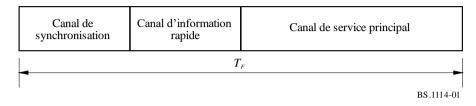


TABLEAU 3

Paramètres de transmission du Système A

Durée totale de la trame, T_F	96 ms
Durée du symbole zéro, T _{NULL}	1,297 ms
Durée des symboles MROF, Ts	1,246 ms
Inverse de l'espacement entre porteuses, T_u	1 ms
Durée de l'intervalle de garde, Δ $(T_s = T_u + \Delta)$	246 μs
Nombre de porteuses émises, K	1 536

Chaque service audiofréquence du CSP se voit attribuer un intervalle de temps fixe dans la trame.

9 Couche physique

Cette couche concerne les moyens de transmission radioélectrique (c'est-à-dire la méthode de modulation et la protection contre les erreurs).

9.1 Dispersion d'énergie

Afin d'assurer une dispersion d'énergie correcte dans le signal transmis, chaque source alimentant le multiplex est brouillée.

9.2 Codage convolutionnel

Le codage convolutionnel est appliqué à chacune des sources de données alimentant le multiplex, afin d'obtenir une réception fiable. Le processus de codage passe par l'adjonction volontaire de redondances aux paquets de données de la source (longueur imposée de 7). Les paquets ainsi obtenus sont appelés paquets de données «brutes».

Dans le cas d'un signal audio DAB (MPEG-2), certains bits codés à la source sont volontairement mieux protégés, suivant un schéma prédéterminé appelé profil de protection inégale d'erreurs. Le rendement moyen du codage, défini comme le rapport entre le nombre de bits codés à la source au nombre de bits après le codage par convolution, est compris entre 1/3 (niveau de protection le plus élevé) et 3/4 (niveau de protection le plus faible). Différents rendements moyens peuvent être appliqués à différentes sources audio, selon le niveau de protection exigé et le débit binaire de données codées à la source. Par exemple, le niveau de protection des services audio assurés par réseau câblé peut être inférieur à celui retenu pour les services transmis par canal hertzien.

Les signaux DAB+ signaux audio (MPEG-4) et les services de données générales sont codés par convolution au moyen d'une sélection de rendement uniforme, qui peut prendre des valeurs comprises entre 1/4 et 3/4. Les données du CIR sont codées au rendement constant de 1/3.

9.3 Entrelacement temporel

Pour faciliter la réception par un récepteur mobile, un entrelacement temporel d'une profondeur de 16 trames est appliqué aux données après codage convolutionnel.

9.4 Entrelacement fréquentiel

En présence de phénomènes de propagation par trajets multiples, certaines porteuses sont renforcées par des «interférences constructives», alors que d'autres sont affaiblies par des «interférences destructives» (évanouissement du signal sélectif en fréquence). C'est la raison pour laquelle le système effectue un entrelacement fréquentiel par réarrangement du flux binaire parmi les différentes porteuses, de telle sorte que les échantillons successifs d'une même source ne sont pas tous soumis à l'évanouissement sélectif. Quand le récepteur est immobile, la diversité en fréquence est le principal moyen d'obtenir une bonne réception.

9.5 Modulation par MDP-4D MROF

Le Système A utilise la modulation MDP-4D MROF. Ce type de modulation satisfait aux conditions très rigoureuses de la radiodiffusion numérique à débit binaire élevé destinée aux récepteurs mobiles, portables et fixes, et en particulier en présence de phénomènes de propagation par trajets multiples.

Le principe de base consiste à diviser l'information à diffuser en un grand nombre de flux binaires à un faible débit qui servent à moduler ensuite différentes sous-porteuses. La durée de symbole correspondante est alors supérieure à l'étalement du temps de propagation dans le canal de transmission. Dans le récepteur, tout écho d'une durée inférieure à l'intervalle de garde ne cause pas de brouillage intersymbole mais contribue au contraire de manière positive à la puissance reçue (voir la Fig. 2). Le grand nombre K de sous-porteuses est désigné collectivement sous l'appellation d'ensemble.

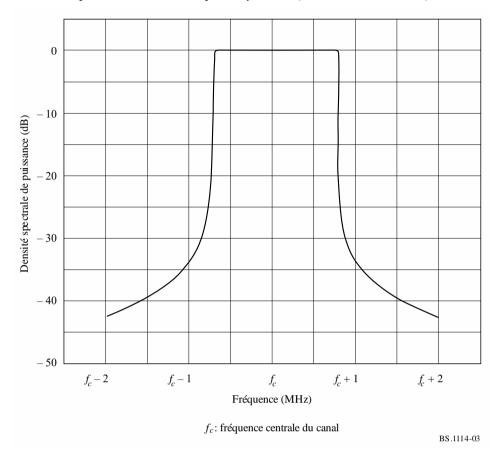
FIGURE 2

Contribution favorable des échos Réponse impulsionnelle du canal T_{u} Symbole i Symbole jSymbole k Symbole i Symbole k Écho 1 Symbole *j* Écho 2 Symbole i Symbole *j* Symbole k Écho 3 Symbole i Symbole j Symbole k T_u Δ BS.1114-02

En présence de phénomènes de propagation par trajets multiples, certaines porteuses sont favorisées par des signaux favorables alors que d'autres subissent des interférences défavorables

(évanouissement sélectif en fréquence). Par conséquent, le Système A assure une redistribution des éléments du flux binaire dans le temps et en fréquence, de telle sorte que les échantillons source successifs sont affectés par des évanouissements indépendants. Lorsque le récepteur est immobile, la diversité de fréquences est le seul moyen d'assurer une bonne réception; la diversité de temps obtenue par l'entrelacement temporel n'apporte aucune amélioration pour un récepteur immobile. Pour le Système A, la propagation par trajets multiples est une forme de diversité d'espace; on considère qu'elle offre un avantage important, ce qui contraste fortement avec les systèmes classiques à modulation de fréquence ou numériques à bande étroite dans lesquels la propagation par trajets multiples peut empêcher toute réception d'un service.

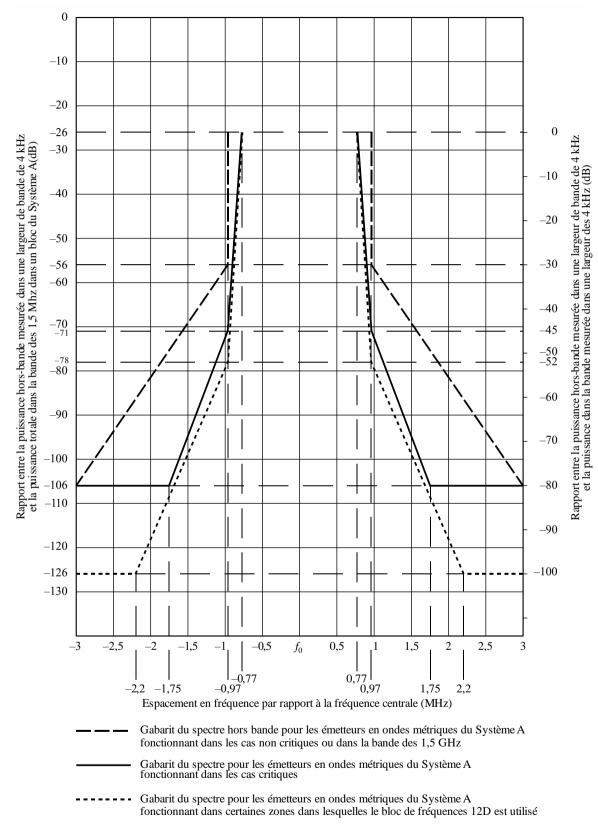
Pour tout système pouvant bénéficier de la propagation par trajets multiples, la fiabilité du système est d'autant plus élevée que la largeur de bande du canal est grande. Dans le système, une largeur de bande d'ensemble de 1,5 MHz a été choisie pour bénéficier des avantages de la technique à large bande, et pour permettre également une certaine souplesse de planification. Le Tableau 3 indique aussi le nombre de porteuses MROF contenues dans cette largeur de bande.


L'utilisation du multiplexage MROF offre un autre avantage: il permet d'obtenir une grande efficacité d'utilisation du spectre et de la puissance avec des réseaux monofréquence couvrant une zone étendue, ainsi qu'avec des réseaux denses pour zone urbaine. Les émetteurs diffusant le même programme peuvent émettre à la même fréquence quel que soit leur nombre, ce qui se traduit en outre par une réduction générale de la puissance de fonctionnement nécessaire. On peut ainsi réduire considérablement les distances de réutilisation des fréquences entre différentes zones de service.

Du fait que les échos renforcent le signal reçu, les récepteurs de tous types (portatifs, domestiques et à bord de véhicules) peuvent utiliser des antennes simples et non directives.

9.6 Spectre d'émission du Système A

À titre d'exemple, le spectre théorique du Système A est illustré à la Fig. 3.


FIGURE 3
Spectre d'émission théorique du Système A (Mode de transmission II)

Le spectre du signal rayonné hors bande dans une bande quelconque de 4 kHz devrait se situer dans les limites d'un des gabarits définis à la Fig. 4 (voir également le Tableau 4).

FIGURE 4

Gabarits du spectre hors bande pour un signal d'émission du Système A

BS.1114-04

Le gabarit en traits pleins devrait s'appliquer aux émetteurs en ondes métriques fonctionnant dans les cas critiques. Le gabarit en tirets devrait s'appliquer aux émetteurs en ondes métriques fonctionnant dans les cas non critiques et le gabarit en traits pointillés devrait s'appliquer aux émetteurs en ondes métriques fonctionnant dans certaines zones dans lesquelles le bloc de fréquences 12D est utilisé.

Il est possible d'abaisser le niveau du signal à des fréquences situées en dehors de la largeur de bande normale de 1,536 MHz en utilisant un filtre approprié.

TABLEAU 4

Tableau du spectre hors bande pour un signal d'émission du Système A

	Fréquence par rapport au centre du canal à 1,54 MHz (MHz)	Niveau relatif (dB)
Gabarit du spectre pour les émetteurs en ondes	$\pm 0,97$	-26
métriques du Système A fonctionnant dans les cas non critiques	± 0.97	-56
eas non critiques	±3,0	-106
Gabarit du spectre pour les émetteurs en ondes	±0,77	-26
métriques du Système A fonctionnant dans les cas critiques	±0,97	-71
cas critiques	±1,75	-106
	±3,0	-106
Gabarit du spectre pour les émetteurs en ondes	±0,77	-26
métriques du Système A fonctionnant dans certaines zones dans lesquelles le bloc de	±0,97	-78
fréquences 12D est utilisé	±2,2	-126
	±3,0	-126

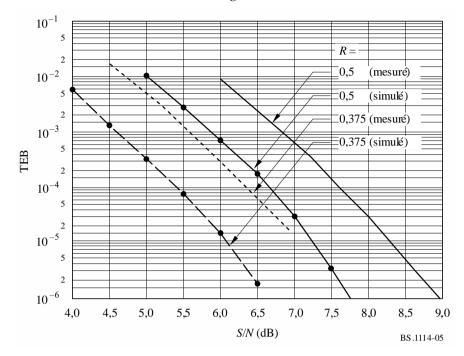
10 Qualité de fonctionnement RF du Système A

Des tests d'évaluation de la qualité de fonctionnement du Système A ont été effectués à 226 MHz, pour diverses conditions représentatives de la réception mobile et fixe. Les taux d'erreur sur les bits (TEB) ont été mesurés en fonction du rapport signal/bruit, *S/N*, sur un canal de données dans les conditions suivantes:

$$D = 64 \text{ kbit/s}, \qquad R = 0.5$$

$$D = 24 \text{ kbit/s}$$
, $R = 0.375$

où:

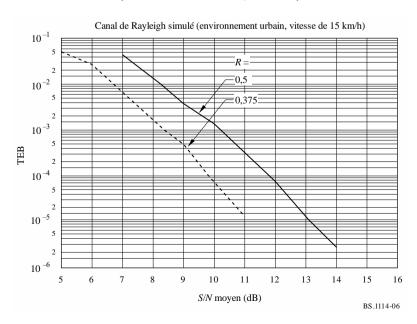

D: débit de données à la source

R: rendement moyen de codage du canal.

10.1 TEB en fonction de S/N, sur une largeur de bande de 1,5 MHz et sur un canal gaussien

Du bruit blanc gaussien a été ajouté au signal pour faire varier S/N à l'entrée du récepteur. La Fig. 5 montre les résultats obtenus. Par exemple, pour un rendement R = 0,5, les résultats mesurés (Fig. 5) peuvent être comparés à ceux obtenus par simulation informatique pour mettre en valeur la qualité de fonctionnement propre du système. On constate qu'on dispose d'une marge de mise en œuvre de moins de 1,0 dB pour un TEB de 1×10^{-4} .

FIGURE 5
TEB en fonction du rapport S/N pour le système A
Canal gaussien

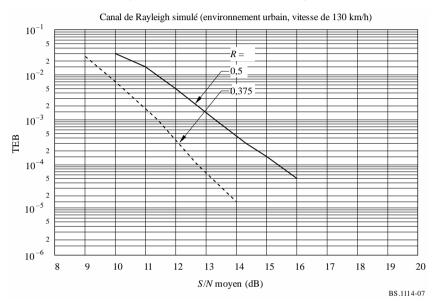


10.2 TEB en fonction de S/N, sur une largeur de bande de 1,5 MHz et sur un canal de Rayleigh simulé dans un environnement rural

Les mesures du TEB en fonction de S/N ont été faites sur des canaux de données à l'aide d'un simulateur de canal avec évanouissement. Les simulations sur un canal de Rayleigh correspondent à la Fig. 6 dans la documentation Cost 207 (zone rurale type, 0-0,5 μ s) la vitesse de déplacement du récepteur étant de 15 km/h.

Les résultats sont indiqués à la Fig. 6.

FIGURE 6
TEB en fonction du rapport S/N pour le système A
(Mode de transmission I, 226 MHz)


10.3 TEB en fonction de S/N, sur une largeur de bande de 1,5 MHz et sur un canal de Rayleigh simulé dans un environnement rural

Des mesures du TEB en fonction de *S/N* ont été exécutées sur des canaux de données à l'aide d'un simulateur de canal avec évanouissement. Les simulations sur le canal de Rayleigh correspondent à la Fig. 6 dans la documentation Cost 207 (environnement rural, non vallonné, 0-5 µs) la vitesse de déplacement du récepteur étant de 130 km/h. Les résultats sont indiqués à la Fig. 7.

FIGURE 7

TEB en fonction du rapport S/N pour le système A

(Mode de transmission I, 226 MHz)

Annexe 3

Système numérique F

1 Introduction

Le Système numérique F (Système F), également connu en tant que Système RNIS-T_{SB} est conçu pour la radiodiffusion sonore et de données de haute qualité avec une grande fiabilité même en réception mobile. Il est conçu pour être flexible et évolutif, pour présenter une grande analogie avec la radiodiffusion multimédia utilisant des réseaux de Terre et pour être conforme aux caractéristiques prescrites dans la Recommandation UIT-R BS.774.

C'est un système robuste qui utilise la modulation avec multiplexage MROF, l'entrelacement fréquence-temps bidimensionnel et des codes de correction d'erreur concaténés. La modulation à MROF utilisée par le système est appelée BST-MROF (BST étant la transmission à segmentation de bande). Le Système F présente des éléments communs avec le système RNIS-T de radiodiffusion de télévision de Terre numérique dans la couche physique. La largeur de bande d'un bloc MROF, appelé segment MROF, est de 500 kHz, environ. Étant donné que le Système F est constitué d'un ou de trois segments MROF, sa largeur de bande est d'environ 500 kHz ou 1,5 MHz environ.

Il comporte de nombreux paramètres de transmission tels que le système de modulation de porteuse, les taux de codage du code de correction d'erreur interne ainsi que la longueur de l'entrelacement temporel. Certaines des porteuses sont assignées à la commande TMCC qui transmet les informations sur les paramètres de transmission pour la commande du récepteur.

Le Système F peut utiliser des méthodes de codage audio à forte compression telles que MPEG-2 Couche II, AC-3 et MPEG-2 AAC. Enfin, il utilise les systèmes MPEG-2. Il présente des caractéristiques d'analogie et d'interopérabilité avec de nombreux autres systèmes utilisant les systèmes MPEG-2 tels que RNIS-S, RNIS-T, DVB-S et DVB-T.

La Fig. 8 montre les concepts de transmission RNIS-T_{SB} et RNIS-T pleine bande ainsi que la réception correspondante.

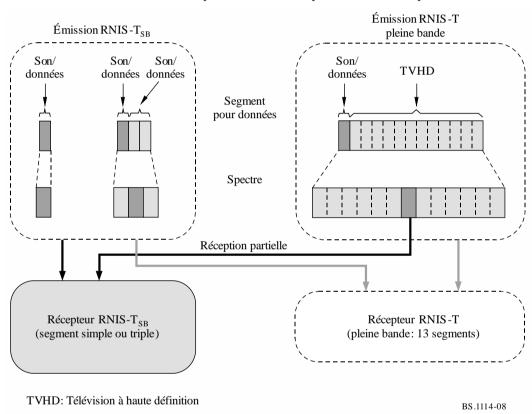


FIGURE 8

RNIS-T_{SB} et RNIS-T pleine bande – Principe d'émission et réception

2 Caractéristiques du Système F

2.1 Robustesse

Le Système F utilise la modulation à multiplexage MROF, l'entrelacement fréquentiel et temporel bidimensionnel et des codes de correction d'erreur concaténés. Le MROF est une méthode de modulation multiporteuse, insensible aux trajets multiples et qui, en particulier, ajoute un intervalle de garde dans le domaine temporel. L'information émise est répartie dans les domaines fréquentiel et temporel par entrelacement, puis elle est corrigée par le décodeur de Viterbi et le décodeur Reed-Solomon (RS). C'est ainsi que l'on obtient dans le récepteur un signal de haute qualité, même en présence d'une importante propagation par trajets multiples, que le récepteur soit fixe ou mobile.

2.2 Grand choix de modes d'émission

Le Système F utilise la transmission BST-MROF à un ou trois segments MROF, c'est-à-dire la transmission à segment simple ou triple. La largeur de bande du segment MROF est définie d'une des trois manières selon le gabarit de canal de référence, soit 6, 7 ou 8 MHz. La largeur de bande est égale au quatorzième de la largeur de bande du canal de référence (6, 7 ou 8 MHz), c'est-à-dire 429 kHz (6/14 MHz), 500 kHz (7/14 MHz) ou 571 kHz (8/14 MHz). La largeur de bande du segment MROF doit être choisie en fonction de la situation des fréquences de chaque pays.

La largeur de bande d'un segment simple est d'environ 500 kHz, raison pour laquelle la largeur de bande en transmission à segment simple est de 500 kHz environ et celle de la transmission à segment triple de 1,5 MHz environ.

Le Système F propose un choix de trois modes de transmission qui permet d'utiliser une large gamme de fréquences d'émission et quatre longueurs d'intervalle de garde possibles pour la détermination de la distance entre émetteurs de réseau monofréquence. Ces modes de transmission ont été conçus pour faire face à l'étalement Doppler et à l'étalement temporel de propagation compte tenu de la réception mobile en présence d'échos par trajets multiples.

2.3 Souplesse

La structure multiplexée du Système F est entièrement conforme à l'architecture des systèmes MPEG-2. Pour cette raison, il est possible de transmettre simultanément plusieurs contenus numériques tels que son, texte, images fixes et/ou données.

Le radiodiffuseur peut aussi choisir, selon ses préférences, la méthode de modulation de la porteuse, le rendement de codage avec correcteur d'erreur, le temps d'entrelacement, etc., du système. Quatre méthodes de modulation de porteuse sont possibles, MDP-4D, MDP-4, MAQ-16 et MAQ-64, cinq taux de codage, 1/2, 2/3, 3/4, 5/6 et 7/8, et cinq temps d'entrelacement, de 0 à environ 1 s. La porteuse TMCC transmet au récepteur les informations sur le type de modulation et le taux de codage utilisés par le système.

2.4 Analogie et interopérabilité

Le Système F utilise la modulation BST-MROF et les systèmes MPEG-2; il présente donc des éléments communs avec le système RNIS-T pour la radiodiffusion télévisuelle numérique de Terre (DTTB, digital terrestrial television broadcasting) au niveau de la couche physique, ainsi qu'avec les systèmes RNIS-T, RNIS-S, DVB-T et DVB-S qui utilisent les systèmes MPEG-2 dans la couche transport.

2.5 Transmission et codage de la source efficaces

Le Système F utilise le MROF, une méthode de modulation très efficace au niveau de l'utilisation de la bande de fréquences qui permet aussi de faire des réseaux de radiodiffusion avec réutilisation des fréquences utilisant des émetteurs additionnels fonctionnant tous à la même fréquence rayonnée.

Par ailleurs, les canaux de radiodiffuseurs indépendants peuvent être transmis ensemble sans bande de garde par le même émetteur tant que la fréquence et la synchronisation des bits sont les mêmes dans les différents canaux.

Le Système F peut adopter le codage MPEG-2 AAC. La qualité «proche du CD» peut être obtenue au débit de 144 kbit/s pour la stéréophonie.

2.6 Indépendance des radiodiffuseurs

Il s'agit d'un système à bande étroite pour l'émission d'au moins un programme sonore. Pour cette raison, les radiodiffuseurs peuvent disposer de leur propre canal RF dans lequel ils peuvent choisir eux-mêmes les paramètres de transmission.

2.7 Faible consommation

Pratiquement tous les dispositifs peuvent être rendus petits et légers par l'emploi de circuits intégrés à grande échelle. L'aspect le plus important des efforts visant à réduire la taille de la batterie est la faible consommation de courant du dispositif. Plus l'horloge du système est lente, plus la consommation est faible. Pour cette raison, un système à bande étroite, à faible débit tel que celui de la transmission par segment unique permet de réaliser un récepteur portatif et léger.

2.8 Transmission hiérarchique et réception partielle

Dans la transmission à triple segment, on peut obtenir tant un mode de transmission non hiérarchique que hiérarchique. En transmission hiérarchique, il y a deux couches, A et B. Les paramètres de transmission du système de modulation de la porteuse, les rendements de codage du code interne et le temps d'entrelacement peuvent être changés d'une couche à l'autre.

Le segment central de la transmission hiérarchique peut être reçu par un récepteur à segment unique. En raison de la structure commune du segment MROF, le récepteur à segment unique peut partiellement recevoir le segment central d'un signal RNIS-T pleine bande lorsque celui-ci est utilisé pour la transmission d'un programme indépendant.

La Fig. 9 est un exemple de transmission hiérarchique et de réception partielle.

Couche B Couche A Couche A Multiplexage de données Structure de trame MROF Segment de données et modulation Spectre Réception partielle Récepteur RNIS-T_{SR} Récepteur RNIS-T_{SR} à un segment à trois segments BS.1114-09

FIGURE 9

Exemple de transmission hiérarchique et de réception partielle

3 Paramètres de transmission

On peut attribuer au Système F une disposition des canaux à 6 MHz, 7 MHz ou 8 MHz. La largeur de bande de segment est le quatorzième de la largeur de bande du canal, soit 429 kHz (6/14 MHz), 500 kHz (7/14 MHz) ou 571 kHz (8/14 MHz). Toutefois, la largeur de bande de segment peut être choisie en fonction de la situation des fréquences dans chaque pays.

Les paramètres de transmission du système RNIS-T_{SB} sont reproduits dans le Tableau 5.

