The ITU Radiocommunication Assembly,

considering

a) that various kinds of information such as video, including high definition television (HDTV) as well as standard definition television (SDTV), audio, text, graphics, and data are provided to the public via the broadcasting channels;

b) that information and services can be integrated efficiently and flexibly by using digital technique;

c) that integrated services digital broadcasting (ISDB) techniques can be used to implement services exploiting the full advantages of digital broadcasting;

d) that the MPEG transport stream (MPEG-TS) is widely applied as containers of digitally coded information;

e) that a great benefit is obtained if the integration of data/services can be achieved by the TS basis, which requires the transmission system to deal with multiple MPEG-TSs;

f) that the recent progress in digital technology allows a highly bandwidth efficient modulation scheme such as 8-PSK in addition to the convolutionally-encoded QPSK and BPSK;

g) that the required service quality and service availability differ according to applications;

h) that rain attenuation which differs by climatic zones needs to be taken into account in satellite broadcasting systems;

j) that a common ISDB transmission system that provides a high flexibility of use as well as high spectrum efficiency while covering all the requirements for application, quality and rain attenuation is desirable, rather than introducing multiple systems specifically developed for particular applications;

k) that Recommendation ITU-R BO.1294 recommends common functional requirements for the integrated receiver-decoder (IRD) of digital multiprogramme broadcasting by satellite,

* Due to its particular application for satellite multiprogramming mentioned in its text, the system described in this Recommendation has elements which should be considered as an alternative to those similar systems presently covered by Recommendations ITU-R BO.1211 and ITU-R BO.1294. Therefore an evaluation of these systems should be made according to § 6.1.2 of Resolution ITU-R 1-2. Such an evaluation is not presently available in any relevant ITU-R Recommendation.

However, a Special Rapporteur has been appointed to evaluate the common elements and the differences between the systems involved in this and the other related Recommendations, namely Recommendations ITU-R BO.1211 and ITU-R BO.1294. The results of this evaluation will be included in draft revisions to these Recommendations or in a separate draft new Recommendation to be submitted to Radiocommunication Study Group 11 by the end of 1999.
noting

that advanced multimedia systems for ISDB type services are characterized by highest flexibility with respect to:

a) handling several MPEG-TSs;

b) allowing time multiplex of appropriate modulation schemes suitable for applications of various transmission robustness, e.g. 8-PSK, QPSK and BPSK;

c) informing the demodulator about the transmission and multiplexing configuration by means of specially robust control signals;

d) that the integrated circuits for satellite (ISDB-S) receivers could potentially be used for the system defined in Recommendation ITU-R BO.1294, because each of the component techniques used in ISDB-S is also used in the systems defined in this Recommendation,

recommends

that the transmission system described in the Annex should be used for ISDB-S system applications.

ANNEX 1

General specifications for a generic satellite ISDB-S transmission system

Introduction

ISDB is a new type of broadcasting for multimedia services. It integrates systematically various kinds of digital contents, each of which may include multiprogramme video from limited definition television (LDTV) to HDTV, multiprogramme audio, graphics, texts, and so on. Most of the digital contents are, nowadays, encoded into the form of MPEG-TS and delivered worldwide. It is highly desired to integrate the digital contents on the MPEG-TS basis.

Since the ISDB contains a variety of services, the system has to cover a wide range of requirements that may differ from one service to another. For example, a large transmission capacity is required for HDTV service, while a high service availability (or transmission reliability) is required for data services such as key delivery of conditional access, downloading of software, and so on. To integrate these signals of different service requirements, it is desired for the transmission systems to provide a series of modulation and/or error protection schemes which can be selected and combined flexibly in order to meet each requirement of the services integrated. This is especially true of the ISDB-S systems operating in the 11-12 GHz broadcasting-satellite service (BSS) band in countries that belong to the climate zones with high rain attenuation.