 $TABLEAU\ 5$ Paramètres de transmission du système RNIS- T_{SB}

	Mode	Mode 1	Mode 2	Mode 3		
Nombre total d	e segments ⁽¹⁾ $(N_s = n_d + n_c)$	1, 3				
Gabarit de cana	al de référence (BWf) (MHz)		6, 7, 8			
Largeur de ban	de de segment (BWs) (kHz)		$BWf \times 1000/14$			
Largeur de ban	de utilisée (BWu) (kHz)		$BWs \times N_s + C_s$			
Nombre de seg	ments pour modulation différentielle		n_d			
Nombre de seg	ments pour modulation cohérente		n_c			
Espacement de	s porteuses (C_s) (kHz)	BWs/108	BWs/216	BWs/432		
	Total	$108 \times N_s + 1$	$216 \times N_s + 1$	$432 \times N_s + 1$		
	Données	$96 \times N_s$	$192 \times N_s$	$384 \times N_s$		
	SP ⁽²⁾	$9 \times n_c$	$18 \times n_c$	$36 \times n_c$		
Nombre de porteuses	CP ⁽²⁾	$n_d + 1$	$n_d + 1$	$n_d + 1$		
porteuses	TMCC ⁽³⁾	$n_c + 5 \times n_d$	$2 \times n_c + 10 \times n_d$	$4 \times n_c + 20 \times n_d$		
	AC1 ⁽⁴⁾	$2 \times N_s$	$4 \times N_s$	$8 \times N_s$		
	AC2 ⁽⁴⁾	$4 \times n_d$	$9 \times n_d$	$19 \times n_d$		
Modulation de	porteuse	MDP-4D, MDP-4, MAQ-16, MAQ-64				
Nombre de syn	nboles par trame	204				
Durée utile du	symbole (T_u) (μ s)	$1000/C_s$				
Durée d'interva	lle de garde (T_g)	$1/4$, $1/8$, $1/16$ ou $1/32$ de T_u				
Durée de symb	ole totale (T_s)	$T_u + T_g$				
Durée de trame	$e\left(T_{f}\right)$		$T_s \times 204$			
Échantillons TI	FR (F)	$256 (N_s = 1)$	$512 (N_s = 1)$	$1024\;(N_s=1)$		
Lenantinons 11	((s)	$512 (N_s = 3)$	$1024\ (N_s=3)$	$2048\ (N_s=3)$		
Horloge d'écha	ntillonnage TFR (F_{sc}) (MHz)		$F_{sc} = F_s/T_u$			
		Code convolutionnel				
Code interne		(taux de codage = $1/2$, $2/3$, $3/4$, $5/6$, $7/8$)				
Code externe		(code mère = 1/2) Code RS (204,188)				
	trelacement temporel (I)	0, 4, 8, 16, 32	0, 2, 4, 8, 16	0, 1, 2, 4, 8		
	cement temporel	$I \times 95 \times T_s$				
Durce a charcia	sement temporer	$I \times 95 \times I_s$				

Notes relatives au Tableau 5:

TFR: transformée de Fourier rapide

- Le Système F utilise un ou trois segments pour les services audio, mais tout nombre de segments peut être utilisé pour d'autres services tels que la télévision. (Voir le Système C de la Recommandation UIT-R BT.1306).
- On peut utiliser les porteuses pilotes réparties (SP, scattered pilot) ou les porteuses pilotes continues (CP, continual pilot) pour la synchronisation des fréquences et l'estimation des canaux. Le nombre de porteuses CP englobe toutes les porteuses CP sur tous les segments et une porteuse CP pour le bord supérieur de l'ensemble de la largeur de bande.
- (3) La commande TMCC achemine l'information sur les paramètres de transmission.
- (4) Le canal auxiliaire (AC, *auxiliary channel*) achemine les informations auxiliaires relatives au fonctionnement du réseau.

4 Codage de la source

La structure multiplexée du Système F est entièrement conforme à l'architecture des systèmes MPEG-2; il est donc possible de transmettre dans le flux de transport MPEG-2 des paquets contenant des signaux audionumériques comprimés. Les méthodes de compression audionumérique telles que MPEG-2 Couche II audio (spécifiée dans l'ISO/CEI 13818-3), AC-3 (norme de compression audionumérique spécifiée dans le Document ATSC A/52) et MPEG-2 AAC (spécifiée dans l'ISO/CEI 13818-7) peuvent être appliquées au Système F.

5 Multiplexage

Le multiplexage du Système F est compatible avec le flux de transport MPEG-2 (TS) de l'ISO/CEI 13818-1. De plus, la trame de multiplexage et les descripteurs TMCC sont définis pour la transmission hiérarchique avec un seul flux de transport.

En ce qui concerne l'interopérabilité maximale entre un certain nombre de systèmes de radiodiffusion numérique, tels que le RNIS-S défini dans la Recommandation UIT-R BO.1408, RNIS-T défini dans la Recommandation UIT-R BT.1306 (Système C) et le service de radiodiffusion (sonore) par satellite utilisant la bande 2,6 GHz défini dans la Recommandation UIT-R BO.1130 (Système E), ceux-ci peuvent échanger des flux de données de radiodiffusion avec d'autres systèmes de radiodiffusion à travers cette interface.

5.1 Trame multiplex

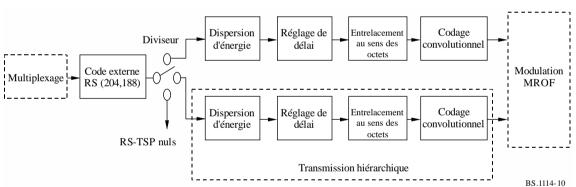
Pour les besoins de la transmission hiérarchique au moyen du système BST-MROF, le système RNIS-T_{SB} définit une trame multiplex de flux de transport dans le contexte des systèmes MPEG-2. Dans la trame multiplex, le flux de transport est un flux continu de 204 octets (paquet de flux de transport RS (RS-TSP, *Reed Solomon-transport stream packet*)) composé de 188 octets TSP et de 16 octets de données nulles ou la parité RS.

La durée de la trame multiplex est réglée sur celle de la trame MROF par comptage des paquets RS-TSP au moyen d'une horloge deux fois plus rapide que l'horloge d'échantillonnage de TFR inverse (TFRI) dans le cas de transmission à simple segment. Dans le cas de la transmission à triple segment, la durée de la trame multiple est réglée sur celle de la trame MROF par comptage des paquets RS-TSP au moyen d'une horloge quatre fois plus rapide que l'horloge d'échantillonnage TFRI.

6 Codage de canal

La présente section décrit le bloc de codage de canal qui reçoit les paquets disposés dans la trame multiplex et dirige les blocs codés canal vers le bloc de modulation MROF.

6.1 Schéma de principe fonctionnel du codage de canal


La Fig. 10 est le schéma fonctionnel de codage de canal du système RNIS-TsB.

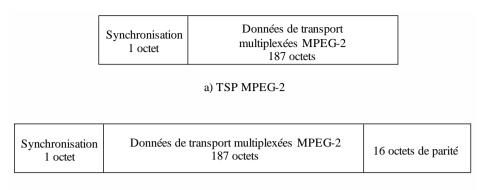
La durée de la trame multiplex coïncide avec la trame MROF par comptage des octets dans la trame multiplex utilisant une horloge plus rapide que l'horloge d'échantillonnage TFRI décrite dans la section précédente.

À l'interface entre le bloc multiplex et le bloc de codage extérieur, l'octet de tête de la trame multiplex (correspondant à l'octet de synchronisation du flux de paquets TSP) est considéré comme l'octet de tête de la trame MROF. Au niveau des bits, le bit de plus fort poids (MSB, *most significant bit*) de l'octet de tête est considéré comme le bit de synchronisation de la trame MROF.

Pour la transmission structurée en couches à trois segments, le flux RS-TSP est divisé en deux couches conformément aux informations de commande de transmission. Dans chaque couche, le rendement de codage du code de correction d'erreur interne, le système de modulation de porteuse et la durée de l'entrelacement temporel peuvent être spécifiés individuellement.

FIGURE 10 Diagramme de codage de canal

6.2 Codage externe


Le code raccourci RS (204,188) est appliqué à chaque paquet MPEG-2 TSP pour produire un paquet TSP protégé contre les erreurs qui est le RS-TSP. Le code RS (208,188) peut corriger jusqu'à huit octets erronés aléatoires dans un mot de 204 octets reçu.

Polynôme générateur du corps:
$$p(x) = x^8 + x^4 + x^3 + x^2 + 1$$

Polynôme générateur du code: $g(x) = (x - \lambda^0)(x - \lambda^1)(x - \lambda^2)(x - \lambda^3) \cdots (x - \lambda^{15})$
où $\lambda = 02h$

Il convient de noter que les paquets TSP nuls provenant du multiplexeur sont également codés en paquets RS (204,188).

Les paquets MPEG-2 TSP et RS-TSP (paquets TSP protégés contre les erreurs RS) sont montrés à la Fig. 11. Le paquet TSP protégé contre les erreurs RS est également appelé paquet TSP de transmission.

FIGURE 11
Paquets MPEG-2 TSP et RS-TSP (TSP de transmission)

b) Paquets RS-TSP (TSP de transmission) et paquets TSP protégés contre les erreurs, RS (204,188)

BS.1114-11

6.3 Dispersion d'énergie

Pour qu'il y ait suffisamment de transitions binaires, les données provenant du diviseur sont rendues aléatoires au moyen d'une séquence binaire pseudo-aléatoire (PRBS, *pseudo-random binary sequence*).

Le polynôme du générateur de séquence PRBS sera:

$$g(x) = x^{15} + x^{14} + 1$$

6.4 Réglage des retards

Dans l'entrelacement des octets, le retard causé par le processus d'entrelacement est différent d'un flux à l'autre des différentes couches selon ses propriétés (c'est-à-dire modulation et codage de canal). Afin de compenser cette différence de retard, y compris le retard de désentrelacement dans le récepteur, le réglage du retard est effectué avant l'entrelacement des octets du côté émission.

6.5 Entrelacement des octets (entrelacement entre codes)

L'entrelacement convolutionnel des octets avec une longueur de I=12 est appliqué aux paquets de 204 octets protégés contre les erreurs et rendus aléatoires. L'entrelacement peut être composé de I=12 branches, cycliquement connectées au flux d'octets d'entrée par le commutateur d'entrée. Chaque branche j doit être un registre à décalage de type «premier arrivé – premier sorti» (FIFO, $first-in\ first-out$), d'une longueur de $j\times 17$ octets. Les cellules du registre FIFO doivent contenir un octet et les commutateurs d'entrée et de sortie doivent être synchronisés.

Le désentrelacement est analogue sur le principe à l'entrelacement, mais les indices des branches sont inversés. Le retard total produit par l'entrelacement et le désentrelacement est de $17 \times 11 \times 12$ octets (correspondant à 11 paquets TSP).

6.6 Codage interne (codes convolutionnels)

Le Système F doit disposer d'une gamme de codages convolutionnels discontinus fondés sur un code convolutionnel mère de taux 1/2 à 64 états. Les taux de codage de ces codes sont 1/2, 2/3, 3/4, 5/6 et 7/8. Cela permet de sélectionner la propriété la plus appropriée de correction d'erreur pour un service donné ou un débit donné dans les services RNIS- T_{SB} , y compris les services mobiles. Les polynômes générateurs du code mère sont de $G_1 = 171_{oct}$ pour la sortie X et de $G_2 = 133_{oct}$ pour la sortie Y.

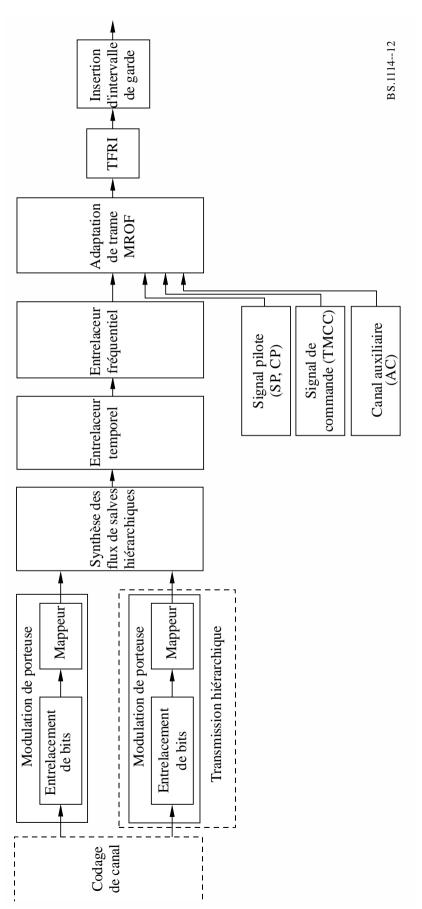
7 Modulation

La configuration du bloc de modulation est montrée dans les Figs. 12 et 13. Après l'entrelacement des bits, les données de chaque couche sont mappées dans le domaine complexe.

7.1 Réglage du retard pour l'entrelacement de bits

L'entrelacement de bits produit un retard de 120 données complexes (I + jQ), comme indiqué dans le paragraphe qui suit. En ajoutant le retard approprié, le retard total dans l'émetteur et le récepteur est ajusté à la valeur de deux symboles MROF.

7.2 Entrelacement et mappage de bits


On peut choisir un des systèmes de modulation de porteuse MDP-4D, MDP-4, MAQ-16 ou MAQ-64. La séquence de bits série à la sortie du codeur interne est convertie en séquence parallèle à 2 bits pour subir le mappage MDP-4D mode $\pi/4$ ou le mappage MDP-4, par lequel n bits de données de l'axe I et de l'axe Q sont remis. Le nombre n peut dépendre de la réalisation matérielle. En modulation MAQ-16, la séquence est convertie en séquence parallèle à 4 bits. En modulation MAQ-64, elle est convertie en séquence parallèle à 6 bits. Après la conversion série-parallèle, l'entrelacement des bits est effectué par l'insertion d'un retard de 120 bits au maximum.

7.3 Segment de données

Le segment de données est défini comme étant un tableau d'adresses pour les données complexes sur lesquelles seront exécutés les conversions de taux, l'entrelacement temporel et l'entrelacement fréquentiel. Le segment de données correspond à la portion des données du segment MROF.

FIGURE 12

Diagramme de bloc de modulation

BS.1114-13

Modulation de porteuse

Entrelaceur de bits

Mappeur MDP-4D

Entrelaceur de bits

Mappeur MDP-4D

Entrelaceur de bits

Mappeur MAQ-16

Entrelaceur de bits

Mappeur MAQ-16

Entrelaceur de bits

Mappeur MAQ-64

FIGURE 13

Configuration du bloc de modulation de porteuse

7.4 Synthèse des flux de données de couche

Après avoir été codées pour le canal et mappées, les données complexes de chaque couche sont introduites à chaque symbole dans des segments de données préattribués.

Les données enregistrées dans tous les segments de données sont lues cycliquement au moyen de l'horloge d'échantillonnage TFRI; ensuite sont effectuées les conversions de taux et la synthèse des flux de données de couches.

7.5 Entrelacement temporel

Après la synthèse, s'effectue l'entrelacement temporel au sens des symboles. La longueur de l'entrelacement temporel peut varier de 0 à 1 s environ et doit être spécifiée pour chaque couche.

7.6 Entrelacement fréquentiel

L'entrelacement fréquentiel est constitué de l'entrelacement fréquentiel intersegment, d'une rotation de porteuses intrasegment et d'une randomisation de porteuses intrasegment. L'entrelacement fréquentiel intersegment est pris entre les segments ayant le même système de modulation. L'entrelacement fréquentiel intersegment peut être effectué uniquement en transmission à trois segments. Après la rotation de porteuses, la randomisation de porteuses est effectuée selon le tableau de randomisation.

7.7 Structure de trame de segment MROF

Les segments de données sont disposés en trames de segments MROF tous les 204 symboles par l'adjonction de pilotes tels que le CP et le SP, la TMCC et l'AC. La phase de modulation du pilote CP est fixée à chaque symbole MROF. Le pilote SP est introduit toutes les 12 porteuses et tous les 4 symboles MROF en cas de méthode de modulation cohérente. La porteuse TMCC achemine des paramètres de transmission tels que la modulation de porteuse, le taux de codage et l'entrelacement temporel pour la commande du récepteur. La porteuse AC achemine les informations auxiliaires.

8 Masque spectral

Le spectre du signal rayonné en transmission à simple segment du système à segment 6/14 MHz doit être confiné par le masque défini dans la Fig. 14 et dans le Tableau 6. Le niveau du signal aux fréquences extérieures à la largeur de bande 429 kHz (6/14 MHz) peut être réduit par l'application d'un filtrage approprié.

FIGURE 14

Masque spectral pour signal RNIS-T à simple segment
(largeur de bande du segment = 6/14 MHz)

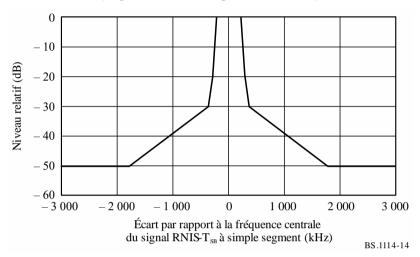


TABLEAU 6

Valeurs seuils du masque spectral pour la transmission à simple segment (largeur de bande du segment = 6/14 MHz)

Écart de fréquence par rapport à la fréquence centrale du signal transmis (kHz)	Niveau relatif (dB)
±220	0
±290	-20
±360	-30
±1790	-50

NOTE 1 – Le spectre du signal rayonné est mesuré au moyen d'un analyseur de spectre. La largeur de bande de résolution de l'analyseur spectral doit être mise à 10 kHz ou 3 kHz. La largeur de bande vidéo se situe entre 300 Hz et 30 kHz, et il est souhaitable d'effectuer un moyennage vidéo. L'excursion de fréquence est réglée à la valeur minimale requise pour mesurer le masque spectral de transmission.

La Fig. 15 et le Tableau 7 définissent le masque spectral de la transmission à triple segment du système à segment 6/14 MHz.

NOTE 1 – Le masque spectral des systèmes à segments 7/14 MHz et 8/14 MHz devrait être modifié en fonction de la forme spectrale de son système.

FIGURE 15

Masque spectral pour signal RNIS-T à triple segment (largeur de bande du segment = 6/14 MHz)

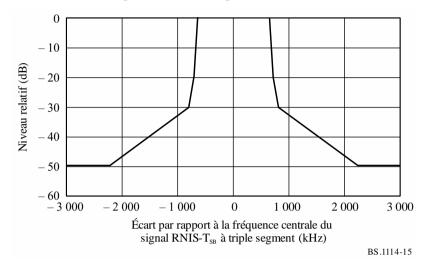


TABLEAU 7

Valeurs seuils du masque spectral pour la transmission à triple segment (largeur de bande du segment = 6/14 MHz)

Écart par rapport à la fréquence centrale du signal sonore numérique de Terre (kHz)	Niveau relatif (dB)
±650	0
±720	-20
±790	-30
±2 220	-50

9 Caractéristiques de performance RF

Les tests d'évaluation RF ont été effectués sur un système RNIS-T_{SB} dans diverses conditions de transmission. Les résultats des essais en laboratoire sont décrits dans la présente section.

Des expériences ont été faites en laboratoire pour établir les caractéristiques de TEB en fonction du bruit aléatoire et des évanouissements par trajets multiples. Les mesures de TEB en fonction du rapport porteuse/bruit, (C/N), dans le canal de transmission ont été menées dans les conditions ci-après (voir le Tableau 8).

9.1 TEB en fonction du rapport *C/N* dans un canal gaussien

Du bruit blanc gaussien additif a été ajouté pour établir le rapport C/N à l'entrée du récepteur. Les résultats sont présentés dans les Figs. 16, 17 et 18. On peut comparer ces figures à celles obtenues en simulation par ordinateur pour faire apparaître les performances inhérentes au système. On constate qu'une perte de marge de mise en œuvre inférieure à 1 dB a été obtenue pour un TEB de 2×10^{-4} avant le décodage RS.

TABLEAU 8

Paramètres de transmission pour essais en laboratoire

Nombre de segments	1 (Largeur de bande: 429 kHz)
Mode de transmission	3 (Durée de symbole utile: 1,008 ms)
Nombre de porteuses	433
Modulations des porteuses	MDP-4D, MAQ-16 et MAQ-64
Intervalle de garde	63 μs (taux d'intervalle de garde: 1/16)
Rendement du code interne	1/2, 2/3, 3/4 et 7/8
Entrelacement temporel	0 et 407 ms

FIGURE 16

TEB avant décodage RS en fonction du rapport C/N
(Mode de transmission: 3, modulation de porteuse: MDP-4D, entrelacement temporel: 407 ms): canal gaussien

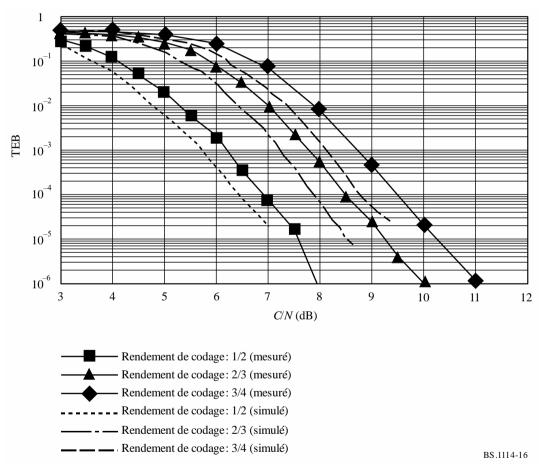


FIGURE 17

TEB avant décodage RS en fonction du rapport *C/N* (Mode de transmission: 3, modulation de porteuse: MAQ-16, entrelacement temporel: 407 ms): canal gaussien

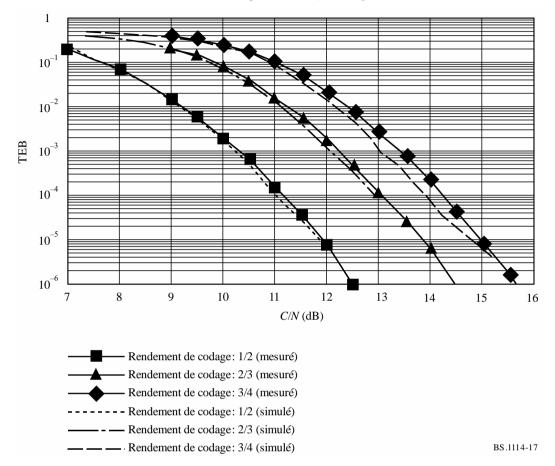
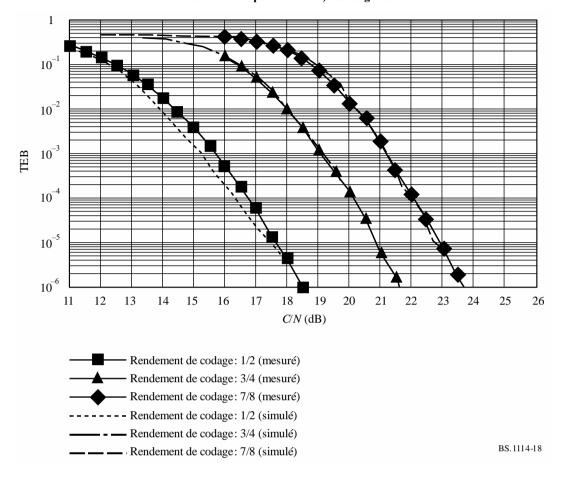
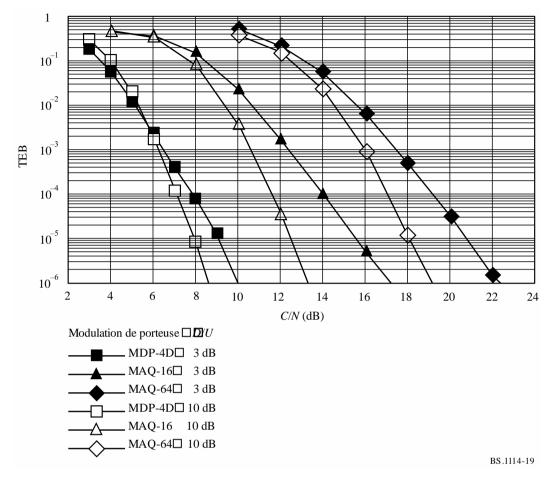



FIGURE 18 **TEB avant décodage RS en fonction du rapport** *C/N*

(Mode de transmission: 3, modulation de porteuse: MAQ-64, entrelacement temporel: 407 ms): canal gaussien

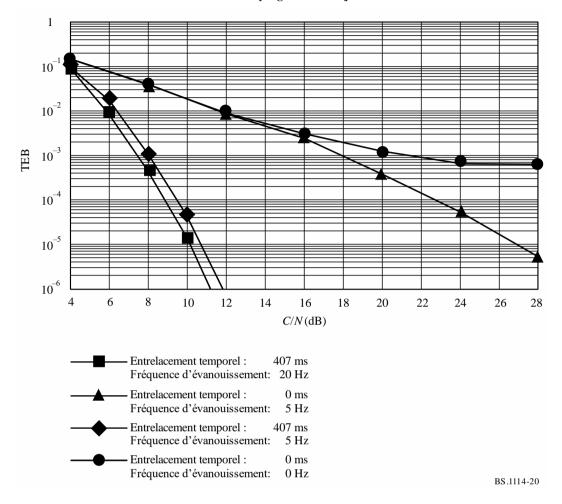


9.2 TEB en fonction du rapport C/N dans un canal à trajets multiples

Les mesures de TEB en fonction du rapport *C/N* ont été faites au moyen d'un simulateur de canal à trajets multiples. Le rapport du niveau du signal utile et du niveau du signal brouilleur ou non désiré (*D/U*, desired signal level, undesired or interfering signal level) du signal principal et du signal retardé a été fixé à 3 et 10 dB. Le retard du signal retardé par rapport au signal principal a été fixé à 15 µs. Les résultats sont présentés dans la Fig. 19.

FIGURE 19

TEB avant décodage RS en fonction du rapport C/N
(Mode de transmission: 3, rendement de codage: 1/2, entrelacement temporel: 407 ms): canal à trajets multiples

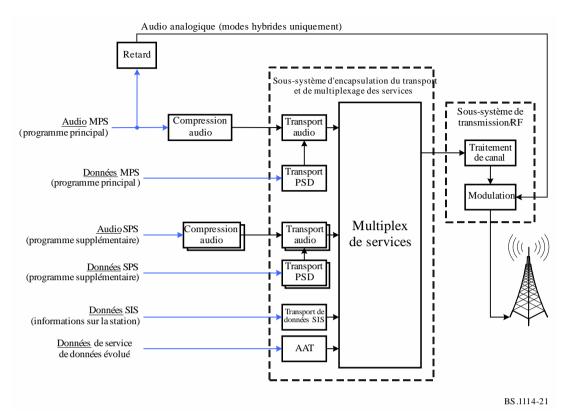


9.3 TEB en fonction du rapport *C/N* dans un canal de Rayleigh

Des mesures de TEB en fonction du rapport C/N ont été faites au moyen d'un simulateur de canal avec évanouissement. Le canal a été réglé pour figurer un canal avec évanouissement à répartition de Rayleigh à deux trajets et le rapport D/U des deux trajets a été fixé à 0 dB. La durée du signal retardé a été réglée à 15 μ s. Les fréquences Doppler maximales du signal ont été fixées à 5 et 20 Hz. Les résultats sont présentés dans la Fig. 20.

FIGURE 20

TEB avant décodage RS en fonction du rapport *C/N* (Mode de transmission: 3, modulation de porteuse: MDP-4D, rendement de codage: 1/2): canal de Rayleigh à deux trajets


Annexe 4

Système numérique C

1 Aperçu du système

Le Système numérique C emploie la technologie IBOC pour faciliter l'introduction de la radiodiffusion sonore numérique. Grâce à cette technologie, les radiodiffuseurs peuvent améliorer leur service analogique en ajoutant de nouveaux services audio et de données, en offrant une meilleure fidélité audio et en prenant en charge une meilleure robustesse des signaux et ce, sans que de nouvelles attributions de fréquences soient nécessaires pour les signaux numériques. La technologie IBOC permet aussi aux stations existantes de diffuser les mêmes programmes en analogique et en numérique. Ainsi, grâce à cette technologie, qui permet d'utiliser efficacement le spectre, le passage de l'environnement analogique existant à un environnement numérique peut se faire de façon rationnelle. La Fig. 21 donne un aperçu du système de radiodiffusion IBOC.

FIGURE 21 Aperçu du système de radiodiffusion IBOC

La mise en œuvre de la technologie IBOC préserve les émissions analogiques sur la fréquence principale assignée. La puissance du signal analogique est conservée et des signaux numériques de faible niveau sont ajoutés dans des bandes immédiatement adjacentes au signal analogique. Ces signaux numériques peuvent se situer d'un côté ou de l'autre du signal analogique ou des deux côtés. La puissance de chacun de ces signaux numériques peut être réglée séparément, ce qui permet de faire des compromis modifiables entre la couverture du signal numérique et la coexistence avec certains signaux MF pré-existants très denses.

Deux modes de fonctionnement sont possibles pour les signaux numériques: «hybride» et «tout numérique».

Le cas où la ou les bandes numériques sont introduites et utilisées en présence du signal analogique pré-existant entièrement conservé correspond à la configuration IBOC hybride.

Le cas où la ou les bandes numériques sont introduites mais le signal analogique existant n'est plus diffusé correspond à la configuration IBOC tout numérique. Aucune modification n'est nécessaire pour le placement de la ou des bandes numériques.

Les radiodiffuseurs peuvent utiliser le mode hybride pendant le déploiement de la technologie pour permettre aux récepteurs uniquement analogiques de continuer à fonctionner tout en permettant aux nouveaux récepteurs IBOC d'offrir les nouveaux services évolués en plus de la réception du signal analogique existant. Une fois que tous les récepteurs sur le marché pourront recevoir les signaux numériques, les radiodiffuseurs pourront passer au mode tout numérique.

2 Couches IBOC

Les spécifications détaillées de qualité de fonctionnement IBOC sont organisées sur la base du modèle en couches de l'interconnexion des systèmes ouverts de l'Organisation internationale de normalisation (modèle OSI de l'ISO). Chaque couche OSI du système de radiodiffusion, comme indiqué dans la Fig. 22, a une couche correspondante, appelée homologue, dans le système de réception. La fonctionnalité de ces couches est telle que la combinaison des couches inférieures a pour effet d'établir une communication virtuelle entre une couche donnée et son homologue de l'autre côté.

2.1 Couche 1

La Couche 1 (L1, Layer 1) du Système numérique C convertit les informations et les commandes de système provenant de la Couche 2 (L2, Layer 2) pour les insérer dans la forme d'onde IBOC en vue d'une transmission dans la bande d'ondes métriques. Les informations et les commandes sont mises dans des trames de transfert discrètes et transportées dans plusieurs canaux logiques via les points d'accès au service (SAP, service access point) de la L1. Ces trames de transfert sont également appelées respectivement unités de données de service (SDU, service data unit) et unités de commandes de service (SCU, service control unit) de la L2.

La taille et le format des unités SDU de la L2 varient en fonction du mode de service. Celui-ci, composante importante des commandes de système, détermine les caractéristiques de transmission de chaque canal logique. Après évaluation des besoins des applications candidates, les couches de protocole supérieures choisissent les modes de service permettant de configurer au mieux les canaux logiques. La multiplicité des canaux logiques est le reflet de la souplesse intrinsèque du système, qui permet de diffuser simultanément diverses classes d'audio numérique et des données.

La L1 reçoit aussi des commandes de système sous forme d'unités SCU en provenance de la L2. Les commandes de système sont traitées dans le processeur des commandes de système.

BS.1114-22

Service de Service données M S N MPS d'information Service de sur la station SPS 1 données 1 MPSD MPSA ommand État Interfaces pour les services Données SPSA Données SIS SPSD MPSD MPSA (dynamiques SPS Commande Transport PSD Codeur Transport Codeur PSD audio audio Données SIS (statiques) SPSD Paquets codés Flux 1 Paquets SPSD PDU, PDU MPSA PDU MPSD SPSA État de la largeur État de la largeur de bande de bande SPS résiduelle résiduelle instantanée instantanée Transport de Transport SIS Transport audio Transport audio données AAS (AAT) Administrateur de la configuration Commande PDU de PDU MPS PDU SPS PDU SPS PDU MPS donnéesAAS PDU (Flux 0) (Flux 1) (capacité de Flux 0 Flux 1 données fixe, résiduelle. instantanée) Couche 2 (multiplex de canaux) État PIDS SIDS PDU Couche 1 (forme d'onde/transmission) — PDU L1 État Forme d'onde IBOC

FIGURE 22 Schéma de la pile de protocoles du système MF IBOC

2.2 Formes d'onde et spectres

Deux nouveaux types de composition de la forme d'onde: hybride et tout numérique sont prévus dans la conception, ce qui permet d'introduire avec souplesse un système de radiodiffusion numérique. Pour la composition hybride, on peut en outre considérer différentes configurations de largeur de bande appelées principale et étendue. Dans les cas hybrides, le signal MF analogique est conservé, tandis que dans le cas tout numérique, il ne l'est pas. Dans le cas tout numérique, les formes d'onde sont bien au-dessous du gabarit des émissions spectrales attribué tel qu'il est actuellement défini par la Federal Communications Commission (FCC).

Le signal numérique est modulé par la technique du multiplexage par répartition orthogonale de la fréquence (MROF). Celle-ci est intrinsèquement souple, permettant une mise en correspondance directe des canaux logiques avec différents groupes de sous-porteuses.

Les paramètres relatifs aux symboles MROF et les paramètres fondamentaux de la couche physique du système IBOC sont définis dans le Tableau 9.

TABLEAU 9 **Paramètres de la couche physique du système IBOC**

Nom du paramètre	Symbole	Unité	Valeur exacte	Valeur calculée (4 chiffres significatifs)
Espacement des sous-porteuses MROF	Δf	Hz	1 488 375/4 096	363,4
Largeur du préfixe cyclique	α	Aucune	7/128	$5,469 \times 10^{-2}$
Durée du préfixe cyclique	T_{α}	s	(7/128) · (4 096/1 488 375)	$1,586 \times 10^{-4}$
Durée d'un symbole MROF	T_s	S	$(1 + \alpha) / \Delta f = (135/128) \cdot (4 096/1 488 375)$	$2,902 \times 10^{-3}$
Débit de symboles MROF	R_s	Hz	$=1/T_s$	344,5
Durée d'une trame L1	T_f	s	$65\ 536/44\ 100 = 512 \cdot T_s$	1,486
Débit de trames L1	R_f	Hz	$=1/T_f$	$6,729 \times 10^{-1}$
Durée d'un bloc L1	T_b	s	$=32\cdot T_s$	$9,288 \times 10^{-2}$
Débit de blocs L1	R_b	Hz	$=1/T_b$	10,77
Durée d'un couple de blocs L1	T_p	S	$=64 \cdot T_s$	$1,858 \times 10^{-1}$
Débit d'un couple de blocs L1	R_p	Hz	$=1/T_p$	5,383
Nombre de trames pour le retard lié à la diversité	N_{dd}	Aucune	= nombre de trames L1 pour le retard lié à la diversité	3
Nombre de sous-porteuses	Sans objet	Aucune	Bande de 70 kHz: 191 Bande de 100 kHz: 267	
Largeur de bande utilisée	PL/PU	kHz	1488,375/4 096 · 191 1488,375/4 096 · 267	Bande de 70 kHz: 69,4 Bande de 100 kHz: 97,0

2.2.1 Forme d'onde hybride principale

Le signal numérique est transmis dans les bandes latérales primaires principales situées de part et d'autre du signal MF analogique existant, et couvrant environ 70 kHz. Il peut être constitué uniquement d'un signal dans la bande primaire inférieure (PL) ou uniquement d'un signal dans la bande primaire supérieure (PU) ou des deux, comme indiqué dans la Fig. 23. Le niveau de puissance dans chaque bande latérale est réglé séparément. Conformément à l'usage actuel aux Etats-Unis d'Amérique, le niveau de puissance total de ce signal numérique (quelle que soit la composition retenue: deux bandes latérales ayant des niveaux de puissance égaux ou différents, ou une seule bande latérale) est limité à environ 10 dB au-dessous de la puissance totale du signal MF analogique. Dans le cas de deux bandes latérales de même puissance, le niveau de puissance de chaque bande latérale est inférieur d'environ 13 dB à la puissance totale du signal MF analogique. Le signal analogique peut être mono ou stéréophonique, et il peut inclure des canaux de type SCA (subsidiary communications authorization, communications secondaires autorisées).

BS.1114-23

Bande latérale primaire principale inférieure pour le signal numérique Bande latérale primaire nal analogique existant nal analogi existant principale supérieure pour le signal numérique Signal numériau numérique nouvelleme positionn PH 70 kHz 70 kHz -130 -165 200 250 -250 100 200 -250 -200-100 50 0 100 150 -200-150-100-5050 50 0 Position des blocs (kHz) Position des blocs (kHz) Centre du bloc du bloc Bande latérale primaire principale inférieure Bande latérale primaire principale supérieure Signal analogique pour le signal numérique PL PU 70 kHz 70 kHz -165 -165 -250 -200-100 0 50 100 50 Position des blocs (kHz) Centre du bloc du bloc

FIGURE 23 Exemples de forme d'onde hybride principale du système MF IBOC

2.2.2 Forme d'onde hybride étendue

Pour la forme d'onde hybride étendue, la largeur des bandes latérales peut être étendue en direction du signal MF analogique, et couvrir environ 100 kHz, afin d'augmenter la capacité numérique. Ce spectre supplémentaire, attribué vers le bord interne de chaque bande latérale primaire principale, est appelé bande latérale primaire étendue. Des exemples du signal obtenu, comprenant le spectre principal et le spectre étendu, sont présentés dans la Fig. 24. Le niveau de puissance dans chaque bande latérale est réglé séparément. Conformément à l'usage actuel aux Etats-Unis d'Amérique, le niveau de puissance total de ce signal numérique (quelle que soit la composition retenue: deux bandes latérales ayant des niveaux de puissance égaux ou différents, ou une seule bande latérale) est limité à environ 8,5 dB au-dessous de la puissance totale du signal MF analogique. Dans le cas de deux bandes latérales de même puissance, le niveau de puissance de chaque bande latérale est inférieur d'environ 11,5 dB à la puissance totale du signal MF analogique.

Bande latérale primaire Bande latérale primaire Signal analogique étendue inférieure pour le signal numérique Signal analogique étendue supérieure pour le signal numérique existant ignal numériqu nouvellement PU 100 kHz 100 kHz -200-15050 100 150 200 250 -250-200 - 150 - 100-50 50 100 150 250 ٠ Position des blocs (kHz) Position des blocs (kHz) Centre Centre Signal analogique Bande latérale primaire Bande latérale primaire tendue inférieure pour le signal numérique le signal numérique Signal numério Signal numériqu PU 100 kHz 100 kHz -250 -200-100100 250 -15050 150 Position des blocs (kHz) Centre Centre du bloc du bloc

FIGURE 24
Exemples de forme d'onde hybride étendue du système MF IBOC

BS.1114-24

2.2.3 Forme d'onde tout numérique

C'est avec la forme d'onde tout numérique que les améliorations de système sont les plus grandes; en effet, dans ce cas, le signal analogique est supprimé et la largeur des bandes latérales numériques primaires est entièrement étendue, de manière analogue au cas de la forme d'onde hybride étendue. Ce cas est analogue aux exemples présentés dans la Fig. 24, mais sans le signal MF analogique désormais supprimé. De plus, pour cette forme d'onde, des bandes latérales secondaires numériques de plus faible puissance peuvent être transmises dans le spectre libéré par le signal MF analogique.

2.3 Canal de commande du système

Le canal de commande du système (SCCH, *system control channel*) transporte des commandes et des informations d'état. Les modes de service primaires et secondaires et la commande de retard lié à la diversité sont transmis de la L2 à la L1, tandis que les informations de synchronisation sont transmises de la L1 à la L2.

Les modes de service déterminent toutes les configurations admissibles des canaux logiques. Au total, soixante-quatre modes de service peuvent être pris en charge dans le système.

2.4 Canaux logiques

Un canal logique est un conduit de signaux qui transmet les unités SDU L2 sous forme de trames à la L1 avec une qualité de service donnée, fonction du mode de service. La L1 du Système numérique C fournit onze canaux logiques vers des protocoles de couche supérieure. Les canaux logiques ne sont pas tous utilisés dans chaque mode de service.

2.4.1 Canaux logiques primaires

Il existe cinq canaux logiques primaires, qui peuvent être utilisés pour les formes d'onde hybride et tout numérique. Ils sont désignés par P1, P2, P3, P4 et PIDS (service de données IBOC primaire). Le Tableau 10 donne le débit d'informations théorique approximatif pris en charge par chaque canal logique primaire en fonction du mode de service primaire.

TABLEAU 10 Exemples de débit d'informations théorique des canaux logiques primaires

Mode de service	Dé	bit d'in	formation (kbit/s)		Forme d'onde	
	P1	P2	Р3	P4	PIDS	
MP1	98	0	0	0	1	Hybride
MP2	98	0	12	0	1	Hybride étendue
MP3	98	0	25	0	1	Hybride étendue
MP11	98	0	25	25	1	Hybride étendue
MP12	98	0	0	0	1	Hybride étendue, tout numérique
MP5	25	74	25		1	Hybride étendue, tout numérique
MP6	49	49	0		1	Hybride étendue, tout numérique

2.4.2 Canaux logiques secondaires

Il existe six canaux logiques secondaires, qui sont utilisés uniquement pour la forme d'onde tout numérique. Ils sont désignés par S1, S2, S3, S4, S5 et SIDS (service de données IBOC secondaire). Le Tableau 11 donne le débit d'informations théorique approximatif pris en charge par chaque canal logique secondaire en fonction du mode de service secondaire.

TABLEAU 11

Débit d'informations théorique approximatif des canaux logiques secondaires

Mode de		Débit d	Forme d'onde				
service	S1	S2	S3	S4	S5	SIDS	
MS1	0	0	0	98	6	1	Tout numérique
MS2	25	74	25	0	6	1	Tout numérique
MS3	49	49	0	0	6	1	Tout numérique
MS4	25	98	25	0	6	1	Tout numérique

2.4.3 Fonctionnalité des canaux logiques

Les canaux logiques P1 à P4 sont conçus pour acheminer des signaux audio et des données. Les canaux logiques S1 à S5 peuvent être configurés pour acheminer des données ou des signaux audio. Les canaux logiques PIDS et SIDS sont conçus pour acheminer des informations de service de données IBOC (IDS, *IBOC data service*).

La qualité de fonctionnement de chaque canal logique est complètement décrite par trois paramètres de caractérisation: transfert, temps d'attente et robustesse. Le codage de canal, la mise en correspondance spectrale, la profondeur d'entrelacement et le retard lié à la diversité sont les composantes de ces paramètres de caractérisation. Pour chaque mode de service, ces composantes sont configurées de façon univoque pour chaque canal logique actif, ce qui permet d'assigner des paramètres de caractérisation appropriés.

De plus, pour chaque mode de service, le verrouillage et la synchronisation des trames de transfert sont spécifiés pour chaque canal logique actif.

2.5 Composantes fonctionnelles de la couche 1

La Fig. 25 décrit un schéma fonctionnel du traitement opéré dans la L1. Les signaux audio et les données sont transmis des couches OSI supérieures à la couche physique, le modem, via les points d'accès au service de la L1. Sur la base du diagramme de traitement dans la L1, chaque bloc fonctionnel de la L1 et le flux de signaux associé font l'objet d'une description de haut niveau.

2.5.1 Points d'accès au service

Les points SAP de la L1 définissent l'interface entre la L2 et la L1 de la pile de protocoles du système. Chaque canal logique et le canal SCCH ont leur propre point SAP. Chaque canal entre dans la L1 avec des trames de transfert discrètes, la taille et le débit étant uniques et déterminés par le mode de service. Ces trames de transfert provenant de la L2 sont généralement désignées par unités SDU et unités SCU de L2.

2.5.2 Embrouillage

Cette fonction embrouille les données numériques de chaque canal logique afin de faire disparaître les périodicités des signaux lorsque la forme d'onde est démodulée dans un démodulateur MF analogique classique.

2.5.3 Codage de canal

Le Système numérique IBOC utilise des codes convolutionnels avec un rendement de codage effectif compris entre 2/9 et 4/5. Ce codage convolutionnel ajoute une redondance aux données numériques dans chaque canal logique afin d'en améliorer la fiabilité en présence de dégradations dans le canal. La taille des vecteurs de canal logique est augmentée de façon inversement proportionnelle au rendement de codage. Les techniques de codage sont configurables pour chaque mode de service. Un retard lié à la diversité est par ailleurs imposé aux canaux logiques sélectionnés. À la sortie du codeur de canal, les vecteurs de canal logique conservent leur identité.

2.5.4 Entrelacement

L'entrelacement temporel et fréquentiel sert à réduire les effets des salves d'erreurs. Les techniques d'entrelacement sont adaptées à l'environnement d'évanouissement des ondes métriques et sont configurables pour chaque mode de service. Chaque canal logique est entrelacé individuellement. La profondeur d'entrelacement est fondée sur l'utilisation du canal. La longueur d'entrelacement dans les canaux audio primaires (P1 et P2) est équivalente à une trame L1. Dans ce processus, les canaux logiques perdent leur identité. La sortie de l'entrelaceur a une structure matricielle; chaque matrice est constituée d'un ou de plusieurs canaux logiques et elle est associée à une partie donnée du spectre transmis. Le retard total lié à la diversité y compris l'entrelacement correspond à trois trames L1 (3 × 1,486 s). La longueur d'entrelacement dans les canaux P3 et P4 est équivalente à deux trames L1. La structure est celle d'un mécanisme contigu, les frontières étant quasi inexistantes.

2.5.5 Traitement des commandes de système

Cette fonction génère une matrice de séquences de données de commande de système – comprenant la configuration des commandes (par exemple le mode de service) – à diffuser sur les sous-porteuses de référence. Elle comprend aussi des informations d'état destinées à être utilisées localement.

Sources **SCA** L2 analogiques SAP de L1 **S**3 **\$** \mathbf{S} Embrouillage Commandes état Codage de canal Traitement des Commandes/état commandes de système Entrelacement R Mise en correspondance des sous-porteuses MROF X Génération de signaux MROF $y_n(t)$ Bande de base Sous-système de transmission s(t)BS:1114-25

FIGURE 25 Schéma fonctionnel de L1 à l'interface radioélectrique MF

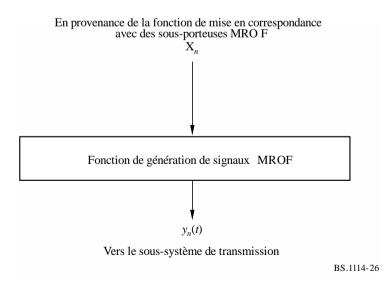
2.5.6 Mise en correspondance avec des sous-porteuses MROF

Cette fonction assigne les matrices résultant de l'entrelacement et la matrice des commandes de système aux sous-porteuses MROF. Une ligne de chaque matrice active résultant de l'entrelacement est traitée en un temps T_s correspondant à la durée d'un symbole MROF pour produire un vecteur de sortie \mathbf{X} , qui est une représentation du signal dans le domaine fréquentiel. Spécifiquement adaptée à l'environnement de brouillage non uniforme, cette mise en correspondance est fonction du mode de service.

2.5.7 Génération de signaux MROF

Cette fonction génère la partie numérique du signal dans le domaine temporel. Les vecteurs d'entrée sont transformés en une impulsion mise en forme en bande de base dans le domaine temporel, $y_n(t)$, définissant un seul symbole MROF.

2.5.8 Sous-système de transmission


Cette fonction formate la forme d'onde en bande de base en vue de sa transmission dans le canal en ondes métriques. Les principales sous-fonctions comprennent la concaténation des symboles et la conversion vers des fréquences supérieures. De plus, lors de la transmission de la forme d'onde hybride, cette fonction module la source, conserve entièrement le signal analogique et le combine avec le signal numérique pour former un signal hybride composite, s(t), prêt pour la transmission.

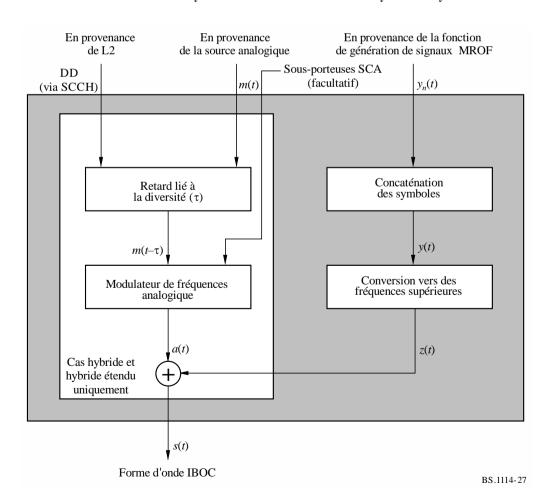
3 Description fonctionnelle

3.1 Introduction

La fonction de génération de signaux MROF reçoit des symboles MROF complexes dans le domaine fréquentiel en provenance de la fonction de mise en correspondance avec des sous-porteuses MROF, et produit en sortie des impulsions dans le domaine temporel représentant la partie numérique du signal du Système numérique C. Un schéma conceptuel de la fonction de génération de signaux MROF est représenté sur la Fig. 26.

FIGURE 26
Schéma conceptuel de la fonction de génération de signaux MROF

La fonction de génération de signaux MROF reçoit en entrée un vecteur complexe \mathbf{X}_n de longueur L, représentant les valeurs de constellation complexes pour chaque sous-porteuse MROF pour le symbole MROF n. Elle produit en sortie une forme d'onde $y_n(t)$ complexe, en bande de base, dans le domaine temporel, représentant le signal numérique pour le symbole MROF n.


3.2 Sous-système de transmission

3.2.1 Introduction

Le sous-système de transmission formate la forme d'onde IBOC en bande de base en vue de sa transmission dans le canal en ondes métriques. Les fonctions comprennent la concaténation des symboles et la conversion vers des fréquences supérieures. De plus, lors de la transmission de la forme d'onde hybride ou hybride étendue, cette fonction retarde et module le signal analogique en bande de base avant de le combiner avec la forme d'onde numérique.

Ce module reçoit en entrée une forme d'onde MROF, $y_n(t)$, complexe, en bande de base, dans le domaine temporel, en provenance de la fonction de génération de signaux MROF. Lors de la transmission de la forme d'onde hybride ou hybride étendue, ce module reçoit en outre un signal analogique en bande de base m(t) en provenance d'une source analogique, ainsi que, éventuellement, des signaux de type SCA. Il reçoit aussi une commande analogique de retard lié à la diversité (DD, *diversity delay*) en provenance de L2 via le canal de contrôle. Ce module produit en sortie la forme d'onde IBOC.