ISDB-S transmission systems are characterized by:

- MPEG interfacing: the input signals to the encoder and the output signals from the decoder conform to the MPEG-TS specifications;
- capability of signal integration on MPEG-TS basis: digital contents can be multiplexed without decoding/re-encoding of the input streams;
- flexible use of modulation schemes: digital contents can be simultaneously transmitted with the appropriate modulation schemes for each integrated content in the ISDB stream;
- provision of a control signal that informs the receiver of the multiplexing and modulation configuration.

The generic system for ISDB-S is described below.
1 Block definition

A general configuration of the system is shown in Fig. 1. The system shall handle three kinds of signals in order to transmit multiple MPEG-TSs with various kinds of modulation schemes and in order to achieve stable and easy reception. The three signals shall be:

- main signal which consists of multiple MPEG-TSs and carries the programme contents;
- transmission and multiplexing configuration control (TMCC) signal which informs the receiver of the modulation schemes applied, the identification of MPEG-TSs, etc.; and
- burst signal which ensures stable carrier recovery at the receiver under any reception condition (especially under low carrier-to-noise (C/N) ratio conditions).

![General configuration of system](image)

To handle multiple MPEG-TSs and to allow several modulation schemes that are used simultaneously, a frame structure is introduced to the main signal. The input MPEG-TSs shall be combined into a single stream, to which ordinary signal processes for satellite systems are applied (i.e., energy dispersal, interleaving and inner coding). The control data which designates the modulation schemes, etc. for each TS packet shall be encoded into the TMCC signal, to which a series of channel coding is applied. In most cases, some parts of the channel coding can be shared with the main signal. The burst signal shall be energy-dispersed to avoid line spectra in the transmission signal. This is done by modulating the burst with a random sequence. Therefore, the burst signal can carry information by modulating it with information data instead of modulating it with a random sequence. In this case, an additional channel coding may be necessary. These three signals shall be time-division multiplexed (time division multiplex (TDM)) and modulated by the designated modulation schemes.

2 Outer code for main signal

Reed-Solomon (RS) (204,188) shortened code, from the original RS (255,239) code, shall be applied to each input MPEG-TS packet (188 bytes) to generate the error protected packet (204 bytes). The RS coding shall also be applied to the first byte of the packet (MPEG sync word).

- Code generator polynomial: \(g(x) = (x + \lambda^0) (x + \lambda^1) (x + \lambda^2) (x + \lambda^{15}) \), where \(\lambda = 02_{16} \)
- Field generator polynomial: \(p(x) = x^8 + x^4 + x^3 + x^2 + 1 \).

The shortened RS code may be implemented by adding 51 bytes, all set to zero, before the information bytes at the input of an RS (255,239) encoder. After the RS coding procedure, these null bytes shall be discarded.
3 Transport combiner

3.1 Framing structure

To combine the TSs, the error-protected 204-byte packets shall be assigned to the «slots» in a «data frame», as shown in Fig. 2. The slot indicates the absolute position in the data frame and is used as the unit that designates the modulation scheme and MPEG-TS identification. The size of slot (the number of bytes in a slot) shall be 204 bytes to keep one-to-one correspondence between slots and error-protected packets. The data frame shall be composed of \(N \) slots.

![Figure 2: Frame structure](image)

A super-frame is introduced to perform interleaving easily. Figure 3 shows the super-frame structure. The super-frame shall be composed of \(M \) frames, where \(M \) corresponds to the depth of interleaving.
3.2 Slot assignment

As the spectrum efficiency or the transmissible bits per symbol varies with the combination of modulation and inner code rate, the number of packets being transmitted depends on the combination. Since the number of symbols to be modulated by a particular modulation scheme must be an integer value, the relationship between the number of packets transmitted and the number of symbols for the modulation is given by equation (1).

\[I_k = \frac{8 B P_k}{E_k} \]

(1)

where:
- \(I_k \): number of symbols transmitted with the \(k \)-th combination of the modulation scheme and inner code rate;
- \(P_k \): number of packets transmitted with the \(k \)-th combination of the modulation scheme and inner code rate;
- \(E_k \): spectrum efficiency of the \(k \)-th combination of the modulation scheme and inner code rate;
- \(B \): number of bytes per packet (= 204).