FIGURE 27 Schéma fonctionnel du sous-système de transmission dans le cas hybride ou hybride étendu

3.2.2 Retard lié à la diversité

Lors de la diffusion d'une forme d'onde hybride ou hybride étendue, comme indiqué dans la Fig. 27, z(t) est combiné avec le signal MF analogique a(t) entièrement conservé. Ce signal numérique z(t) comprend déjà le signal audio source analogique m(t) dans l'un des services audio fournis. Pour la génération de a(t), la première étape consiste à appliquer un DD au signal analogique en bande de base m(t). Les bits de commande analogique de DD, reçus en provenance de L2 via le canal SCCH, sont utilisés par les couches de protocole supérieures pour activer ou désactiver cette commande. Lorsque la commande est activée, un retard ajustable τ est appliqué au signal analogique en bande de base m(t). Le retard est fixé de sorte que, à la sortie du combineur analogique/numérique, a(t) soit retardé par rapport au signal numérique correspondant z(t) d'une durée égale à T_{dd} . Par conséquent, le programme audio du système numérique est le même que celui fourni (avec un certain retard) par le signal MF analogique, ce qui permet aux récepteurs de passer sans heurt de l'audio fourni par le système numérique au même audio fourni par le signal MF analogique et inversement. Le retard est ajustable afin de tenir compte des délais de traitement dans la chaîne du signal MF analogique et dans celle du signal numérique.

3.2.3 Modulateur de fréquences analogique

Pour les formes d'onde hybride et hybride étendue, le signal analogique en bande de base retardé $m(t-\tau)$ est modulé en fréquence afin de produire une forme d'onde MF analogique RF identique aux signaux analogiques existants.

3.2.4 Combineur analogique/numérique

Lors de la diffusion de la forme d'onde hybride ou hybride étendue, le signal RF MF modulé analogiquement est combiné avec le signal RF IBOC modulé numériquement pour produire le signal du Système numérique C dans la bande des ondes métriques, s(t). La partie analogique et la partie numérique de la forme d'onde sont centrées sur la même fréquence porteuse. Les niveaux de chaque bande latérale numérique dans le spectre de sortie sont réduits ainsi qu'il convient par la fonction de mise en correspondance avec des sous-porteuses MROF.

3.2.5 Signal tout numérique

Lors de la diffusion d'une forme d'onde tout numérique, la chaîne de traitement analogique, telle que représentée dans la Fig. 27, comprenant le signal MF a(t), et le combineur analogique/numérique, est absente. Le signal numérique z(t) devient donc le signal de sortie s(t).

3.3 Utilisation de répéteurs sur le canal

L'utilisation de la modulation MROF dans le Système numérique C permet à des répéteurs numériques sur le canal ou à un réseau monofréquence d'assurer la couverture désirée lorsque les affaiblissements du signal dus au terrain et/ou à des effets d'écran sont sévères. De tels répéteurs peuvent notamment être utilisés lorsque des montagnes ou d'autres obstacles formés par le terrain sont situés dans les zones de service d'une station et affectent la transmission du signal analogique ou numérique.

Le Système numérique C fonctionne avec un temps de garde effectif entre les symboles MROF d'environ $150~\mu s^2$. Afin d'éviter un trop grand brouillage intersymbole, la couverture effective dans la direction du système d'émission primaire doit être limitée à moins de 22~km. Plus précisément, le rapport entre le signal provenant de l'émetteur primaire et le signal amplifié doit être d'au moins 10~dB à une distance supérieure à 22~km du répéteur dans la direction de l'antenne primaire. La qualité de

² 150 μs correspondent à une distance de propagation de 45 km.

fonctionnement et les distances entre les amplificateurs sur le canal peuvent être améliorées par l'utilisation d'antennes directives destinées à protéger la station principale.

3.4 Synchronisation par système mondial de radiorepérage (GPS)

Afin de garantir une synchronisation temporelle précise, en vue d'une acquisition rapide par les stations et d'une synchronisation des amplificateurs, chaque station est verrouillée sur le système GPS. Cette synchronisation est normalement fondée sur un signal synchronisé temporellement et fréquentiellement avec le système GPS³. Les stations non verrouillées sur le système GPS ne peuvent pas offrir un accord rapide au niveau du récepteur dans le cas d'un réseau monofréquence car elles ne peuvent pas être synchronisées avec les autres stations⁴.

4 Niveaux des bandes latérales numériques

Un exemple de réduction d'amplitude de chaque sous-porteuse MROF dans chaque bande latérale numérique en fonction de la densité spectrale de puissance voulue est donné dans le Tableau 12 pour les formes d'onde hybride, hybride étendue et tout numérique. Pour les formes d'onde hybrides, les valeurs de densité spectrale de puissance sont spécifiées par rapport à la puissance totale de la porteuse MF analogique non modulée (supposée égale à 1). Pour la forme d'onde tout numérique, les valeurs de densité spectrale de puissance sont spécifiées par rapport à la puissance totale de la porteuse MF analogique non modulée (supposée égale à 1) qui aurait été transmise dans les modes hybride et hybride étendu.

TABLEAU 12

Exemples de réduction de l'amplitude des sous-porteuses MROF en fonction de la densité spectrale de puissance

Forme d'onde	Mode	Bandes latérales	Notation du facteur de réduction d'amplitude	Facteur de réduction d'amplitude (par rapport à la puissance MF analogique totale) pour chaque sous-porteuse	Densité spectrale de puissance ⁽¹⁾ dans une largeur de bande de 1 kHz (dBc)
Hybride	MP1	Primaires	a_{0L}/a_{0U}	$5,123 \times 10^{-3}$	-41,39
Hybride étendue	MP2, MP3, MP11, MP12, MP5, MP6	Primaires	$a_{0\mathrm{L}}$ / $a_{0\mathrm{U}}$	$5{,}123 \times 10^{-3}$	-41,39

³ Les stations verrouillées sur le système GPS appartiennent au niveau I: installations de transmission verrouillées sur le système GPS.

⁴ Niveau II: installations de transmission non verrouillées sur le système GPS.

TABLEAU 1	2 (fin))
-----------	---------	---

Forme d'onde	Mode	Bandes latérales	Notation du facteur de réduction d'amplitude	Facteur de réduction d'amplitude (par rapport à la puissance MF analogique totale) pour chaque sous-porteuse	Densité spectrale de puissance ⁽¹⁾ dans une largeur de bande de 1 kHz (dBc)
Tout numérique	MP5, MP6, MP12	Primaires	a_2	$1,67 \times 10^{-2}$	-31,39
		Secondaires	<i>a</i> ₄	$5,123 \times 10^{-3}$	-41,39
	MS1-MS4	Secondaires	a_5	$3,627 \times 10^{-3}$	-44,39
		Secondaires	a_6	$2,567 \times 10^{-3}$	-47,39
		Secondaires	a_7	$1,181 \times 10^{-3}$	-50,39

⁽¹⁾ Densité spectrale de puissance par rapport à la puissance MF analogique totale du signal MF analogique présent ou supprimé.

Pour les formes d'onde hybride et hybride étendue, les valeurs indiquées dans les exemples du Tableau 12 ont été choisies de sorte que la puissance totale moyenne dans une bande latérale numérique primaire (supérieure ou inférieure) soit inférieure de 21,5 à 23 dB (en fonction du mode) à la puissance totale de la porteuse MF analogique non modulée.

Pour la forme d'onde tout numérique, les valeurs indiquées dans les exemples du Tableau 12 ont été choisies de sorte que la puissance totale moyenne dans une bande latérale numérique primaire (supérieure ou inférieure) soit supérieure d'au moins 10 dB à la puissance totale dans les bandes latérales numériques primaires dans le cas hybride. En outre, les valeurs ont été choisies de sorte que la puissance totale moyenne dans les bandes latérales numériques secondaires (supérieure et inférieure) soit inférieure d'au moins 10 dB à la puissance totale dans les bandes latérales numériques primaires dans le cas tout numérique.

TABLEAU 13

Exemples de puissance dans les bandes latérales numériques en fonction de la puissance numérique totale

nu	mérique iissance	e la puiss totale et analogiq Bc)	la	Rappo	ort entre	-	puissance dans les bandes latérales numériques et la puissance analogique (dBc)				
MD1	MD2	MD11	MD12	M	P1	M	P3	Ml	P11	MI	P12
MP1	MP3	MP11	MP12	L	U	L	U	L	U	L	U
-20,0	-19,2	-18,5	_	-23,0	-23,0	-22,2	-22,2	-21,5	-21,5	_	_
-14,0	-13,2	-12,5	_	-17,0	-17,0	-16,2	-16,2	-15,5	-15,5	_	_
-10,0	-9,2	-8,5	_	-13,0	-13,0	-12,2	-12,2	-11,5	-11,5	_	_
-10,0	-9,2	-8,5	_	-11,4	-15,4	-10,6	-14,6	-9,9	-13,9	_	_
_	_	_	-14	_	_	_	_	_	_	-14	_
_	_	_	-8,5	_	_	_	_	_	_	_	-8,5

Les exemples de configuration donnés dans le Tableau 13 montrent qu'une certaine souplesse est offerte pour le choix de la largeur de bande et de la puissance pour le fonctionnement souhaité. Le système peut être configuré de manière à satisfaire aux exigences de débit et de robustesse tout en tenant compte des réalités de la coexistence. Pour ce faire, on peut employer différentes configurations de largeur de bande, utiliser une ou deux bandes latérales, choisir la puissance totale du signal numérique et régler séparément le niveau de puissance dans chaque bande latérale.

5 Spectre pour le mode hybride

Le signal numérique est transmis dans les bandes latérales principales primaires d'un côté ou de l'autre du signal MF analogique. Chaque bande latérale principale primaire comprend dix subdivisions de fréquences, incluant les sous-porteuses 356 à 545 ou -356 à -545 (voir la Fig. 28 et le Tableau 14). Les sous-porteuses 546 et -546, également incluses dans les bandes latérales principales primaires, sont des sous-porteuses de référence additionnelles. L'amplitude des sous-porteuses dans une bande latérale principale primaire est uniformément réduite par un facteur de réduction d'amplitude.

FIGURE 28
Spectre pour la forme d'onde hybride – Mode de service MP1

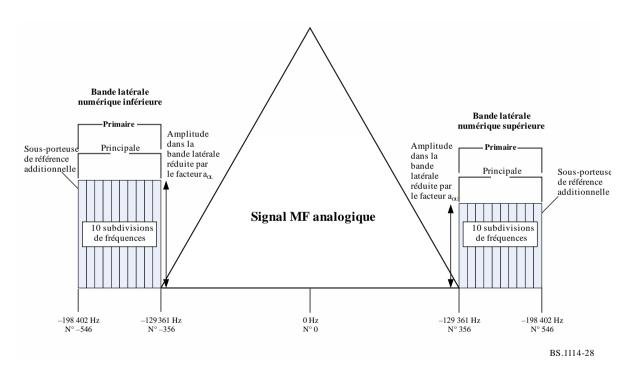


TABLEAU 14 Spectre pour la forme d'onde hybride – Récapitulation pour le mode de service MP1

Bande latérale	Nombre de subdivisions de fréquences	Ordre des subdivisions de fréquences	Plage de sous- porteuses	Fréquences des sous-porteuses (par rapport au centre du canal) (Hz)	Facteur de réduction d'amplitude	Espacement des fréquences (Hz)	Observations
Principale Primaire Supérieure	10	A	356 à 546	129 361 à 198 402	а ₀ U	69 041	Inclut la sous-porteus e de référence additionnelle 546
Principale Primaire Inférieure	10	В	-356 à -546	-129 361 à -198 402	a _{OL}	69 041	Inclut la sous-porteus e de référence additionnelle -546

6 Spectre pour le mode hybride étendu

Pour créer la forme d'onde hybride étendue, on ajoute les bandes latérales étendues primaires aux bandes latérales principales primaires présentes dans la forme d'onde hybride. Selon le mode de service, une, deux ou quatre subdivisions de fréquences peuvent être ajoutées vers le bord interne de chaque bande latérale principale primaire. Chaque bande latérale principale primaire comprend dix subdivisions de fréquences et une sous-porteuse de référence additionnelle, incluant les sous-porteuses 356 à 546, ou –356 à –546. La bande latérale étendue primaire supérieure inclut les sous-porteuses 337 à 355 (une subdivision de fréquences), 318 à 355 (deux subdivisions de fréquences) ou 280 à 355 (quatre subdivisions de fréquences). La bande latérale étendue primaire inférieure inclut les sous-porteuses –337 à –355 (une subdivisions de fréquences), –318 à –355 (deux subdivisions de fréquences) ou –280 à –355 (quatre subdivisions de fréquences). L'amplitude des sous-porteuses contenues dans une bande latérale étendue primaire est uniformément réduite par le même facteur de réduction d'amplitude, a_{0L} ou a_{0U} , que celui qui s'applique dans la bande latérale principale primaire (voir la Fig. 29 et le Tableau 15).

FIGURE 29 Spectre pour la forme d'onde hybride étendue – Modes de service MP2, MP3, MP11, MP12, MP5 et MP6

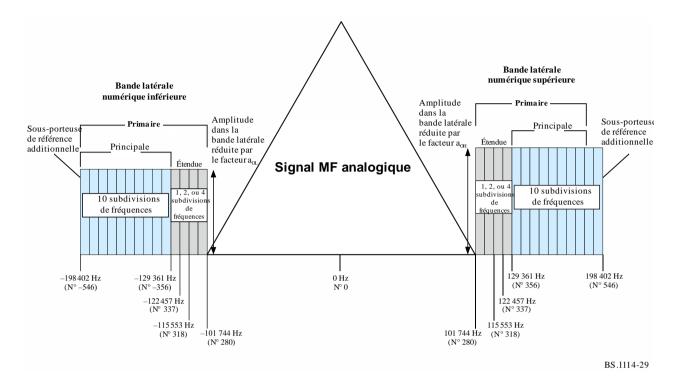
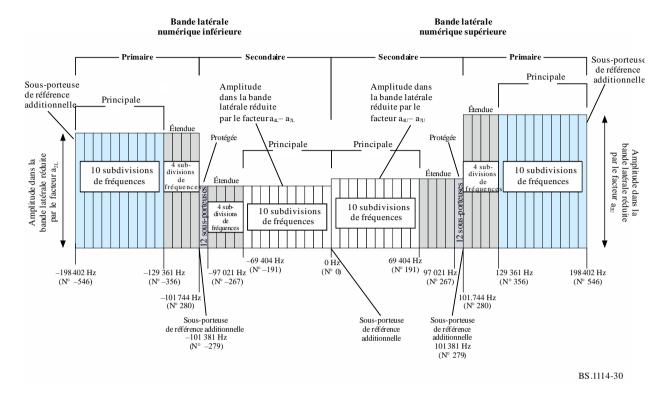


TABLEAU 15

Spectre pour la forme d'onde hybride étendue – Récapitulation pour les modes de service MP2, MP3, MP11, MP12, MP5 et MP6

Bande latérale	Nombre de subdivisions de fréquences	Ordre des subdivisions de fréquences	Plage de sous- porteuses	Fréquences des sous-porteuses (par rapport au centre du canal) (Hz)	Facteur de réduction d'amplitude	Espacement des fréquences (Hz)	Observations
Principale Primaire Supérieure	10	A	356 à 546	129 361 à 198 402	аоบ	69 041	Inclut la sous-porteuse de référence additionnelle 546
Principale Primaire Inférieure	10	В	-356 à -546	-129 361 à -198 402	a ₀ L	69 041	Inclut la sous-porteuse de référence additionnelle -546
Étendue primaire supérieure (1 subdivision de fréquences)	1	A	337 à 355	122 457 à 128 997	a0U	6 540	Aucune
Étendue primaire inférieure (1 subdivision de fréquences)	1	В	-337 à -355	-122 457 à -128 997	a ₀ L	6 540	Aucune


TABLEAU 15 (fin)

Bande latérale	Nombre de subdivisions de fréquences	Ordre des subdivisions de fréquences	Plage de sous- porteuses	Fréquences des sous-porteuses (par rapport au centre du canal) (Hz)	Facteur de réduction d'amplitude	Espacement des fréquences (Hz)	Observations
Étendue primaire supérieure (2 subdivisions de fréquences)	2	A	318 à 355	115 553 à 128 997	аоบ	13 444	Aucune
Étendue primaire inférieure (2 subdivisions de fréquences)	2	В	-318 à -355	-115 553 à -128 997	a ₀ L	13 444	Aucune
Étendue primaire supérieure (4 subdivisions de fréquences)	4	A	280 à 355	101 744 à 128 997	аоบ	27 253	Aucune
Étendue primaire inférieure (4 subdivisions de fréquences)	4	В	-280 à -355	-101 744 à -128 997	a0L	27 253	Aucune

7 Spectre pour le mode tout numérique

Pour créer la forme d'onde tout numérique, on supprime le signal analogique, ce qui permet d'étendre entièrement la largeur des bandes latérales numériques primaires et d'ajouter des bandes latérales secondaires de plus faible puissance dans le spectre libéré par le signal analogique. Le spectre pour la forme d'onde tout numérique est représenté sur la Fig. 30.

FIGURE 30 Spectre pour la forme d'onde tout numérique – Modes de service MP5, MP6 et MP12, MS1 à MS4

En plus des dix subdivisions de fréquences principales, les quatre subdivisions de fréquences étendues sont présentes dans chaque bande latérale primaire employée pour la forme d'onde tout numérique. Chaque bande latérale secondaire employée comprend aussi dix subdivisions de fréquences principales et quatre subdivisions de fréquences étendues. À la différence des bandes latérales primaires, toutefois, les subdivisions de fréquences principales secondaires sont plus près du centre du canal que les subdivisions de fréquences étendues secondaires.

Chaque bande latérale secondaire inclut par ailleurs une petite région protégée comprenant 12 sous-porteuses MROF et les sous-porteuses de référence 279 et –279. On parle de bandes latérales «protégées» car celles-ci sont situées dans la zone de spectre la moins susceptible d'être affectée par un brouillage analogique ou numérique. Une sous-porteuse de référence additionnelle est placée au centre du canal (0). L'ordre des subdivisions de fréquences ne s'applique pas dans la région protégée secondaire étant donné que celle-ci ne contient pas de subdivision de fréquences.

Chaque bande latérale principale secondaire inclut les sous-porteuses 1 à 190 ou –1 à –190. La bande latérale étendue secondaire supérieure inclut les sous-porteuses 191 à 266 et la bande latérale protégée secondaire supérieure inclut les sous-porteuses 267 à 278, plus la sous-porteuse de référence additionnelle 279. La bande latérale étendue secondaire inférieure inclut les sous-porteuses –191 à –266 et la bande latérale protégée secondaire inférieure inclut les sous-porteuses –267 à –278, plus la sous-porteuse de référence additionnelle –279. Le spectre dans le cas tout numérique s'étale en tout sur 396 803 Hz au maximum. L'amplitude des sous-porteuses comprises dans les bandes latérales principales primaires et étendues primaires est réduite par un facteur de réduction d'amplitude, a_{2L} ou a_{2U} . L'amplitude des sous-porteuses comprises dans les bandes latérales principales secondaires, étendues secondaires et protégées secondaires est uniformément réduite par un facteur de réduction d'amplitude ayant quatre niveaux discrets: a_{4L-a7L} ou a_{4U-a7U} (voir la Fig. 30 et le Tableau 16).

TABLEAU 16 Spectre pour la forme d'onde tout numérique – Récapitulation pour les modes de service MP5, MP6 et MP12, MS1 à MS4

Bande latérale	Nombre de subdivisions de fréquences	Ordre des subdivisions de fréquences	Plage de sous- porteuses	Fréquences des sous-porteuses (par rapport au centre du canal) (Hz)	Facteur de réduction d'amplitude	Espacement des fréquences (Hz)	Observations
Principale Primaire Supérieure	10	A	356 à 546	129 361 à 198 402	а2Ү	69 041	Inclut la sous- porteuse de référence additionnelle 546
Principale Primaire Inférieure	10	В	-356 à -546	-129 361 à -198 402	a2L	69 041	Inclut la sous- porteuse de référence additionnelle -546
Étendue Primaire Supérieure	4	A	280 à 355	101 744 à 128 997	а2U	27,253	Aucune
Étendue Primaire Inférieure	4	В	-280 à -355	-101 744 à -128 997	a ₂ L	27 253	Aucune
Principale Secondaire Supérieure	10	В	0 à 190	0 à 69 041	а4U-а7U	69 041	Inclut la sous- porteuse de référence additionnelle 0
Principale Secondaire Inférieure	10	A	-1 à -190	-363 à -69 041	a4L-a7L	68 678	Aucune
Étendue Secondaire Supérieure	4	В	191 à 266	69 404 à 96 657	а4U-а7U	27 253	Aucune
Étendue Secondaire Inférieure	4	A	-191 à -266	-69 404 à -96 657	a4L-a7L	27 253	Aucune
Protégée Secondaire Supérieure	Non applicable	Non applicable	267 à 279	97 021 à 101 381	а4U-а7U	4 360	Inclut la sous-porteuse de référence additionnelle 279
Protégée Secondaire Inférieure	Non applicable	Non applicable	-267 à -279	-97 021 à -101 381	a4L-a7L	4 360	Inclut la sous-porteuse de référence additionnelle 279

8 Limitations des émissions

Grâce à la possibilité d'ajuster le niveau de puissance dans les bandes latérales et à la conformation spectrale des sous-porteuses numériques, la densité spectrale de puissance peut être réglée avec précision en fonction de l'environnement de fonctionnement. Elle peut être configurée de manière à respecter parfaitement les limites d'émission correspondant à l'emplacement de fonctionnement, aux conditions particulières de coexistence, au mode de fonctionnement et aux capacités des équipements de radiodiffusion employés. Des exemples de configurations correspondant à différents environnements de fonctionnement sont fournis.

8.1 Limites d'émission pour le fonctionnement IBOC avec un gabarit analogique utilisé dans la région II

Les niveaux de puissance des sous-porteuses en mode hybride et en mode tout numérique se situent nettement au-dessous des gabarits d'émission MF. Le Tableau 17 présente un exemple de gabarit utilisé par l'administration des Etats-Unis d'Amérique (Code of Federal Regulations (CFR), Title 47, § 73.317).

TABLEAU 17

Canaux MF aux Etats-Unis d'Amérique – Limites d'émission en fonction de l'écart par rapport à la fréquence porteuse

Écart par rapport à la fréquence porteuse (kHz)	Densité spectrale de puissance par rapport à la porteuse MF analogique non modulée (dBc/kHz) ⁽¹⁾
120 à 240	-25
240 à 600	-35
Plus de 600	-80 , ou -43 -10 $\log_{10} x$, la valeur moins élevée étant retenue, où x , la puissance (W), désigne la puissance de la porteuse de sortie de l'émetteur non modulée totale

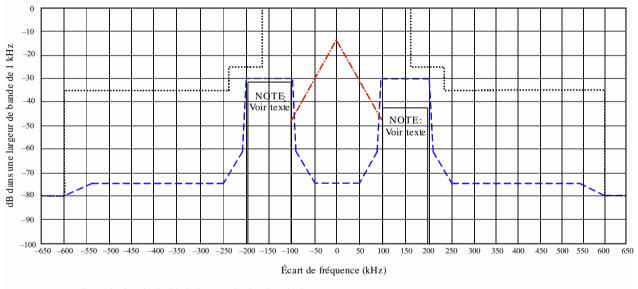
⁽¹⁾ Les mesures ont été faites en moyennant la densité spectrale de puissance dans une bande de 1 kHz sur un segment temporel de 10 s.

La Fig. 31 montre les limites d'émission pour la forme d'onde hybride et la forme d'onde hybride étendue pour toutes les sources, en dB par rapport à la puissance de la porteuse analogique non modulée, la mesure étant faite dans une largeur de bande de 1 kHz. Les limites d'émission résultantes sont déterminées à partir des différentes limites d'émission pour chaque bande latérale numérique. Cette mesure des émissions inclut toutes les sources, notamment:

- le bruit de phase de l'excitateur IBOC; et
- les produits d'intermodulation de l'émetteur. Dans les Tableaux 17, 18, 19 et 20, les niveaux ont été ajustés pour illustrer le niveau au-dessous du gabarit d'émission 0 dBc.

TABLEAU 18	
Limites de puissance des porteuses numériques IBOC	(1)

	Mode tout numérique				
Mode hybride	Porteuses du programme principal	Porteuses de service auxiliaire secondaire			
-31,39	-31,39	-36,39			


Densité spectrale de puissance nominale dans une bande de 1 kHz par rapport au gabarit CFR 0 dBc de référence.

8.1.1 Limites d'émission pour le fonctionnement en mode hybride

Le bruit dû à toutes les sources, sauf les fréquences éloignées de la porteuse d'une valeur comprise entre 100 et 200 kHz, y compris le bruit de phase de l'excitateur IBOC et les produits d'intermodulation, doit respecter les limites indiquées dans la Fig. 31 et le Tableau 19. Les exigences sont récapitulées ci-après, où le niveau en dBc est le niveau par rapport à l'exemple de gabarit MF analogique donné dans le Tableau 17, dans une largeur de bande de 1 kHz dans les bandes latérales numériques.

NOTE – Les bandes latérales supérieure et inférieure réelles peuvent présenter un niveau de puissance différent. Dans certaines configurations, une seule bande latérale peut être employée.