The number of symbols per data frame, \(I_D \), is expressed by equation (2).

\[I_D = \sum_k I_k \]

(2)

The number of packets transmitted during a frame duration becomes maximum when all the packets are modulated by the modulation-code combination having the highest spectrum efficiency among the possible combinations in the system. Therefore, the number of slots provided by the system is given by substituting the \(I_D \) and \(E_{max} \) for equation (1).

\[N = \frac{I_D E_{max}}{8 B} \]

(3)

where \(N \) denotes the number of slots that the system provides, and \(E_{max} \) denotes the highest spectrum efficiency of the modulation-coded combinations that the system provides.
When modulation-code combinations that do not have the highest spectrum efficiency are used, the number of packets being transmitted becomes lower than the number of the slots provided by the system. In this case, some of the slots shall be filled by dummy data to keep the frame size (the number of slots in a frame) constant. These slots are called “dummy slots”. The number of dummy slots S_d in a frame is obtained by the following equation (4).

$$S_d = N - \sum_k P_k$$ (4)

In the case where multiple modulation schemes are used simultaneously, that is, the part of the slots in a frame are modulated by a particular modulation-code combination while the rest of slots are modulated by the other combinations, the data shall be modulated from the highest spectrum efficient scheme to the lowest spectrum efficient scheme among the combinations being actually used. In other words, the packets transmitted with higher efficient combinations are assigned to the lower numbered slots in a frame. This modulation order gives the minimum value in the bit error ratio (BER) after decoding the convolutional code in a low C/N reception.

Figure 4 shows some examples of slot assignment when QPSK ($r = 1/2$, r denotes code rate), BPSK ($r = 1/2$), and QPSK ($r = 3/4$) are used, respectively with trellis coded (TC) 8-PSK ($r = 2/3$). In the examples, TC 8-PSK ($r = 2/3$) is assumed as the highest spectrum efficient combination of the system. Since the spectrum efficiency of QPSK ($r = 1/2$) is half of the TC 8-PSK, one dummy slot is inserted (Fig. 4a)); since the spectrum efficiency of BPSK ($r = 1/2$) is a quarter of the TC 8-PSK, three dummy slots are inserted (Fig. 4b)); and since the spectrum efficiency of QPSK($r = 3/4$) is 3/4 of the TC 8-PSK, one dummy slot is inserted for three active slots (Fig. 4c)).

FIGURE 4

Example of slot assignment

a) TC 8-PSK + QPSK ($r = 1/2$)

b) TC 8-PSK + BPSK ($r = 1/2$)

c) TC 8-PSK + QPSK ($r = 3/4$)

4 Randomization for energy dispersal for main signal

In order to comply with ITU Radio Regulations and to ensure adequate binary transitions, the data of the frame shall be randomized in accordance with the configuration depicted in Fig. 5.
The polynomial for the pseudo random binary sequence (PRBS) generator shall be:

\[1 + x^{14} + x^{15} \]

Loading of the sequence “1001010100000000” into the PRBS registers as indicated in Fig. 5, shall be initiated at the second byte of every super-frame. The first bit of the output of the PRBS generator shall be applied to the first bit (i.e., most significant bit (MSB)) of the second byte of slot No. 1 in frame No. 1. The PRBS shall be added to the data except to the first byte (MPEG sync byte) of every slot.

5 Interleaving for main signal

Inter-frame block interleaving with a depth of \(M \) shall be applied to the randomized data, as shown in Fig. 6. Slot assignment for every frame shall be identical throughout a super-frame, resulting in the data being interleaved only between those transmitted with the same modulation-code combination. Interleaving shall be applied except to the first byte (MPEG sync byte) of every slot.

Figure 6 illustrates an example of interleaving when the depth of interleaving is 8 (i.e., super-frame consists of 8 frames) and two kinds of modulation-code combinations are being used. The data in the original frame are read out in the inter-frame direction, i.e., in the order of A1, 1, A2, 1, A3, 1, ..., where Ai,j represents the byte data at j-th slot in i-th frame, to form the interleaved frame. The data in the interleaved frame are read out in the byte direction (horizontally) and fed to the TDM multiplexer.