FIGURE 31 Limites d'émission en mode hybride IBOC

- Exemple de gabarit d'émission pour le signal analogique
- --- Limites d'émission résultantes pour les deux bandes latérales en mode hybride ou hybride étendu
- Densité spectrale de puissance nominale de porteuse numérique
- ---- Densité spectrale de puissance nominale de porteuse analogique

BS.1114-31

TABLEAU 19 Limites d'émission en mode hybride

Écart de fréquence par rapport à la porteuse (kHz)	Niveau (dBc/kHz)
0-50	-74,39
92,5	-61,39
100-200	-30
207,5	-61,39
250	-74,39
>600	-80

8.1.2 Limites d'émission pour le fonctionnement en mode tout numérique

Le bruit dû à toutes les sources pour les fréquences situées à plus de 200 kHz de la porteuse, y compris le bruit de phase de l'excitateur IBOC et les produits d'intermodulation, doit respecter les limites de la Fig. 32 et du Tableau 20. En mode tout numérique, le signal MF analogique présent auparavant (et désormais supprimé) peut être remplacé par des bandes latérales supplémentaires (secondaires). Toutefois, on continue de prendre en considération le gabarit MF analogique lors de la configuration des niveaux de puissance dans les bandes latérales. Les exigences sont récapitulées ci-après, où le niveau en dBc est le niveau par rapport à l'exemple de gabarit MF analogique donné dans le Tableau 17, dans une largeur de bande de 1 kHz dans les bandes latérales numériques.

NOTE – Les bandes latérales supérieure et inférieure réelles peuvent présenter un niveau de puissance différent. Dans certaines configurations, une seule bande latérale peut être employée.

FIGURE 32 Limites d'émission en mode tout numérique 0 -10 dB dans une largeur de bande de 1 kHz -20 -30 NOTE: NOTE: NOTE: -50 NOTE: texte -60 -70 -80 -90 -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 Écart de fréquence (kHz) Exemple de gabarit d'émission pour le signal MF analogique ___ Limites d'émission pour les quatre bandes latérales en mode tout numérique - Densité spectrale de puissance nominale de porteuse numérique ---- Densité spectrale de puissance de la porteuse analogique utilisée auparavant BS.1114-32

Les exigences sont récapitulées ci-après, où le niveau en dBc est le niveau par rapport à l'exemple de gabarit MF analogique donné dans le Tableau 17, dans une largeur de bande de 1 kHz dans les bandes latérales numériques.

TABLEAU 20 Limites d'émission en mode tout numérique

Écart de fréquence par rapport à la porteuse (kHz)	Niveau (dBc/kHz)
0-100	-35
100-200	-30
207,5	-63
250	-72
300	-85
>600	-90

8.2 Limites d'émission pour le fonctionnement IBOC avec un gabarit analogique utilisé dans la région I

Un exemple de gabarit utilisé par une administration européenne est présenté dans la norme ETSI EN 302 018-1. La conformation spectrale des sous-porteuses numériques IBOC ajustables est configurée de manière à satisfaire les limites d'émission requises, et les bandes latérales numériques respectent le gabarit. Des exemples de configurations des limites d'émission dans les bandes latérales IBOC sont présentés dans la Fig. 33 par rapport au gabarit d'émission MF analogique de l'administration. Les détails relatifs aux limites d'émission figurent dans les Tableaux 21 et 22, où le niveau en dBc est le niveau par rapport à l'exemple de gabarit MF analogique.

FIGURE 33
Limites d'émission dans les bandes latérales IBOC*

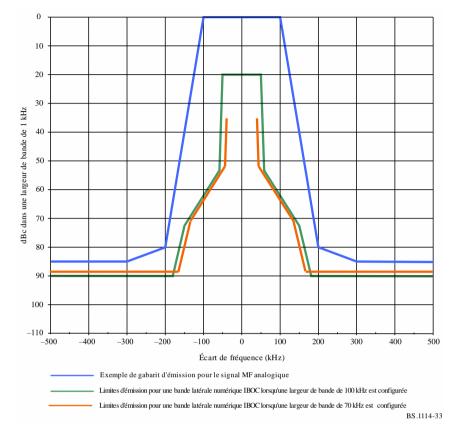


TABLEAU 21 Limites d'émission dans les bandes latérales IBOC pour une largeur de bande de 100 kHz

Écart de fréquence par rapport à la porteuse (kHz)	Niveau (dBc/kHz)
50 kHz	-20
57,5 kHz	-53
100 kHz	-62
150 kHz	-72,5
181 kHz	-90
500 kHz	-90

TABLEAU 22 Limites d'émission dans les bandes latérales IBOC pour une largeur de bande de 70 kHz

Écart de fréquence par rapport à la porteuse (kHz)	Niveau (dBc/kHz)
35 kHz	-18,5
42,5 kHz	-51,5
100 kHz	-62
135 kHz	-71
166 kHz	-88,5
500 kHz	-88,5

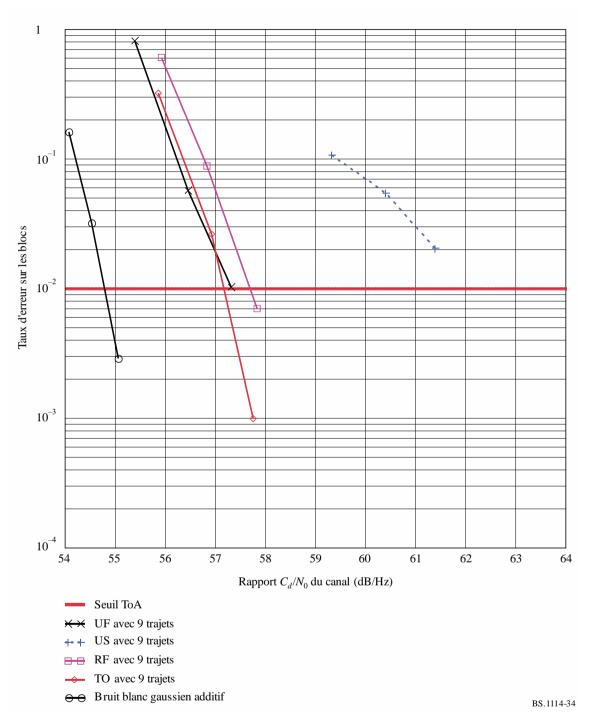
9 Résumé des résultats de tests en laboratoire

Les essais en laboratoire du Système numérique C sont résumés ci-dessous. Les profils d'évanouissement utilisés sont désignés (UF), urbain rapide, (US), urbain lent, (RF), rural rapide et (TO), relief avec obstacles, rapide; ils ont été appliqués de manière indépendante au signal utile et à chacun des brouilleurs. Le niveau de brouillage est exprimé en unités de dB_{des}, définie comme étant la valeur en dB relative à la puissance totale du signal hybride utile. Pour chaque essai de taux d'erreur sur les blocs, le Tableau 23 mentionne le scénario de brouillage dans lequel l'essai est effectué, le rapport C_d/N_0 (dB/Hz), le profil d'évanouissement, le niveau de brouillage et le taux d'erreur sur les blocs mesuré.

TABLEAU 23
Résultats des essais de qualité de fonctionnement en radiodiffusion sonore numérique MF hybride IBOC

							Mesures	
Essais		Paramètres d'entrée			Qualité numérique	Évaluation du son ar au seuil n d'audibi	nalogique umérique	
	C _d /N ₀ (dB/Hz)	Évanouis- sement	Dans canal (dB _{des})	1 ^{er} canal adjacent (dB _{des})		Taux d'erreur sur les blocs	Fichier	Dégradation subjective du son
Bruit gaussien	54,1					0,16		
(sans	54,5					0,032	audio1.wav	Audible
évanouissement/ sans brouillage)	55,1					0,0029		
	55,4					0,8		
	56,4	UF				0,056	audio2.wav	Audible
Évanouissement	57,3					0,012		
9 rayons	59,3					0,106		
	60,4	US				0,054	audio3.wav	Audible
	61,4					0,0202		

TABLEAU 23 (fin)

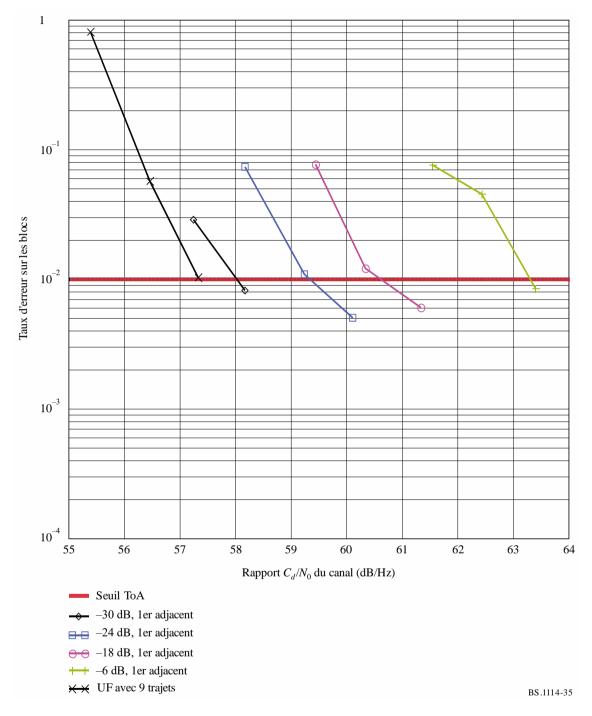

				Mesures							
Essais	Paramètres d'entrée					Qualité numérique					
	C _d /N ₀ (dB/Hz)	Évanouis- sement	Dans canal (dB _{des})	$\begin{array}{c} 1^{er} \ canal \\ adjacent \\ (dB_{des}) \end{array}$	$\begin{array}{c} 2^{\text{ème}} \ canal \\ adjacent \\ (dB_{\text{des}}) \end{array}$	Taux d'erreur sur les blocs	Fichier	Dégradation subjective du son			
	55,9					0,6					
	56,8	RF				0,087	audio4.wav	Audible			
Évanouissement	57,8					0,007					
9 rayons	55,9					0,317					
	56,9	TO				0,026	audio5.wav	Audible			
	57,8					0,001					
	61,5					0,075	audio6.wav Audibl				
	62,4	UF		-6,0		0,045		Audible			
	63,4					0,00842					
	59,4					0,077		Audible			
Dravillaga par	60,3	UF		-18,0		0,012	audio7.wav				
Brouillage par 1 ^{er} canal adjacent	61,3					0,006					
1 canar adjacent	58,2					0,0735					
	59,2	UF		-24,0		0,0109	audio8.wav	Audible			
	60,1					0,005					
	57,2	UF		-30,0		0,0287	audio9.wav	Audible			
	58,2	OI		-30,0		0,0082	audio).wav	Audioic			
Brouillage par	57,9					0,1					
2ème canal adjacent	58,9	UF			20,0	0,018	audio10.wav	Audible			
	60,5					0,00085					
Brouillage dans le	60,2					0,013	_audio11.wav	Non fonc-			
canal	61,3	UF	-10,0			0,0097		tionnement			
	65,3					0,00014					
	58,4					0,013					
	59,3	UF	-20,0			0,0011	audio12.wav	Audible			
	60,4					0,00035					

9.1 Comportement en présence de bruit gaussien

Cet essai mesure une limite supérieure de la qualité de fonctionnement du système et enregistre le son analogique au seuil numérique d'audibilité (seuil ToA, *threshold of audibility*) en présence de bruit gaussien et en l'absence d'évanouissement de Rayleigh et de brouillage. Les caractéristiques sont montrées dans les courbes de taux d'erreur sur les blocs de la Fig. 34 et sont résumées dans le Tableau 23. Celui-ci montre qu'immédiatement avant le seuil ToA numérique, la qualité du son analogique est dégradée de manière perceptible.

FIGURE 34

Taux d'erreur sur les blocs du système hybride pour différents types d'évanouissement sur 9 trajets et de bruit blanc gaussien additif



9.2 Comportement en présence d'évanouissements de Rayleigh

Cet essai mesure la qualité de fonctionnement du système et enregistre le son analogique au seuil ToA numérique en présence de bruit gaussien et de divers types d'évanouissement de Rayleigh. Les caractéristiques sont présentées dans les courbes de taux d'erreur sur les blocs de la Fig. 35 et résumées dans le Tableau 23. Les résultats font apparaître une insensibilité au profil d'évanouissement, sauf en cas d'évanouissement lent en milieu urbain, qui donne lieu à des évanouissements du signal de très longue durée. Le profil d'évanouissement lent en milieu urbain se traduit par des coupures particulièrement gênantes dans les transmissions analogiques existantes.

FIGURE 35

Taux d'erreur sur les blocs d'un système hybride dans un environnement urbain à 9 trajets à évanouissement rapide avec un brouilleur du premier canal adjacent à évanouissement individuel

9.2.1 Urbain rapide (UF)

Le Tableau 23 présente l'évaluation subjective du son analogique et montre qu'immédiatement avant le seuil ToA numérique, la qualité du son analogique est dégradée de manière audible.

9.2.2 Urbain lent (US)

Le Tableau 23 présente l'évaluation subjective du son analogique, qui montre qu'immédiatement avant le seuil ToA numérique, la qualité de son analogique est dégradée de manière audible.

9.2.3 Rural rapide (RF)

Le Tableau 23 présente l'évaluation subjective du son analogique, qui montre qu'immédiatement avant le seuil ToA numérique, la qualité de son analogique est dégradée de manière audible.

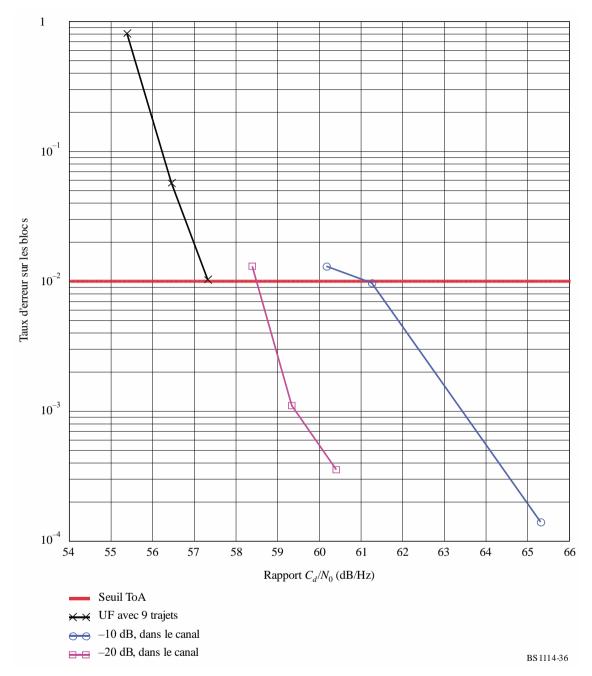
9.2.4 Relief avec obstacles, rapide (TO)

Le Tableau 23 présente l'évaluation subjective du son analogique, qui montre qu'immédiatement avant le seuil ToA numérique, la qualité de son analogique est dégradée de manière audible.

9.3 Qualité de fonctionnement en présence de brouillages à évanouissement individuel

Cet essai mesure la qualité de fonctionnement du système et le son analogique enregistré en puissance de bruit gaussien et d'évanouissements de Rayleigh, et en présence de brouilleurs à évanouissement individuel IBOC sur le premier canal adjacent, le second canal adjacent et dans le même canal. Chaque brouilleur a été soumis au même type de canal d'évanouissement de Rayleigh que le signal utile; cependant, tous les signaux ont subi un évanouissement individuel, raison pour laquelle ils ne sont pas corrélés.

9.3.1 Brouillage à source unique par le premier canal adjacent

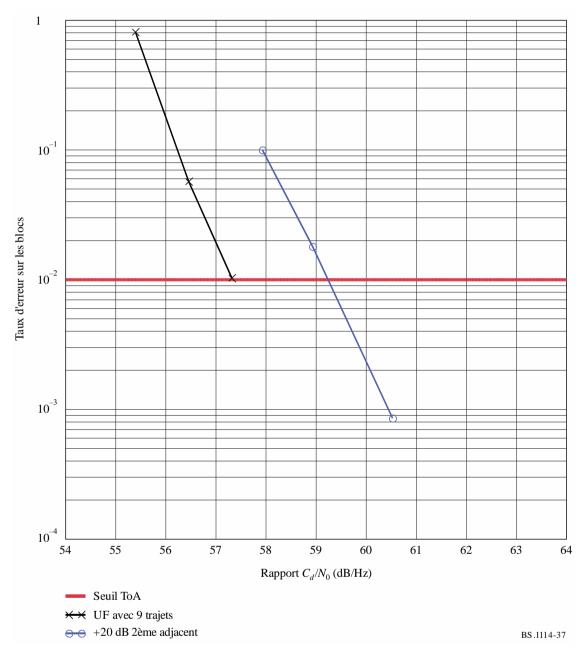

Les stations de classe B correctement espacées sont protégées jusqu'au contour 54 dBu contre le brouillage par le canal adjacent dépassant 48 dBu dans 50% des emplacements et pendant 10% du temps. En conséquence, des essais ont été faits avec des brouilleurs hybrides de diverses puissances dans le premier canal adjacent, jusqu'à un niveau se situant à 6 dB au-dessous de celui du signal utile. Les résultats en matière de taux d'erreur sur les blocs sont présentés dans la Fig. 35 et résumés dans le Tableau 23. Comme on pouvait le prévoir, le niveau de qualité diminue à mesure que le niveau de brouillage augmente de –30 dB_{des} à –6 dB_{des}. Toutefois, l'algorithme d'annulation du brouillage par le premier canal adjacent utilisé dans le récepteur assure un niveau de qualité supérieur au système, même en présence d'un brouilleur puissant dans le premier canal adjacent dans un environnement urbain à évanouissement rapide. Le Tableau 23 donne l'évaluation subjective du son analogique qui indique que jusqu'au niveau précédant immédiatement le seuil ToA numérique, la qualité du son analogique est dégradée de manière audible pour tous les niveaux de brouillage par le premier canal adjacent.

9.3.2 Brouillage à source unique dans le canal

Les stations de classe B correctement espacées sont protégées jusqu'au contour 54 dBu contre le brouillage dans le canal dépassant 34 dBu dans 50% des emplacements et pendant 10% du temps. Cela signifie que pendant 90% du temps au niveau du contour 54 dBu, le rapport D/U dépasse 20 dB. Compte tenu de cette information, on peut faire un certain nombre d'observations relatives à la nature du brouillage dans le canal. Un brouillage hybride dans le canal devrait avoir un effet minimal sur la qualité du signal numérique utile étant donné qu'il sera généralement d'au moins 20 dB inférieur en puissance par rapport aux bandes latérales numériques au contour protégé analogique de 54 dBu. Ceci a été vérifié par des essais en laboratoire. Un brouilleur hybride de -20 dB_{des} dans le canal a été appliqué au signal hybride utile dans un environnement urbain à évanouissement rapide. Les résultats du taux d'erreur sur les blocs sont présentés dans la Fig. 35 et résumés dans le Tableau 23. La Fig. 36 montre que le fait d'ajouter un brouilleur dans le canal hybride de -20 dB_{des} ne dégrade le niveau de qualité que de 1 dB environ. La Fig. 35 fait également apparaître que, même si le niveau du brouilleur dans le canal était porté à -10 dB_{des}, la dégradation supplémentaire serait limitée à moins de 3 dB. Le Tableau 23 présente l'évaluation subjective du son analogique qui fait apparaître que, immédiatement avant le niveau numérique ToA, la qualité du son analogique est dégradée de manière audible par un brouilleur de −20 dB_{des} dans le canal. Pour un brouilleur de −10 dB_{des} dans le canal, la qualité du son analogique est dégradée au-delà du point de non fonctionnement avant que le son numérique n'atteigne son niveau de seuil ToA.

FIGURE 36

Taux d'erreur sur les blocs du système hybride avec un brouilleur à 10 canaux à évanouissement individuel



9.3.3 Brouillage à source unique par le deuxième canal adjacent

Un brouilleur IBOC de second canal adjacent hybride peut avoir un léger effet sur le niveau de qualité numérique étant donné que les lobes latéraux du brouilleur peuvent se répandre dans les bandes latérales numériques utiles. Cet effet a été quantifié par des tests en laboratoire. Un brouilleur de +20 dB du second canal hybride a été appliqué au signal hybride utile dans un environnement urbain à évanouissement rapide. Les résultats du taux d'erreur sur les blocs sont présentés à la Fig. 37 et résumés dans le Tableau 23. La Fig. 37 montre que le fait d'ajouter un brouilleur de +20 dB du deuxième canal adjacent hybride dégrade le niveau de qualité d'environ 2 dB. Le Tableau 23 donne l'évaluation subjective du son analogique qui fait apparaître qu'immédiatement avant le niveau du seuil ToA numérique, la qualité du son analogique est dégradée de manière audible.

FIGURE 37

Taux d'erreur sur les blocs du système hybride avec brouilleur du deuxième canal adjacent à évanouissement individuel

9.4 Conclusions

Les rapports montrent, dans tous les environnements soumis aux essais, qu'au point où le signal numérique commence à se dégrader, le signal audio analogique correspondant présente lui aussi une dégradation audible. Cela laisse entendre que le signal audio analogique est dégradé à des niveaux de signal où la dégradation du son numérique n'est pas encore perceptible. En conséquence, jusqu'au niveau du seuil ToA numérique, la qualité du signal numérique est supérieure à celle du signal analogique existant. Et lorsque le signal numérique présente enfin une dégradation, le récepteur IBOC passera automatiquement sur le signal analogique. Pour cette raison, la qualité de fonctionnement du Système numérique C est supérieure à celle du service MF analogique existant.

Annexe 5

Système Numérique G

1 Introduction

Le système numérique G, également appelé système DRM, est destiné à être utilisé à toutes les fréquences des bandes d'ondes métriques, compte tenu de diverses contraintes liées au découpage des canaux et de conditions de propagation variables dans ces bandes. Pour faire face à ces contraintes opérationnelles, il existe différents modes de transmission. Un mode de transmission est défini par deux types de paramètres de transmission:

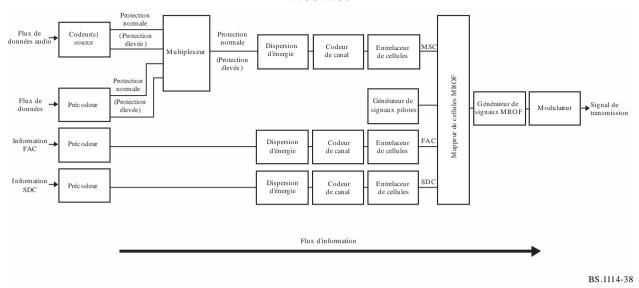
- paramètres liés à la largeur de bande du signal;
- paramètres liés à l'efficacité de la transmission.

Le premier type de paramètre définit la largeur de bande totale pour une transmission, alors que le second type permet d'arriver à un compromis entre la capacité (débit utile) et la tolérance au bruit, aux trajets multiples et à l'effet Doppler.

Le Système numérique G correspond à la norme ETSI ES 201 980V3.1.1 (août 2009) «Digital Radio Mondiale (DRM); System specification».

Le Système numérique G comprend plusieurs niveaux de fiabilité, chacun étant conçu pour des bandes et des conditions de propagation différentes, comme le montre le Tableau 24.

TABLEAU 24 Utilisations des niveaux de fiabilité


Niveau de fiabilité	Conditions de propagation types
A	Canaux gaussiens, avec léger évanouissement
В	Canaux sélectifs en temps et en fréquence, avec un plus grand étalement du temps de propagation
С	Comme le niveau de fiabilité B, mais avec un plus grand étalement du spectre Doppler
D	Comme le niveau de fiabilité B, mais avec un grand étalement du temps de propagation et du spectre Doppler
Е	Canaux sélectifs en temps et en fréquence

Le système DRM+ correspond au niveau de fiabilité E; il est conçu pour fonctionner dans toutes les bandes d'ondes métriques et est appelé Système numérique G dans la présente Recommandation.

2 Architecture du système

La Fig. 38 décrit le flux général de différentes catégories d'information (audio, données, etc.) et ne fait pas la distinction entre différents services susceptibles d'être transmis dans une ou plusieurs catégories d'information.

FIGURE 38

La Fig. 38 décrit le flux général de différentes catégories d'information (audio, données, etc.) depuis le codage (à gauche) vers l'émetteur (à droite). Aucun diagramme n'est donné pour le récepteur, mais il représenterait l'inverse du processus décrit dans la figure ci-dessus.

- on trouve, à gauche, deux catégories d'informations d'entrée: les données audio et les données, qui sont combinées dans le multiplexeur de service principal d'une part, et les informations acheminées par les canaux d'informations qui ne passent pas par le multiplexeur, appelés canal FAC et canal SDC;
- le codeur de source audio et les précodeurs convertissent les flux d'entrée au format de transmission numérique approprié. Leurs données de sortie peuvent comprendre deux parties nécessitant deux niveaux différents de protection dans le codeur de canal suivant.
- le multiplexeur tient compte des niveaux de protection de tous les services de données et de tous les services audio;
- la dispersion d'énergie complète de façon déterministe et sélective les flux binaires afin de réduire la probabilité d'apparition systématique de séquences identiques qui aboutirait à une uniformité non désirée du signal transmis;
- le codeur de canal ajoute des informations redondantes permettant de corriger les erreurs et définit le mappage des informations codées de façon numérique en cellules MAQ. Le système a la capacité, si le radiodiffuseur le souhaite, d'acheminer deux catégories de «flux binaires», l'une ayant un niveau de protection plus élevé que l'autre;
- l'entrelacement de cellules permet d'étaler des cellules MAQ consécutives sur une séquence de cellules espacées en temps et en fréquence de façon quasi aléatoire, afin d'apporter des éléments supplémentaires de fiabilité dans la transmission des données audio dans les canaux à dispersion temps-fréquence;
- le générateur de signaux pilotes injecte des informations qui permettent au récepteur d'obtenir des informations sur le découpage des canaux, autorisant ainsi une démodulation cohérente du signal;
- le mappeur de cellules MROF collecte les différentes classes de cellules et les place sur une grille temps-fréquence;

- le générateur de signaux MROF convertit chaque ensemble de cellules ayant le même indice temporel en une représentation du signal dans le domaine temporel, contenant plusieurs porteuses. On obtient ainsi le symbole MROF complet du domaine temporel à partir de cette représentation dans le domaine temporel, en insérant un intervalle de garde (répétition cyclique d'une partie du signal);
- le modulateur convertit la représentation numérique du signal MROF en un signal analogique qui sera transmis via un émetteur/une antenne dans l'environnement radioélectrique. Cette opération suppose une transposition de fréquence, une conversion numérique/analogique et un filtrage pour que le signal émis soit conforme aux exigences spectrales définies par l'UIT-R.

3 Codage audio, messages de texte et données en paquets

3.1 Codage audio

Compte tenu des contraintes imposées par les réglementations sur la radiodiffusion dans les canaux dans les bandes d'ondes métriques et des paramètres du schéma de codage et de modulation appliqué, le débit disponible pour le codage audio est compris entre 37 kbit/s et 186 kbit/s.

Afin d'offrir une qualité optimale à un débit donné, le système dispose de différents schémas de codage audio:

- un sous-ensemble AAC (codage audio évolué, advanced audio coding) MPEG-4 comportant des outils de tolérance aux erreurs pour la radiodiffusion générique audio en mode mono ou stéréo;
- la répétition de la bande spectrale (SBR, spectral band replication), technique d'amélioration du codage audio permettant d'obtenir une largeur de bande audio complète à bas débit;
- stéréo paramétrique (PS), technique d'amélioration du codage audio pour la répétition SBR et permettant un codage en mode stéréo à bas débit;
- ambiophonie MPEG (MPS), technique d'amélioration du codage audio permettant un codage multicanal à bas débit.

Le codage AAC est extrêmement optimisé en termes d'efficacité de codage et, selon la théorie de l'information, devrait avoir pour effet que l'entropie des bits est presque égale. Si tel est le cas, le canal de codage doit être optimisé de manière à ce que la quantité totale d'erreurs résiduelles généralement appelée taux d'erreur sur les bits (TEB) soit réduite au minimum. Il est possible de satisfaire ce critère grâce à une méthode de codage du canal appelée protection égale contre les erreurs (EEP, *equal erro protection*), selon laquelle tous les bits d'information sont protégés selon le même niveau de redondance.

Toutefois, les effets audibles des erreurs ne sont pas indépendants de la partie du flux binaire concernée par l'erreur. La méthode dite de protection inégale contre les erreurs (UEP, *unequal error protection*) est la meilleure solution pour remédier à cette sensibilité inégale aux erreurs. Selon cette méthode, une protection plus forte est attribuée aux informations plus sensibles, tandis qu'une protection moindre est affectée à la partie moins sensible du flux binaire.

Pour prendre en charge le codage de canal avec protection UEP, il est nécessaire de disposer de trames d'une longueur constante et d'un profil UEP lui aussi constant à un débit donné. Étant donné que le codage AAC est un schéma de codage à longueur variable, le Système numérique G regroupe plusieurs trames codées afin de former une super trame audio. Le débit de la super trame audio est

constant. Étant donné que le codage du canal repose sur des super trames audio, ces dernières se composent elles-mêmes de deux parties: une partie avec une protection supérieure et une partie avec une protection moindre. Par conséquent, les trames audio codées doivent être réparties entre ces deux parties.

On a modifié le format de transport du flux binaire du codage AAC MPEG afin de répondre aux exigences du Système numérique G (formation de super trames audio). On peut appliquer la protection inégale contre les erreurs (UEP) pour améliorer le comportement du système dans les canaux exposés aux erreurs.

3.2 Application de messages de texte

Les messages de texte peuvent offrir un élément supplémentaire précieux pour un service audio, sans pour autant consommer une part importante de la capacité de données. Le message de texte est et un élément de base du Système numérique G et ne consomme que 320 bits. Cette capacité peut être économisée si le fournisseur de services n'utilise pas cette fonction.

3.3 Transmission en mode paquet

En règle générale, les services de données sont soit des flux d'information, synchrones ou asynchrones, soit de fichiers d'information. Le Système numérique G offre un système de fourniture en mode paquet généralisé qui permet de fournir des flux asynchrones et des fichiers pour différents services dans le même flux de données et permet de partager le débit du flux de données (synchrone) trame par trame entre les différents services. Il est possible d'associer le flux de données à un contrôle supplémentaire des erreurs en ajoutant une correction d'erreurs directe. Les services peuvent être acheminés grâce à une série de paquets uniques ou à une série d'unités de données. Une unité de données est une série de paquets qui sont considérés comme une seule entité pour ce qui est de la gestion des erreurs (si un paquet reçu dans l'unité de données est incorrect, la totalité de l'unité de données est rejetée). Ce mécanisme peut être utilisé pour transférer des fichiers et pour faciliter la synchronisation des flux asynchrones. Le mode de transmission en mode paquet du Système numérique G peut être configuré par le radiodiffuseur pour permettre l'utilisation optimisée de la capacité quelle qu'elle soit: la longueur des paquets et le niveau de protection contre les erreurs directes peuvent être modifiés et indiqués aux récepteurs.

4 Multiplexage et canaux spéciaux

Les récepteurs doivent être faciles à utiliser. Le Système numérique G fournit des données de signalisation qui permettent, d'une part, à l'auditeur d'accéder au service voulu en appuyant simplement sur un bouton et, d'autre part, au récepteur radio de suivre le signal afin de trouver en permanence la meilleure fréquence pour que l'auditeur puisse écouter le programme.

La convivialité du système DRM tient au fait qu'il associe plusieurs techniques. Tout d'abord, la capacité totale de données est répartie en un multiplex de trois sous-canaux:

- le canal d'accès rapide (FAC);
- le canal de description du service (SDC);
- le canal de service principal (MSC).

Le canal FAC contient des informations utiles qui permettent au récepteur de trouver rapidement les services qui intéressent l'auditeur. Par exemple, le récepteur peut balayer les bandes à la recherche de services avec un type de programmes particulier ou dans une langue donnée. Le canal FAC contient en outre des informations relatives au mode de radiodiffusion qui permettent de décoder le signal.

Le canal SDC contient des informations supplémentaires sur le service (ou le multiplex de services, jusqu'à quatre) en vue d'améliorer la convivialité. Il comprend une étiquette pouvant avoir jusqu'à 16 caractères (on utilise la norme de codage UTF-8 pour que tous les caractères, et non uniquement les caractères latins, soient disponibles), indique comment trouver d'autres sources pour les mêmes données et donne des attributs aux services du multiplex. Sa taille varie en fonction du mode.

Il est possible de contrôler les autres fréquences, sans perdre le service, en conservant à l'état quasi-statique les données acheminées dans le canal SDC. Par conséquent, les données des trames SDC doivent être gérées avec soin.

Le canal MSC contient les services audio et/ou de données. La structure générale de la trame est conçue de telle sorte que le récepteur peut passer à une autre fréquence et revenir à la fréquence de départ sans perdre les données du canal MSC. Ainsi, lorsqu'il faut plusieurs fréquences pour fournir le service, le récepteur peut rechercher en permanence la meilleure fréquence et, au besoin, en changer, sans interruption du service audio. La canal SDC fournit la liste des fréquences et peut également donner un plan des fréquences pour permettre la prise en charge de services qui ont besoin de fréquences différentes en fonction de l'heure et du jour.

Grâce à ces fonctionnalités, le récepteur peut présenter les services de façon conviviale à l'auditeur, qui n'est plus obligé de connaître la fréquence ou le plan des fréquences et a la confirmation, par les informations affichées à l'écran, qu'il est raccordé au service qu'il souhaite.

Le canal de service principal (canal MSC) contient les données sur tous les services contenus dans le multiplex. Le multiplex peut contenir de un à quatre services, chacun pouvant être un service audio ou de données. Le débit brut du canal MSC dépend des paramètres de transmission sélectionnés.

Le canal MSC contient un nombre de flux pouvant aller de un à quatre, chacun divisé en trames logiques. Les flux audio comprennent des données audio compressées et peuvent éventuellement acheminer des messages de texte. Les flux de données peuvent être composés de paquets de données, qui acheminent des informations pour un nombre de «sous-flux» pouvant aller jusqu'à quatre. Un service audio comprend un flux audio et, éventuellement, un flux ou un sous-flux de données. Un service de données comprend un flux de données ou un sous-flux de données.

Chaque trame logique comprend deux parties, qui ont chacune leur propre niveau de protection. Les longueurs des deux parties sont attribuées de façon indépendante. On assure une protection inégale contre les erreurs en fixant des niveaux de protection différents pour les deux parties.

Chaque trame logique a une longueur de 100 ms. Si le flux achemine des données audio, la trame logique achemine les données pour la première ou la seconde partie de la super trame audio contenant les données audio pendant une durée de 200 ms. Étant donné qu'en règle générale, il est possible d'attribuer deux niveaux de protection au flux, les trames logiques acheminent exactement la moitié des octets de chaque niveau de protection.

Les trames logiques de tous les flux sont mises en correspondance pour former des trames multiplex de même durée, qui sont transmises au codeur de canal.

Le canal SDC permet d'indiquer la configuration du multiplex. Le multiplex peut être reconfiguré aux limites de la super trame de transmission. Une reconfiguration du multiplex est effectuée en cas de modification des paramètres de canal dans le canal FAC ou de réorganisation des services du multiplex. La nouvelle configuration est signalée à l'avance au canal SDC et le moment auquel elle prend effet est indiqué par l'indice de reconfiguration dans le canal FAC.

5 Codage du canal et modulation

5.1 Introduction

Étant donné qu'ils ont des besoins différents, les trois sous-canaux (canaux MSC, SDC et FAC) appliquent des mécanismes de codage et de mappage différents. La Fig. 39 donne une vue d'ensemble du processus de codage.

Diagramme fonctionnel du codage et de l'entrelacement

Adaptation du multiplex de transport et dispersion d'énergie

Codage et entrelaçage de cellules

Mappage

Entrelaçage de cellules (canal MSC uniquement)

BS.1114-39

Le codage se fonde sur un mécanisme de codage multiniveau. Étant donné que les besoins de protection contre les erreurs varient à l'intérieur d'un service ou d'un service à l'autre dans un même multiplex, différents mécanismes de mappage et différentes combinaisons de rendements de codage doivent être appliqués: on peut utiliser la protection inégale contre les erreurs (UEP) et la protection égale contre les erreurs (EEP). La protection égale contre les erreurs utilise un rendement de codage unique pour protéger toutes les données dans un canal. Elle est obligatoire pour les canaux FAC et SDC. En lieu et place de la protection EEP, on peut utiliser la protection inégale contre les erreurs avec deux rendements de codage pour que les données du canal de service principal puissent être réparties entre la partie bénéficiant d'une protection plus élevée et la partie bénéficiant d'une protection moindre.

5.2 Codage multiniveau

Le processus de codage du canal repose sur un mécanisme de codage multiniveau. Le principe du codage multiniveau consiste à optimiser à la fois le codage et la modulation pour obtenir la meilleure qualité de transmission. Ainsi, les positions des bits à plus fort taux d'erreur dans le mappage MAQ bénéficie d'une protection supérieure. On obtient les différents niveaux de protection grâce à différents codes de composants qui sont obtenus grâce à des codes convolutionnels discontinus, obtenus à partir du même code mère.

Le décodage dans le récepteur peut se faire soit directement, soit moyennant un processus itératif. Par conséquent, la qualité de fonctionnement du décodeur en cas de données erronées peut être améliorée avec le nombre d'itérations et dépend donc de l'implémentation du décodeur.

5.3 Codage du canal MSC

Le canal MSC peut utiliser un mappage MAQ-4 ou MAQ-16: la constellation inférieure offre un fonctionnement plus fiable en cas d'erreur, tandis que la constellation supérieure permet une efficacité spectrale élevée.

Dans chaque cas, on dispose de différents rendements de codage pour assurer le niveau de correction des erreurs le plus approprié pour une transmission donnée. Les différentes combinaisons de constellation et de rendement de codage permettent une grande souplesse sur de nombreux canaux de transmission. On peut utiliser la protection inégale contre les erreurs pour assurer deux niveaux de protection pour le canal MSC.

Il est possible d'avoir deux niveaux de protection à l'intérieur d'une trame multiplexée, ce qui se traduit par l'utilisation de deux rendements de codage globaux. Les rendements de codage globaux et les rendements de codage pour chaque niveau sont définis dans les Tableaux 25 et 26. Le niveau de protection est signalé dans l'entité de données de description du multiplex du canal SDC.

TABLEAU 25

Rendements de codage pour le canal MSC
à modulation MAQ-4

Niveau de protection	R_{all}	R_0
0	0,25	1/4
1	0,33	1/3
2	0,4	2/5
3	0,5	1/2

TABLEAU 26
Combinaisons des rendements de codage pour le canal MSC à modulation MAQ-16

Niveau de protection	R_{all}	R_0	R_1	Rylcm
0	0,33	1/6	1/2	6
1	0,41	1/4	4/7	28
2	0,5	1/3	2/3	3
3	0,62	1/2	3/4	4

Un ou deux rendements de codage globaux sont appliqués à une trame multiplex. Lorsqu'on utilise deux rendements de codage globaux, tous deux doivent appartenir à la même constellation.

5.4 Codage du canal SDC

Le canal SDC utilise un mappage MAQ-4 avec un rendement de codage de 0,5 ou 0,25: on peut choisir entre une capacité plus grande ou une qualité de fonctionnement plus fiable en cas d'erreur.

La constellation et le rendement de codage devraient être choisis en fonction des paramètres du canal MSC pour que le canal SDC soit plus fiable que le canal MSC.

5.5 Codage du canal FAC

Le canal FAC doit utiliser un mappage MAQ-4 avec un rendement de codage de 0,25.

6 Structure de transmission

Les paramètres MROF relatifs à la propagation pour le système DRM en mode E sont donnés dans le Tableau 27.

TABLEAU 27

Paramètres MROF

Période élémentaire T	83 1/3 μs
Durée de la partie (orthogonale) utile $T_u = 27 \cdot T$	2,25 ms
Durée de l'intervalle de garde $T_g = 3 \cdot T$	0,25 ms
Durée du symbole $T_s = T_u + T_g$	2,5 ms
T_g/T_u	1/9
Durée de la trame de transmission T_f	100 ms
Nombre de symboles par trame N_s	40
Largeur du canal B	96 kHz
Espacement entre porteuses $1/T_u$	444 4/9 Hz
Espace de numéro des porteuses	$K_{min} = -106; K_{max} = 106$
Porteuses inutilisées	Aucune

Le signal émis est organisé en super trames de transmission composées de quatre trames de transmission.

Chaque trame de transmission a une durée T_f , et comprend N_s symboles MROF.

Chaque symbole MROF est constitué par un ensemble de K porteuses et émis avec une durée T_s .

L'espacement entre porteuses adjacentes est de $1/T_u$.

La durée du symbole correspond à la somme de deux parties:

- une partie utile d'une durée T_u ;
- un intervalle de garde d'une durée T_g .

L'intervalle de garde est un prolongement cyclique de la partie utile, T_u , et est inséré avant cette partie.

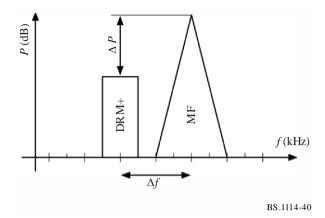
Les symboles MROF d'une trame de transmission sont numérotés de 0 à $N_s - 1$.

Tous les symboles contiennent des données et des informations de référence.

Étant donné que le signal MROF comprend de nombreuses porteuses modulées séparément, on peut considérer que chaque symbole est à son tour divisé en cellules, chaque cellule correspondant au type de modulation sur une porteuse pendant un symbole.

Une trame MROF contient:

- des cellules pilotes;
- des cellules de commande;
- des cellules de données.


Les cellules pilotes peuvent être utilisées pour la synchronisation des trames, la synchronisation en fréquence et en temps, l'estimation du canal et l'identification du mode de fiabilité.

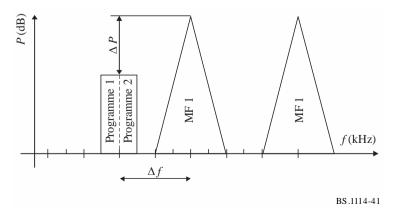
7 Transmission combinée de signaux numériques et analogiques

Il est possible de placer un signal émis par un Système numérique G à proximité d'un signal analogique MF, avec une configuration souple en fonction de l'utilisation existante du spectre. De cette manière, le Système numérique G peut être introduit dans les bandes de fréquences exploitées en FM.

FIGURE 40

Exemple de configuration d'un Système numérique G (système DRM en mode E, à gauche) et d'un signal MF (à droite)

La Fig. 40 montre que l'on peut placer un signal émis par un Système numérique G à proximité, à droite ou à gauche, d'un signal MF existant. Pour garantir les niveaux de protection pour chaque signal et assurer la qualité audio du signal MF, on peut prévoir en conséquence la distance avec la fréquence porteuse (Δf) et la différence de niveau de puissance (ΔP) pour le signal du Système numérique G et le signal MF. On peut choisir Δf selon une grille de canaux de 50 kHz. On recommande de choisir $\Delta f \ge 150$ kHz. La valeur de ΔP peut être modifiée de façon souple; toutefois, on recommande $\Delta P > 10$ dB si le masque spectral hors bande de la Recommandation UIT-R BS.1660 est respecté. Sinon on recommande $\Delta P > 20$ dB pour le minimum $\Delta f = 150$ kHz.


Deux configurations de transmission sont possibles: les signaux analogiques et numériques peuvent être combinés et émis via la même antenne ou les deux signaux peuvent être émis depuis des antennes différentes.

Le signal d'un Système numérique G peut avoir des configurations différentes. Il peut acheminer le même programme que le service MF, un programme différent ou le même programme avec des programmes supplémentaires. Si le même programme est disponible sur le Système numérique G et le système à MF, le drapeau de commutation sur une autre fréquence (AFS, *alternative frequency switching*) devrait être envoyé dans le canal de description du service (canal SDC) du multiplex de transmission pour permettre une prise en charge par des réseaux hétérogènes.

La Fig. 41 montre un exemple de configuration.

FIGURE 41

Exemple de configuration avec un Système numérique G (à gauche) et deux stations MF (à droite)

8 Simulation de la qualité de fonctionnement du système

La propagation radioélectrique dans les bandes d'ondes métriques se caractérise par des phénomènes de diffraction, de diffusion et de réflexion des ondes électromagnétiques sur le trajet entre l'émetteur et le récepteur. En règle générale, les ondes arrivent à des moments différents au récepteur (propagation à trajets multiples), ce qui entraîne des évanouissements sélectifs en fréquence plus ou moins forts (en fonction de la largeur de bande du système). En outre, les mouvements du récepteur ou les objets environnants provoquent une variation dans le temps des caractéristiques du canal (effet Doppler). Contrairement à la propagation ionosphérique, par exemple aux ondes courtes, les variations de l'ionosphère n'ont pas d'incidence sur la modélisation du canal pour les bandes d'ondes métriques.

La méthode consiste à utiliser des modèles stochastiques variables dans le temps avec des statistiques stationnaires et à définir des modèles de conditions (bonnes, moyennes et mauvaises) en extrayant du modèle général les valeurs de paramètres appropriées. L'un de ces modèles avec paramètres adaptables est le modèle à diffusion non corrélée stationnaire au sens large (modèle WSSUS, wide sense stationary uncorrelated scattering). Le recours à l'approche stationnaire avec différents ensembles de paramètres s'explique par le fait que les résultats sur les canaux réels conduisent à des courbes de TEB comprises entre celle correspondant au cas le plus défavorable et celle correspondant au cas le plus favorable résultant de la simulation.

Le modèle WSSUS ne tient pas compte des autres variations de la puissance moyenne à court terme (évanouissement long ou évanouissement log-normal) dues à une modification de l'environnement (par exemple la construction d'une structure) ou à des phénomènes comme la propagation dans la couche E sporadique. Leurs effets, ainsi que l'influence de perturbations comme le bruit artificiel, sont en règle générale intégrés dans le calcul de la probabilité de couverture au moment de la planification du réseau.

On a effectué une simulation de la qualité de fonctionnement du système en prenant pour hypothèse un canal parfait, une synchronisation idéale et l'absence de bruit de phase et d'effets de quantification. La puissance du signal comprend les cellules pilotes et l'intervalle de garde. On part de l'hypothèse que le décodage du canal est fait avec un décodeur Viterbi à un seul étage dans le cas d'une modulation MAQ-4 et avec un décodeur à plusieurs étages avec deux itérations dans le cas d'une modulation MAO-16.

Dans le Tableau 28, les résultats sont donnés pour six canaux, qui correspondent à différents scénarios de réception, pour lesquels le mode de fiabilité associé est le mode E. Le rendement de codage est R=0,33 et la modulation MAQ-4.

TABLEAU 28 Rapport C/N requis pour une transmission afin d'obtenir un TEB = 1×10^{-4} à la sortie du décodeur pour le canal MSC (Mode E)

Modèle de canal	C/N
Canal 7 (BBGA)	1,3 dB
Canal 8 (urbain) à 60 km/h	7,3 dB
Canal 9 (rural)	5,6 dB
Canal 10 (relief avec obstacles)	5,4 dB
Canal 11 (relief vallonné)	5,5 dB
Canal 12 (SFN)	5,4 dB

Dans le Tableau 29, les résultats sont donnés pour six canaux, qui correspondent à différents scénarios de réception, pour lesquels le mode de fiabilité associé est le mode E. Le rendement de codage est R=0,5 et la modulation MAQ-16.

TABLEAU 29 Rapport C/N requis pour une transmission pour obtenir un TEB = 1×10^{-4} à la sortie du décodeur pour le canal MSC (Mode E)

Modèle de canal	C/N
Canal 7 (BBGA)	7,9 dB
Canal 8 (urbain) at 60 km/h	15,4 dB
Canal 9 (rural)	13,1 dB
Canal 10 (relief avec obstacle)	12,6 dB
Canal 11 (relief vallonné)	12,8 dB
Canal 12 (SFN)	12,3 dB

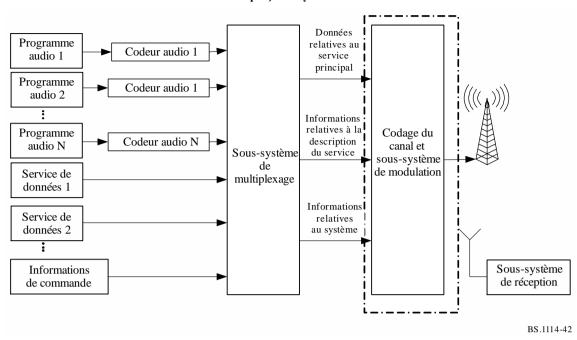
Annexe 6

Système numérique H

1 Introduction

Le Système numérique H, également connu sous l'appellation Convergent Digital Radio (CDR), est conçu pour la radiodiffusion audionumérique multiservices de haute qualité à destination de récepteurs placés à bord de véhicules et de récepteurs portatifs ou fixes dans la bande MF (88 MHz à 108 MHz). Compte tenu des différents scénarios d'application, il existe différents modes de transmission. Un mode de transmission est défini par deux types de paramètres de transmission:

- paramètres liés à la largeur de bande du signal;
- paramètres liés à l'efficacité de la transmission.


Le premier type de paramètre définit la largeur de bande totale d'une bande de fréquences pour une transmission. Les paramètres liés à l'efficacité permettent d'arriver à un compromis entre la capacité (débit binaire utile) et la tolérance au bruit, aux trajets multiples et à l'effet Doppler.

Le Système numérique H correspond à la norme GY/T 268.1-2013 (2013.08) «Radiodiffusion audionumérique dans la bande MF – Partie 1: Structure de trame, codage de canal et modulation pour le canal de radiodiffusion numérique».

2 Structure du système

La Fig. 42 décrit la structure générale du système et le flux de données du Système numérique H.

FIGURE 42 **Aperçu du système**

Le Système numérique H assure simultanément la fourniture de plusieurs flux audio numériques et flux de données. Différents services audio à compression et services de données et diverses informations de commande sont regroupés et mis en trame par le sous-système de multiplexage. La sortie du sous-système de multiplexage contient les données relatives au service principal (MSD), les informations relatives à la description du service (SDI) et les informations relatives au système (SI). Le Canal de service principal (MSC), le canal d'informations relatives à la description du service (SDIC) et le canal d'informations relatives au système (SIC) acheminent respectivement les données MSD, les informations SDI et les informations SI. Le signal radioélectrique sera produit lorsque la sortie des sous-systèmes de multiplexage est traitée par le sous-système de codage et de modulation du canal. Pour chaque canal, la correction d'erreur directe, le mappage de constellation et le système de modulation seront définis de manière indépendante. Le sous-système de réception effectue la démodulation du signal émis.

Le Système numérique H prévoit de manière souple plusieurs modes d'occupation spectrale pour différents scénarios; la largeur de bande du signal numérique peut-être de 100 kHz ou 200 kHz.

Au moment de l'arrêt de l'analogique, le signal numérique pourra être diffusé simultanément avec un signal MF analogique. En pareil cas, le spectre du signal numérique sera subdivisé en deux parties et l'intervalle spectral, dans lequel les signaux de radiodiffusion analogique MF stéréo MF ou MF mono pourront être insérés, sera de 300 kHz ou 200 kHz. Une fois l'arrêt de l'analogique effectué, le signal numérique pourra être continu; la largeur de bande du signal pourra être de 100 kHz ou 200 kHz.

Comme d'autres systèmes de radiodiffusion sonore numérique, le Système numérique H comporte plusieurs systèmes d'attribution des sous porteuses. Hormis les sous-porteuses attribuées pour la transmission de données dans le bloc MROF, certaines sous-porteuses sont attribuées de manière à transmettre les informations relatives au système des paramètres de transmission, tandis que d'autres sont attribuées pour émettre des pilotes utilisés pour l'estimation de canal.

3 Caractéristiques du Système numérique H

3.1 Fiabilité

Le Système numérique H utilise la modulation MROF, l'entrelacement fréquentiel et temporel bidimensionnel et un code LDPC comme code avec correction d'erreur directe pour améliorer la qualité de fonctionnement en présence d'évanouissements dus à la propagation par trajets multiples. La modulation MROF est une méthode de modulation multiporteuses qui est insensible aux trajets multiples et qui, en particulier, ajoute un intervalle de garde dans le domaine temporel. Les données MSD sont protégées par le code LDPC. En conséquence, on obtient au niveau du récepteur un signal de haute qualité, même en présence d'une importante propagation par trajets multiples. Les informations SDI et SI sont protégées par un code convolutionnel.

3.2 Modes d'occupation spectrale souples

Le Système numérique H définit six modes d'occupation spectrale. Chaque mode définit la largeur de bande du signal numérique, la position de la sous-bande active et celle de la sous-bande virtuelle. Tous les modes d'occupation spectrale sont définis sur la base de la sous-bande (la largeur de bande de la sous-bande est de 100 kHz). Chaque sous-bande est subdivisée en une partie supérieure et une partie inférieure ayant la même largeur de bande. Toutes les sous-porteuses peuvent être des sous-porteuses actives ou des sous-porteuses virtuelles dans une même sous-bande et toutes les sous-porteuses sont des sous-porteuses virtuelles dans la partie supérieure de la sous-bande ou la partie inférieure de la sous-bande de certaines sous-bandes actives dans d'autres sous-bandes pour un mode spectral différent.

Les six différents modes d'occupation spectrale sont signalés respectivement par les lettres A, B, C, D, E et F, comme indiqué dans le Tableau 30. Le spectre A comprend une sous-bande dans laquelle les sous-porteuses sont toutes des sous-porteuses actives. La largeur de bande du signal numérique du spectre A est de 100 kHz. Le spectre B comprend deux sous-bandes et la largeur de bande totale du signal numérique est de 200 kHz. Le spectre C comprend quatre sous-bandes dans lesquelles les sous-porteuses de la partie inférieure de la première sous-bande et les sous-porteuses de la partie supérieure de la quatrième sous-bande sont toutes des sous-porteuses virtuelles, de sorte que la largeur de bande du signal numérique du spectre C est de 100 kHz. Le spectre D comprend cinq sous-bandes dans lesquelles les sous-porteuses des première et cinquième sous-bandes sont toutes des sous-porteuses actives, alors que les sous-porteuses de la deuxième à la quatrième sous-bande sont toutes des sous-porteuses virtuelles, de sorte que la largeur de bande du signal numérique du spectre D est de 200 kHz.

TABLEAU 30

Modes d'occupation spectrale

Indice du mode d'occupation	Position										
spectrale	-5	-4	-3	-2	-1	1	2	3	4	5	$N_{\rm I}$
A	DB1(L)	DB1(U)	DB2(L)	DB2(U)	DB3(L)	DB3(U)	DB4(L)	DB4(U)	DB5(L)	DB5(U)	1
В	0	DA1(L)	DA1(U)	DA2(L)	DA2(U)	DA3(L)	DA3(U)	DA4(L)	DA4(U)	0	2
C	0	DA1(L)	DA1(U)	DA2(L)	DA2(U)	DA3(L)	DA3(U)	DA4(L)	DA4(U)	0	1
D	DB1(L)	DB1(U)	DB2(L)	DB2(U)	DB3(L)	DB3(U)	DB4(L)	DB4(U)	DB5(L)	DB5(U)	2
E	DB1(L)	DB1(U)	DB2(L)	DB2(U)	DB3(L)	DB3(U)	DB4(L)	DB4(U)	DB5(L)	DB5(U)	1
F	0	DA1(L)	DA1(U)	DA2(L)	DA2(U)	DA3(L)	DA3(U)	DA4(L)	DA4(U)	0	2

Note – L indique la partie inférieure de la sous-bande et U la partie supérieure de la sous-bande.

Les modes d'occupation spectrale de C/D/E/F sont des modes de diffusion simultanée avec le signal MF existant (MF stéréo ou mono), voir la Fig. 43, qui permettent d'assurer une évolution harmonieuse de la radiodiffusion analogique actuelle vers la radiodiffusion entièrement numérique pour les radiodiffuseurs MF. Les radiodiffuseurs peuvent choisir l'un des modes d'occupation spectrale C/D/E/F, selon les conditions qui leur sont propres et de celles des stations adjacentes. Durant cette période, les récepteurs existants en mode analogique seulement pourront continuer de fonctionner pour le signal MF hôte, tandis que les nouveaux récepteurs numériques pourront décoder à la fois les services numériques et le signal MF analogique hôte. À terme, lorsque le marché pourra recevoir les signaux numériques, les radiodiffuseurs pourront passer au mode spectral A ou B.

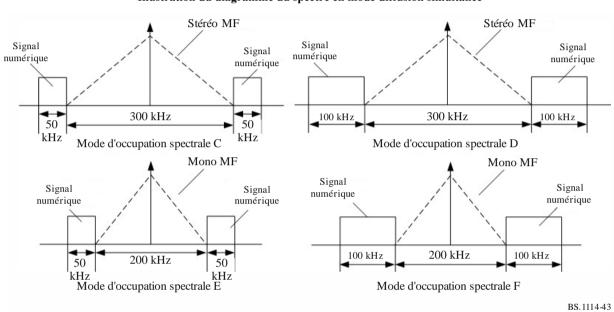


FIGURE 43 Illustration du diagramme du spectre en mode diffusion simultanée

3.3 Modes de transmission

Le Système numérique H définit trois modes de transmission. Les paramètres de système de chaque mode de transmission sont indiqués dans le Tableau 31.

Dans ce Tableau, l'unité de temps est définie par T=1/816000s, et toutes les valeurs des paramètres liés au temps peuvent être exprimées en multiples de T ou par un nombre approximatif de millisecondes.

	TABLEAU 31							
Paramètres MROF pour différents modes de transmission								
		Mode de	Mode de					

Paramètre	Symbole	Mode de transmission 1	Mode de transmission 2	Mode de transmission 3
Longueur du corps de données MROF (ms)	T_u	2,51 (2048T)	1,255 (1024T)	2,51 (2048T)
Longueur du préfixe cyclique du corps de données (ms)	T_{cp}	0,2941 (240T)	0,1716 (140T)	0,0686 (56T)
Durée de symbole MROF (ms)	$T_s = T_{cp} + T_u$	2,804 (2288T)	1,426 (1164T)	2,5786 (2104T)

TABLEAU 31 (fin)

Paramètre	Symbole	Mode de transmission 1	Mode de transmission 2	Mode de transmission 3
Intervalle entre les sous-porteuses de symbole MROF (Hz)	Δf	398,4375	796,8750	398,4375
Longueur du préfixe cyclique de la balise (ms)	$T_{Bcp} = T_{sf} - T_s x S_N - T_u$	0,4706 (384T)	0,4069 (332T)	0,2059 (168T)
Longueur de la balise (ms)	$T_B = T_{Bcp} + T_u$	2,9804 (2432T)	1,6618 (1356T)	2,7157 (2216T)
Intervalle entre les sous-porteuses du signal de synchronisation (Hz)	$(\Delta f)_b$	796,875	1593,75	796,875
Numéro du symbole MROF de chaque sous-trame	$\mathbf{S}_{ ext{N}}$	56	111	61
Longueur de la sous-trame (ms)	T_{sf}	160 (130560T)	160 (130560T)	160 (130560T)
Nombre de sous-porteuses actives ¹	$N_{ u}$	242	122	242

NOTE – Lorsque les sous-porteuses de la partie supérieure de la sous-bande et de la partie inférieure de la sous-bande d'une sous-bande active ne sont pas entièrement virtuelles, N_{ν} est le nombre de sous-porteuses actives dans la sous-bande; lorsque les sous-porteuses de la partie supérieure de la sous-bande (ou de la partie inférieure de la sous-bande) d'une sous-bande active sont toutes virtuelles, le nombre de sous-porteuses actives dans la sous-bande est N_{ν} /2.

Pour chaque mode de transmission, la durée de la sous-trame logique est de 160 ms. Une trame logique comprend quatre sous-trames logiques et la durée d'une trame logique est en conséquence de 640 ms.

3.4 Différents rendements du code FEC et mécanismes de mappage

Le Système numérique H peut fournir simultanément plusieurs services audio et services de données, par exemple du texte, des images fixes et des informations de trafic. Les radiodiffuseurs peuvent choisir différents rendements du code avec correction d'erreur directe et le mécanisme de mappage en fonction de leurs différents besoins.

Quatre options sont possibles pour le rendement de codage du canal MSC: 1/4, 1/3, 1/2 et 3/4, et il existe trois niveaux de modulation: MDP-4, MAQ-16 et MAQ-64.

4 Codage de la source

Le Système numérique H utilise l'algorithme de codage audio à la source DRA+ ⁽¹⁾. Le codec audio prend en charge la fréquence d'échantillonnage comprise entre 16 kHz et 96 kHz, et la gamme de débits binaires en sortie peut aller de 16 à 384 kbit/s.

De fait, comme tous les autres systèmes radioélectriques numériques, le Système numérique H peut prendre en charge d'autres codecs audio, tels que les codecs HE-AAC et AVS audio⁽²⁾, tant que le débit binaire du flux audio ne dépasse pas la capacité nette du canal MSC, qui est déterminée par différents ensembles de paramètres, dont la largeur de bande du signal numérique, le mode de transmission, le niveau de modulation et le rendement du code FEC.

On trouvera dans le Tableau 32 la capacité nette du canal MSC dans une largeur de bande du signal de 100 kHz. Lorsque la largeur de bande du signal numérique est de 200 kHz, les capacités nettes seront le double des valeurs indiquées dans le Tableau 32.

TABLEAU 32 Capacité nette dans une largeur de bande de 100 kHz

Configuration du canal		Capacité nett	te (kbit/s)
Niveau de modulation	Rendement du code LDPC	Modes de transmission 1 et 2	Mode de transmission 3
MDP-4	1/4	36	39,6
MDP-4	1/3	48	52,8
MDP-4	1/2	72	79,2
MDP-4	3/4	108	118,8
MAQ-16	1/4	72	79,2
MAQ-16	1/3	96	105,6
MAQ-16	1/2	144	158,4
MAQ-16	3/4	216	237,6
MAQ-16	1/4	108	118,8
MAQ-16	1/3	144	158,4
MAQ-16	1/2	216	237,6
MAQ-16	3/4	324	356,4

NOTE 1 – La norme DRA+ est une norme de codage audio (GD/J 058-2014) publiée par SAPPRFT China, qui repose sur une technique de codage audio définie dans la norme chinoise GB/T 22726-2008; elle a été enrichie par la reconstruction de bande spectrale (SBR) et la stéréo paramétrique (PS) pour tenir compte des applications à faible débit binaire des services radioélectriques numériques.

NOTE 2 – La norme AVS audio est un système de codage audio en cours de normalisation en Chine.

5 Trame de multiplexage et trame logique

Le sous-système de multiplexage encapsule divers services audio et services de données, conformément au protocole de multiplexage, et génère la trame de multiplexage composée de données MSD et d'informations SDI et SI. La durée d'une trame de multiplexage est de 640 ms.

Le Système numérique H définit la trame logique qui achemine la date de chaque trame de multiplexage. Une trame logique peut être subdivisée en quatre sous-trames logiques, et constitue l'unité de base de l'attribution des sous trames (il s'agit en quelque sorte d'un entrelacement temporel). Voir la Fig. 44. On trouvera plus de précisions au § 6.8.

Trame logique 1 Trame logique 2 Trame logique 3 Trame logique 4 Trame Trame Trame Trame logique 1 logique 2 logique 3 logique 4 Attribution des sous-trames Sous-trame Sous-trame Sous-trame Sous-trame logique 1 logique 2 logique 3 logique 4

Sous-trame 2

Sous-trame 3

Sous-trame 4

BS 1114-44

FIGURE 44

Trame logique et attribution des sous trames

6 Codage de canal et modulation

640 ms

Sous-trame 1

La Fig. 45 représente le schéma fonctionnel de codage de canal et de modulation du Système numérique H. La figure décrit le flux général de données MSD et d'informations SDI et SI entre le codage à gauche et vers l'émetteur à droite. Les données MSD contiennent tous les services audio et de données à transmettre. Le débit brut des données MSD dépend des différentes largeurs de bande du canal, des modes de transmission, des débits de codage et des niveaux de modulation. Les informations SDI contiennent des informations supplémentaires relatives à la description des données MSD, telles que les informations d'identification, pour améliorer la convivialité. Ces informations d'identification du service peuvent être utilisées pour la sélection du programme à l'extrémité de réception. Les informations SI fournissent des informations importantes sur le niveau de modulation, le débit de codage CED du canal MSC, le mode d'occupation spectrale et d'autres paramètres nécessaires pour la démodulation des données MSD ou des informations SDI.

2 560 ms

Dispersion Codage Entrelacement Mappage de LDPC constellation le sous-porteuse: d'énergie RFConversion bande de base -Dispersion Codage par Mappage de Entrelacement Modulation OFMD constellation d'énergie convolution des bits RF Trame logique Codage par Mappage de Attribution de Entrelacement convolution Pilotes répartis Balise

FIGURE 45 Schéma fonctionnel de codage de canal et de modulation

6.1 Dispersion d'énergie

La dispersion d'énergie a pour but d'éviter la transmission de structures de signaux qui pourraient aboutir à une uniformité non désirée du signal transmis. La dispersion d'énergie doit être embrouillée sur les données MSD et les informations SDI respectivement par une séquence binaire pseudo-aléatoire (PRBS).

BS 1114-45

Le polynôme du générateur de séquence PRBS est $x^{12}+x^{11}+x^8+x^6+1$.

6.2 Codage de canal

Le codage de canal ajoute des informations redondantes permettant la correction d'erreur directe. Le code LDPC est utilisé pour les données MSD et le code convolutionnel est utilisé pour les informations SDI et SI.

6.2.1 Codage convolutionnel

Les informations SDI et SI sont protégées par un codage convolutionnel de 1/4 qui comporte 64 états et le polynôme générateur (représentation octale) correspondant est: 133, 171, 145, et 133, l'état initial étant une séquence de zéros.

6.2.2 Codage LDPC

Le Système numérique H utilise un code LDPC quasi-cyclique pour protéger les données du canal MSC. La longueur du code est de 9 216 bits, et il y a quatre rendements de codes: 1/4, 1/3, 1/2, et 3/4. Les différents paramètres de la CED sont indiqués dans le Tableau 33.

TABLEAU 33

Paramètres de codage LDPC

Rendement de code LDPC	Longueur des bits d'information k (bits)	Longueur de mot de code: N (bits)
3/4	6 912	9 216
1/2	4 608	9 216
1/3	3 072	9 216
1/4	2 304	9 216

6.3 Entrelacement des bits

L'entrelacement des bits en bloc est appliqué après le codage par convolution pour les informations SDI et SI. La longueur de l'entrelacement de blocs est représentée dans le Tableau 34 si la largeur de bande du signal numérique est de 100 kHz. Lorsque la largeur de bande du signal numérique est de 200 kHz, la longueur de bloc d'entrelacement sera doublée.

TABLEAU 34

Longueur de bloc d'entrelacement

Modulation	Mode de transmission 1	Mode de transmission 2	Mode de transmission 3
MDP-4	1704×2=3408	1576×2=3152	1360×2=2720
MAQ-16	1704×4=6816	1576×4=6304	1360×4=5440
MAQ-64	1704×6=10224	1576×6=9456	1360×6=8160

La longueur de bloc d'entrelacement est 216 pour les informations SI, quelle que soit la largeur de bande du signal numérique.

6.4 Mappage de constellation

Les informations SI utilisent le mappage MDP-4, tandis que les données MSD et les informations SDI prennent en charge le mappage MDP-4, MAQ-16 ou MAQ-64. La séquence de bits série à la sortie du codeur LDPC ou des entrelaceurs de bits est mappée dans les différents points de la constellation dans le domaine complexe, en fonction des différentes configurations du niveau de modulation.

La normalisation de la puissance est appliquée à différents mécanismes de mappage de constellation.

6.5 Sous-porteuse active du symbole MROF

Chaque symbole MROF Each MROF comprend des pilotes continus, des pilotes répartis et des sousporteuses de données.

6.5.1 Pilote continu

Cent-huit symboles SI sont placés sur les pilotes continus et les symboles SI sont les mêmes dans la partie supérieure de la sous-bande et dans la partie inférieure de la sous-bande. Le Tableau 35 indique la position des pilotes continus placés sur des colonnes dans des symboles MROF Le Tableau 36 indique la position des pilotes continus placés sur le numéro du symbole MROF dans une sous-trame logique.

Par exemple, en mode de transmission 1, les 108 symboles SI sont placés à la position indiquée dans le Tableau 35 entre le 1er et le 27ème symbole MROF d'une sous-trame logique. Les mêmes 108 symboles SI sont également placés à la position indiquée dans le Tableau 36 entre le 28ème et le 54ème symbole MROF dans une sous trame logique ce qui signifie que les 108 symboles SI sont répétés deux fois pour des raisons de fiabilité.

TABLEAU 35

Position des pilotes continus dans chaque symbole MROF

Mode de transmission	Position du symbole SI dans la partie inférieure de la sous-bande	Position du symbole SI dans la partie supérieure de la sous-bande
Modes de transmission 1 et 3	11, 55, 75, 103	144, 164, 192, 228
Mode de transmission 2	15, 43	84, 104

TABLEAU 36 Numéros de symboles MROF acheminant des symboles SI dans une sous-trame logique

	Mode de transmission 1	Mode de transmission 2	Mode de transmission 3
Numéro de	1~27	1~54	1~27
symbole MROF	28~54	55~108	28~54

6.5.2 Pilote réparti

On peut utiliser les pilotes répartis pour la mise en trame, la synchronisation en fréquence et en temps et l'estimation des canaux.

Deux séquences pseudo-aléatoires forment des symboles de pilotes répartis après le mappage MDP-4. Les symboles de pilotes répartis sont placés dans les pilotes répartis.

6.5.3 Sous-porteuses de données

Les sous-porteuses sont des sous-porteuses de données, exception faite de la sous-porteuse virtuelle, du pilote continu et du pilote réparti dans un symbole MROF. Les symboles SDS et les symboles MSD sont placés dans une sous-porteuse de données.

Après l'embrouillage, le codage, l'entrelacement et le mappage de constellation, les symboles SDI d'une même sous-trame logique sont placés à la position indiquée dans le Tableau 37. Toutes les sous-porteuses de données entre le 1er et le N_{SDISn}ème symbole MROF acheminent des symboles SDI dans une même sous-trame logique Dans le N_{SDISn+1}ème symbole MROF, la 1ère N_{SDISactive}ème sous-porteuse de données achemine également des symboles SDI.

TABLEAU 37

Position des sous-porteuses de données acheminant des symboles SDI dans une sous-trame logique

Mode de transmission 1		Mode de transmission 2		Mode de transmission 3	
N _{SDISn}	N _{SDISactive}	N _{SDISn}	N _{SDISactive}	$N_{ m SDISn}$	N _{SDISactive}
2	0	3	72	1	128

Les autres sous-porteuses de données acheminent les symboles MSD. Le Tableau 38 illustre le nombre de symboles MSD et SDI dans une trame logique.

TABLEAU 38 Nombre de symboles MSD et SDI dans une trame logique

Mode de transmission 1		Mode de transmission 2		Mode de transmission 3	
MSD	SDI	MSD	SDI	MSD	SDI
46080	1704	46080	1576	50688	1360

6.6 Entrelacement des sous-porteuses pour les symboles MSD

L'entrelacement des sous-porteuses est appliqué pour les sous-porteuses de données contenant des symboles MSD. Cette procédure s'apparente à un entrelacement fréquentiel et temporel, en fonction de l'algorithme d'entrelacement prescrit. Le processus d'entrelacement est mené à bien entre quatre sous-trames logiques et différentes sous-bandes.

L'entrelacement est traité par bloc d'entrelacement. La longueur du bloc d'entrelacement est de 46 080 pour les modes de transmission 1 et 2 et de 50 688 pour le mode de transmission 3.

6.7 Génération de signaux MROF

La génération de signaux MROF reçoit des symboles SDS, des symboles SI et des symboles MSD avec entrelacement fréquentiel/temporel complexes dans le domaine fréquentiel, qui sont acheminés par une sous-porteuse active MROF, et produit en sortie un signal dans le domaine temporel représentant le signal radioélectrique numérique.

6.8 Trame logique, attribution de sous-trame et trame physique

Pour faciliter la synchronisation du récepteur, la sous- trame logique a une structure de trame régulière Une sous-trame logique comprend une balise et S_N symboles MROF avec préfixe cyclique, et chacune des quatre sous-trames logiques constitue une trame logique. Pour plus de précisions, voir respectivement les Fig. 44 et 46.

Sous-trame

Sous-trame

Sous-trame

Sous-trame

Symbole MROF 1 MROF 2

Symbole MROF S_N

160 ms

La balise est également un symbole MROF. Une séquence pseudo aléatoire complexe est générée et placée sur les sous-porteuses de la balise. Le polynôme générateur est le suivant:

$$P_b(n) = \exp\left[-j(-1)^n 2\pi m \frac{n(n+1)/2}{N_{zc}}\right], n = 0, 1, \dots, L-1$$

lorsque les modes de transmission 1 et 3 sont utilisés, $N_{zc} = 967$, m = 48; lorsque le mode de transmission 2 est utilisé, $N_{zc} = 487$, m = 12. La valeur de L est indiquée dans le Tableau 39.

TABLEAU 39

Valeur de L

Largeur de bande du signal numérique	Modes de transmission 1 et 3	Mode de transmission 2
100 kHz	120	60
200 kHz	240	120

La durée de la trame logique et de la trame physique est toujours de 640 ms. La trame logique achemine toutes les données provenant des trames de multiplexage. La trame logique est transformée en trame physique après l'attribution de sous-trames.

Le Système numérique H utilise trois types de modes d'attribution de sous-trames. L'attribution de sous-trames est traitée avec une trame logique, ou avec deux trames logiques consécutives, ou encore avec quatre trames logiques consécutives. L'attribution de sous-trames est une forme d'entrelacement temporel. Le mode d'attribution de sous-trames 3 est celui pour lequel le temps d'entrelacement est le plus long, à savoir 2 560 ms.

La trame logique est transformée en trame physique après l'attribution de sous-trames. Chaque trame physique achemine toutes les données d'une trame logique.

7 Gabarit spectral

Afin de réduire la puissance hors bande du signal radioélectrique, on peut utiliser un filtre pour filtrer le signal radioélectrique. On trouvera respectivement sur les Fig. 47 à 52 les gabarits spectraux d'une mise en œuvre possible de filtres La largeur de bande de résolution de la mesure de puissance du signal est de 1 kHz et 0 dB indique la puissance totale dans la bande. Chaque valeur seuil de la figure est indiquée dans les Tableaux 40 à 45.

FIGURE 47

Gabarit spectral du mode d'occupation spectrale A

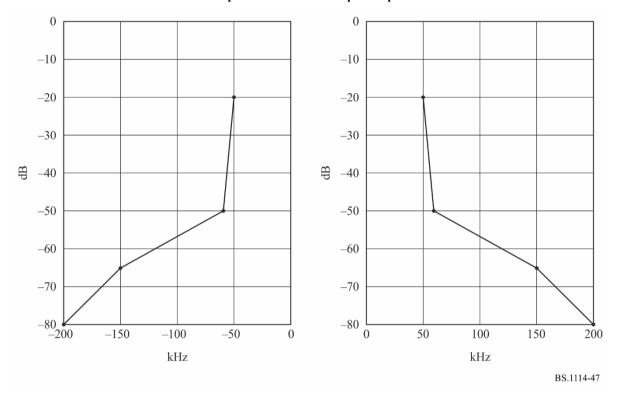


FIGURE 48

Gabarit spectral du mode d'occupation spectrale B

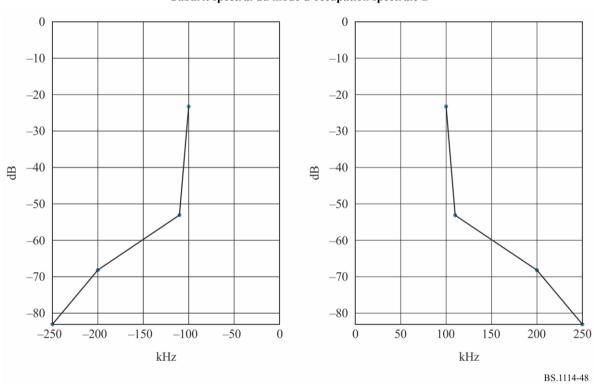


FIGURE 49

Gabarit spectral du mode d'occupation spectrale C

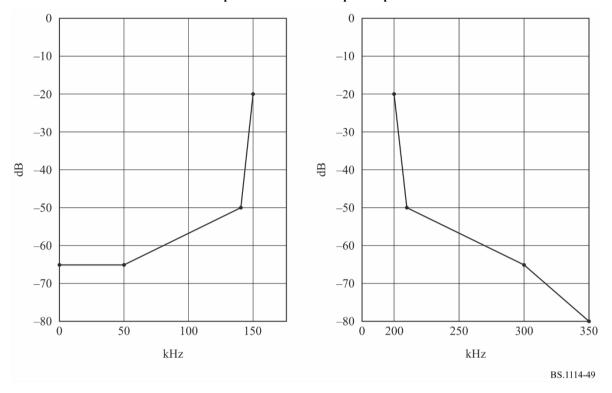


FIGURE 50

Gabarit spectral du mode d'occupation spectrale D

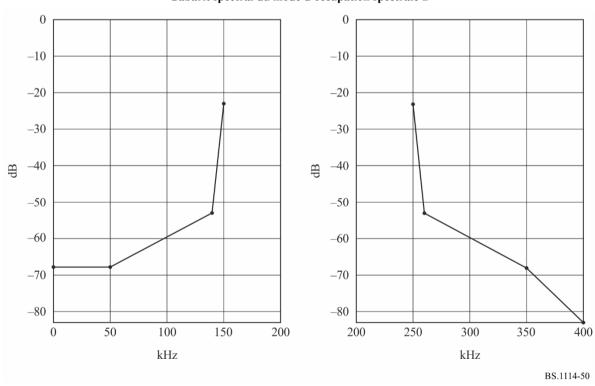


FIGURE 51

Gabarit spectral du mode d'occupation spectrale E

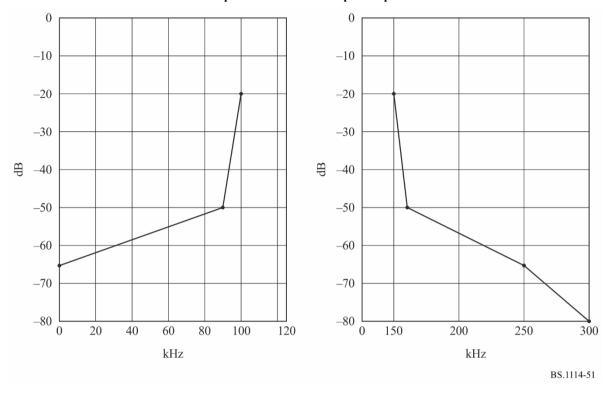


FIGURE 52

Gabarit spectral du mode d'occupation spectrale F

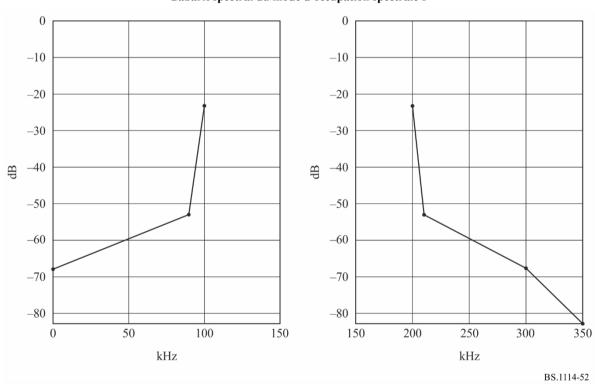


TABLEAU 40

Valeurs seuils du gabarit spectral lorsque la puissance dans la bande est définie comme étant égale à 0 dB (mode d'occupation spectrale A)

Écart de fréquence par rapport à la fréquence centrale (kHz)	Niveau relatif (dB)
-200	-80
-150	-65
-60	-50
-50	-20
50	-20
60	-50
150	-65
200	-80

TABLEAU 41

Valeurs seuils du gabarit spectral lorsque la puissance dans la bande est définie comme étant égale à 0 dB (mode d'occupation spectrale B)

Écart de fréquence par rapport à la fréquence centrale (kHz)	Niveau relatif (dB)
-250	-83
-200	-68
-110	-53
-100	-23
100	-23
110	-53
200	-68
250	-83

TABLEAU 42

Valeurs seuils du gabarit spectral lorsque la puissance dans la bande est définie comme étant égale à 0 dB (mode d'occupation spectrale C)

Écart de fréquence par rapport à la fréquence centrale (kHz)	Niveau relatif (dB)
0	-65
50	-65
140	-50
150	-20
200	-20
210	-50
300	-65
350	-80

TABLEAU 43

Valeurs seuils du gabarit spectral lorsque la puissance dans la bande est définie comme étant égale à 0 dB (mode d'occupation spectrale D)

Écart de fréquence par rapport à la fréquence centrale (kHz)	Niveau relatif (dB)
0	-68
50	-68
140	-53
150	-23
250	-23
260	-53
350	-68
400	-83

TABLEAU 44

Valeurs seuils du gabarit spectral lorsque la puissance dans la bande est définie comme étant égale à 0 dB (mode d'occupation spectrale E)

Écart de fréquence par rapport à la fréquence centrale (kHz)	Niveau relatif (dB)
0	-65
90	-50
100	-20
150	-20
160	-50
250	-65
300	-80

TABLEAU 45

Valeurs seuils du gabarit spectral lorsque la puissance dans la bande est définie comme étant égale à 0 dB (mode d'occupation spectrale F)

Écart de fréquence par rapport à la fréquence centrale (kHz)	Niveau relatif (dB)
0	-68
90	-53
100	-23
200	-23
210	-53
300	-68
350	-83

8 Résumé des résultats de tests en laboratoire

Des essais en laboratoire ont été effectués avec le Système numérique H pour diverses conditions de transmission, qui sont brièvement présentées ci-dessous. Les tests en laboratoire ont été effectués en fonction du bruit aléatoire et des évanouissements par trajets multiples. Les profils d'évanouissement utilisés sont désignés urbain à 60 km/h, et rural à 150 km/h et ont été appliqués de manière indépendante au signal utile. La qualité de fonctionnement a été évaluée par le rapport requis C/N pour une transmission en vue d'obtenir un TEB = 1×10^{-4} à la sortie du décodeur pour le canal MSC.

8.1 TEB en fonction du rapport *C/N* sur un canal gaussien

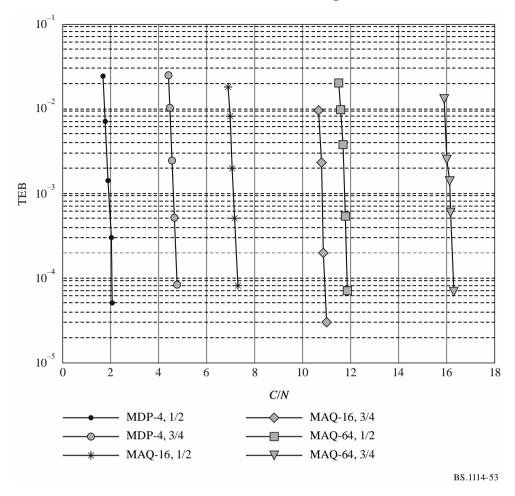

On a ajouté du bruit blanc gaussien au signal pour obtenir le rapport *C/N* voulu à l'entrée du récepteur. La Fig. 53 indique les résultats des mesures.

TABLEAU 46
Paramètres de transmission pour des essais en laboratoire sur un canal gaussien

Mode d'occupation spectrale	B (largeur de bande: 200 kHz)
Mode de transmission	1
Modulation des porteuses	MDP-4, MAQ-16 et MAQ-64
Rendements de codage du code interne	1/2, 3/4

FIGURE 53

TEB en fonction de *C/N* sur un canal gaussien

8.2 TEB en fonction du rapport C/N dans un canal à trajets multiples

Les résultats des mesures indiqués sur les Fig. 54 et 55 sont donnés pour des environnements urbains à 60 km/h et rural à 150 km/h, respectivement, qui représentent différents scénarios de réception, et le mode de fiabilité associé est indiqué dans le Tableau 47.

TABLEAU 47

Paramètres de transmission pour des essais en laboratoire dans un canal à trajets multiples

Mode d'occupation spectrale	A	С
Mode de transmission	1,2	1,2
Modulation des porteuses	MDP-4	MAQ-16
Rendements de codage du code interne	3/4	1/2
Mode d'attribution de sous-trames		1

FIGURE 54

TEB en fonction du rapport *C/N* dans un canal à trajets multiples

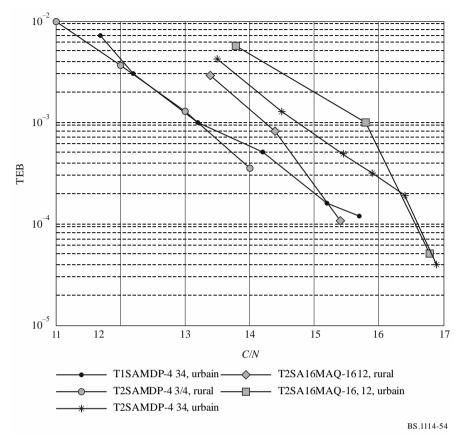


FIGURE 55
TEB en fonction du rapport *C/N* dans un canal à trajets multiples

Annexe 7

Système numérique I

1 Introduction

Le Système numérique I, également connu sous l'appellation système RAVIS (système d'informations audiovisuelles en temps réel), a été développé pour offrir une radiodiffusion sonore multiservice et multimédia de haute qualité à destination de récepteurs mobiles, portatifs et fixes dans les bandes de fréquences en ondes métriques I et II (47-68/74 MHz et 87,5-108 MHz). Il existe différents modes de transmission pour les différents scénarios d'application. Le mode de transmission est défini par deux catégories de paramètres:

- les paramètres liés à la largeur de bande du signal;
- les paramètres liés à l'efficacité de l'utilisation de la largeur de bande.

La première catégorie définit la largeur de bande utilisée pour les transmissions, et la deuxième catégorie indique le compromis entre le débit binaire des données et la stabilité en présence de plusieurs brouillages (bruit gaussien, propagation par trajets multiples, étalement du spectre Doppler).

Le Système numérique I est adopté dans la norme nationale de la Fédération de Russie GOST R 54309-2011 «Système d'informations audiovisuelles en temps réel (RAVIS). Processus de formation de la structure de trame, du codage et de la modulation des canaux pour le système de radiodiffusion numérique de Terre à bande étroite dans la bande des ondes métriques. Spécifications techniques».

2 Modèle architectural et de la pile de protocoles

Les exigences du service de base du système RAVIS sont les suivantes:

- efficacité spectrale élevée du système;
- réception mobile fiable de services vidéo, audio et d'autres services à des vitesses allant jusqu'à 200 km/h;
- délai court de début de réception ou de reprise de réception après une interruption dans des conditions difficiles (par exemple, après la sortie d'un tunnel où la réception du signal a été interrompue);
- fourniture de services de radiodiffusion vidéo de grande qualité avec des trames dont la taille peut atteindre 720 × 576, une fréquence de trame pouvant aller jusqu'à 25 trames/s, et de multiples canaux son d'accompagnement;
- fourniture de services de radiodiffusion audio de grande qualité, y compris le son stéréo avec qualité CD et le son multicanal 5.1;
- fourniture d'autres services de données liés ou non à un programme vidéo ou audio, par exemple:
 - messages de texte;
 - images fixes;
 - diaporama;
 - informations sur le trafic, informations météorologiques, actualité locale, etc.;

Guide électronique des programmes,

- fourniture d'un accès conditionnel aux services;
- fourniture d'un service d'alerte en cas d'urgence fiable;

 exploitation de réseaux monofréquence, y compris le long des autoroutes et des chemins de fer.

Le récepteur du système devrait permettre de recevoir de nouveaux programmes numériques et des programmes d'une station de radiodiffusion MF analogique avec détection automatique du type de programme.

On considère pour l'instant que, dans le système RAVIS, on utilisera principalement le codec audio HE-AAC (y compris les techniques SBR, PS, et ambiophonie MPEG) et les codecs vidéo H.264/AVC et H.265/HEVC. Le codeur audio HE-AAC offre un son stéréo de grande qualité à 32 kbit/s et les codeurs vidéo H.264/AVC et H.265/HEVC offrent des services vidéo de grande qualité avec une définition normale pour la télévision et une fréquence de trame de 25 trames/s à un débit binaire d'environ 500 kbit/s.

La couche physique et d'autres éléments utilisés faisant partie des couches de protocole inférieures du modèle d'interconnexion des systèmes ouverts (OSI) sont définis dans le système de transmission RAVIS.

Les principaux composants de la couche application sont les applications audiovisuelles et audio en temps réel, et certains services supplémentaires comme le guide électronique des programmes, etc. La couche présentation inclut le codage à la source. Le multiplexage des données audio et vidéo et de données supplémentaires est effectué au niveau de la couche liaison en utilisant le flux de transport MPEG-2 ou le conteneur de transport RAVIS.

Un exemple de pile de protocoles du système RAVIS est illustré dans la Fig. 56.

FIGURE 56
Pile de protocoles du système RAVIS

Couche application	Application audio et vidéo en temps réel Guide électronique des p		
Couche présentation	H.264/MPEG-4 AVC, H.265/MPEG-H HEVC (vi&o) HE-AAC (audio)	XML, HTML, JSON	
Couche liaison	Flux de transport MPEG-2 TS, conteneur de transport RAVIS TC		
Couche physique	Couche physique RAVIS (BCH, LDPC, MAQ-M, MROF)		

BS.1114-56

3 Technologies clés

Le système dispose de trois canaux logiques de transmission de données. Excepté le canal de service principal, le système RAVIS fournit des canaux de données avec une fiabilité de transmission améliorée – canal à faible débit binaire (~12 kbit/s) et canal de données fiable (~5 kbit/s). Ces canaux additionnels peuvent être utilisés, par exemple, pour l'alerte en cas d'urgence, etc.

Le système RAVIS permet d'utiliser plusieurs niveaux de modulation MAQ et plusieurs rendements de codage de canal dans le canal de service principal, afin de parvenir à un équilibre optimal entre le débit binaire et la fiabilité (protection contre les brouillages).

Le canal de service principal est conçu pour la transmission de données vidéo et audio. Le débit binaire maximal dans ce canal logique est d'environ 900 kbit/s. Le canal à faible débit binaire est conçu pour la transmission d'informations avec une meilleure fiabilité, pour les messages vocaux d'alerte en cas d'urgence, par exemple. Le débit binaire est d'environ 12 kbit/s. Le canal de données fiable est conçu pour les données auxiliaires avec une fiabilité élevée. Le débit binaire est d'environ 5 kbit/s. Le canal à faible débit binaire et le canal de données fiable offrent une meilleure protection contre les brouillages, et donc une couverture plus large et une meilleure stabilité pour la réception que le canal de service principal.

Les débits binaires pour les données numériques dans un seul canal radioélectrique pour toutes les combinaisons de paramètres de modulation et de rendements CED sont indiqués dans le Tableau 48.

TABLEAU 48

Débits binaires pour les données numériques dans le système RAVIS

Constellation	Rendement	Débit binaire du flux de données (kbit/s)				
Constellation	CED	Canal de 100 kHz	Canal de 200 kHz	Canal de 250 kHz		
	1/2	80	160	200		
MDP-4	2/3	100	210	270		
3/4		120	240	300		
	1/2	150	320	400		
MAQ-16	2/3	210	420	530		
3/4		230	470	600		
	1/2	230	470	600		
MAQ-64	2/3	310	630	800		
	3/4	350	710	900		

Le canal de service principal peut utiliser la modulation MDP-4, MAQ-16 ou MAQ-64 et les rendements du codage CED R = 1/2, 2/3 ou 3/4. Le canal à faible débit binaire utilise la modulation MDP-4 et le rendement du codage CED R = 1/2. Le canal de données fiable utilise la modulation MDP-2 et le rendement du codage CED R = 1/2.

Les porteuses pilotes et les porteuses avec des paramètres de transmission du signal (porteuses de service) sont insérées dans un flux multiplexé de symboles MROF. Ces porteuses permettent d'effectuer une synchronisation, de corriger la distorsion des canaux et de transmettre des informations supplémentaires (y compris les paramètres de modulation et de codage du canal, la disponibilité des canaux de données logiques, etc.) du côté réception.

La réduction du rapport entre la puissance de crête et la puissance moyenne n'est pas obligatoire, mais elle est recommandée.

La Fig. 57 présente le schéma fonctionnel d'un émetteur du système RAVIS, tandis que la Fig. 58 présente le schéma fonctionnel d'un récepteur du système RAVIS.

FIGURE 57 Schéma fonctionnel d'un émetteur du système RAVIS

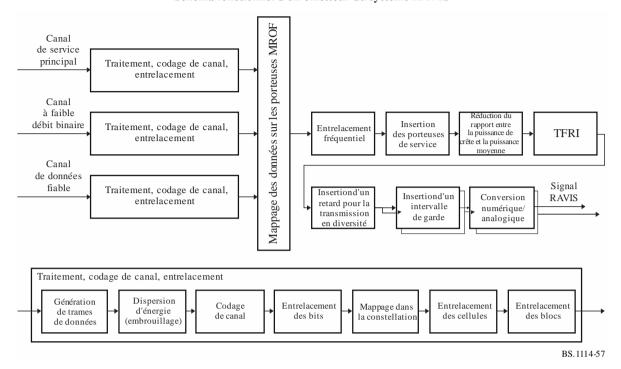
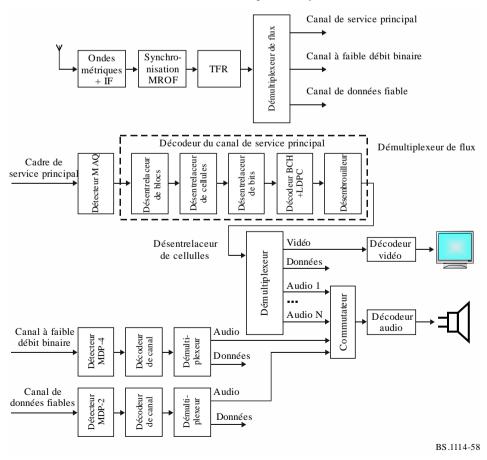



FIGURE 58 Schéma fonctionnel d'un récepteur du système RAVIS

La bande de fréquences et le concept de radiodiffusion retenus offrent certains avantages:

- possibilité d'utiliser un réseau monofréquence et un réseau multifréquence;
- radiodiffusion de multiples programmes sonores stéréophoniques de grande qualité ou d'un flux vidéo avec un son stéréo d'accompagnement dans une ville utilisant un seul émetteur;
- capacité à localiser la radiodiffusion d'un seul programme, c'est-à-dire que la même fréquence est utilisée pour la radiodiffusion de différents programmes dans plusieurs villes.

4 Couches physique et liaison

Au niveau de la couche physique, le codage de canal et le système de modulation MROF dans le système RAVIS sont définis comme un bloc fonctionnel visant à adapter les données du codeur de source aux caractéristiques du canal de transmission. Les flux de données de tous les canaux logiques font l'objet des transformations suivantes:

- génération de trames de données;
- dispersion d'énergie des trames de données;
- codage externe (code de bloc BCH);
- codage interne (code de bloc LDPC);
- entrelacement des bits;
- mappage des bits dans la constellation des cellules de modulation;
- entrelacement des cellules;
- entrelacement des blocs;
- mappage des données des canaux logiques dans les cellules MROF;
- entrelacement de fréquences et insertion de porteuses de service;
- réduction du rapport entre la puissance de crête et la puissance moyenne;
- TFRI:
- insertion d'un intervalle de garde, génération complète de signaux MROF.

Au niveau de la couche liaison, les données codées à la source peuvent être multiplexées en utilisant plusieurs formats, y compris les paquets de longueur fixe (en particulier MPEG-2 TS) et les paquets de longueur variable (en particulier le conteneur de transport GSE ou RAVIS), ou les flux de données non structurées.

5 Qualité de fonctionnement du système

Les modes de réception fixe, portable et mobile du signal RAVIS ont fait l'objet de simulations via l'utilisation de modèles de canal définis dans la norme ETSI ES 201 980 (Annexe B.2), afin d'évaluer le rapport porteuse/bruit minimal requis (*C/N*)_{min} (pour TEB = 10⁻⁴ à la sortie du décodeur de canal) pour plusieurs types de modulation et rendements de codage du canal de service principal. Le modèle de canal 7 (BBGA) est utilisé pour le mode de réception fixe, le modèle de canal 8 (urbain) pour le mode de réception portable, et le modèle de canal 11 (relief vallonné) pour le mode de réception mobile. Le Tableau 49 présente les résultats pour une largeur de bande de canal de 250 kHz.

TABLEAU 49

Valeurs (C/N)_{min} pour le système RAVIS avec une largeur de bande du canal de service principal de 250 kHz

Modèle de canal/	$(C/N)_{\min}$ (dB)								
Mode de		MDP-4			MAQ-16			MAQ-64	
réception	R = 1/2	$\mathbf{R} = 2/3$	R = 3/4	R = 1/2	R = 2/3	R = 3/4	R = 1/2	R = 2/3	R = 3/4
Canal 7 (BBGA)/réception fixe	1,1	3,3	4,2	6,4	9,1	10,2	10,8	14,0	15,4
Canal 8 (urbain)/ réception portable	6,4	9,4	11,5	12,5	14,9	17,0	16,2	19,4	22,0
Canal 11 (relief vallonné)/ réception mobile	5,5	8,6	9,8	10,4	13,2	15,6	14,7	17,9	20,5

6 Résumé des paramètres du système

Le Tableau 50 présente les caractéristiques du système RAVIS.

TABLEAU 50 Caractéristiques principales du système RAVIS

Caractéristiques	RAVIS			
Modes de réception:				
- Fixe	+			
– Portable	+			
 Dispositif portable de poche 	+			
– Mobile	+			
Débits nets de données	En fonction de la modulation et du rendement de codage pour différentes largeurs de bande de canal: a) 100 kHz-75-341 kbit/s b) 200 kHz-155-703 kbit/s c) 250 kHz-196-888 kbit/s			
Efficacité d'utilisation du spectre (bit/s/Hz)	0,77-3,64			
Réseaux monofréquence	Pris en charge			
Types de radiodiffusion:				
– sonore	+			
– multimédia	+			
– télévisuelle				
Types de données/services de transmission	Vidéo, audio, images fixes, présentations, données de trafic, etc.			
Bandes de fréquences	Bandes en ondes métriques I, II			
Largeurs de bande du canal	a) 100 kHz b) 200 kHz c) 250 kHz			
Largeur de bande utilisée	a) 96,0 kHz b) 185,6 kHz c) 246,2 kHz			

TABLEAU 50 (fin)

Caractéristiques	RAVIS
Nombre de segments	1
Nombre de sous-porteuses par segment	a) 215 b) 439 c) 553
Espacement des sous-porteuses	4000/9 Hz
Durée active d'un symbole	2,25 ms
Durée de l'intervalle de garde/rapport	1/8
Durée de la trame	103,78125 ms (41 symboles MROF)
Synchronisation temporelle/fréquentielle	Intervalle de garde/Porteuses pilotes
Méthodes de modulation	MDP-4, MAQ-16, MAQ-64
CED interne	Code LDPC avec des rendements de codage d'approximativement 1/2, 2/3 et 3/4
Entrelacement interne	Entrelacement de bits, de cellules, en temps et en fréquence
CED externe	BCH (n, k, t); n et k dépendent de la largeur de bande du canal et du rendement du code LDPC; capacité de correction d'erreurs t = 10 erreurs (pour le canal de service principal)
Entrelacement externe	_
Randomisation des données/dispersion d'énergie	SBPA à 16 bits
Transmission hiérarchique	_
Signalisation des paramètres de transmission	Quatre sous-porteuses par symbole MROF, 41 bits par trame MROF