It is not necessary to transmit the first byte of each packet (the MPEG sync word of \(47_h \)) because the timing references (frame sync words) are sent by the TMCC signal. The omitted MPEG sync words have to be recovered at the receiver to perform outer decoding properly. Note that in this case, \(B \) in the equations (1) and (3) should take the value 203 in order for the equation to hold true.
6 TMCC signal

TMCC signal shall carry the following information:

– modulation-code combination for each slot;
– MPEG-TS identification for each slot; and
– others (e.g., order of change, flag bit for emergency alert broadcasting).

TMCC information shall be transmitted in advance to the main signal because the main signal cannot be demodulated without the TMCC information. The minimum interval for TMCC information renewal shall be a duration of one super-frame. The receivers shall principally decode the TMCC information at every super-frame. The TMCC signal shall convey timing references in addition to the information above.

6.1 TMCC information encoding

The information carried by the TMCC signal shall be formatted as shown in Fig. 7. Details for each item are described below.

FIGURE 7

TMCC information format

<table>
<thead>
<tr>
<th>Order of change</th>
<th>Modulation code combination for each slot</th>
<th>Relative TS ID for each slot</th>
<th>Corresponding table between relative TS ID and MPEG-TS_ID</th>
<th>Other information</th>
</tr>
</thead>
</table>
6.1.1 Order of change
The order of change is a 5-bit number that indicates renewal of the TMCC information. It shall be incremented each time the TMCC is renewed. The receiver may detect just the bits and may decode the TMCC information only when the bits change. The use of order of change is optionally defined by the system.

6.1.2 Modulation-code combination information
This represents combinations of the modulation scheme and the convolutional code rate for each slot. To reduce the transmission bits for this information, the information shall be encoded into the format shown in Fig. 8. The maximum number of modulation-code combinations, \(C_M \), that are used simultaneously shall be defined by the system taking into account the service requirements. The word assignment for the modulation-code combination shall be those defined in Table 1. When the number of modulation-code combinations being used is less than the maximum number specified by the system, the word “1111” shall be applied to the rest of the combinations and the number of slots assigned shall be set to zero.

![FIGURE 8: Encoding format for modulation-code combination information](image)

Note 1 - The order of the combinations shall be those defined in § 3.2 (slot assignment), i.e., from the highest efficient combination to the lowest efficient combination.

TABLE 1
Word assignment for modulation-code combination

<table>
<thead>
<tr>
<th>Word</th>
<th>Modulation-code combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Reserved</td>
</tr>
<tr>
<td>0001</td>
<td>BPSK ((r = 1/2))</td>
</tr>
<tr>
<td>0010</td>
<td>QPSK ((r = 1/2))</td>
</tr>
<tr>
<td>0011</td>
<td>QPSK ((r = 2/3))</td>
</tr>
<tr>
<td>0100</td>
<td>QPSK ((r = 3/4))</td>
</tr>
<tr>
<td>0101</td>
<td>QPSK ((r = 5/6))</td>
</tr>
<tr>
<td>0110</td>
<td>QPSK ((r = 7/8))</td>
</tr>
<tr>
<td>0111</td>
<td>TC 8-PSK ((r = 2/3))</td>
</tr>
<tr>
<td>1000-1110</td>
<td>Reserved</td>
</tr>
<tr>
<td>1111</td>
<td>Dummy</td>
</tr>
</tbody>
</table>
6.1.3 TS identification

Instead of transmitting MPEG-TS_ID (16 bits) for each slot, a combination of relative TS IDs that identify only the TSs being transmitted and the corresponding table between these two kinds of IDs are employed. This results in reduced transmission bits. The relative TS IDs for each slot shall be transmitted sequentially from slot No. 1. The maximum number of TSs transmitted simultaneously, T_M, shall be defined by the system.

![Figure 9: Data arrangement of relative TS ID information]

The corresponding table shall be composed of an array of numbers that are 16-bit numbers to represent each MPEG-TS_ID. The numbers shall be arranged from the relative TS ID number 0 to T_M.

![Figure 10: Data arrangement of corresponding table]

6.1.4 Other information

The encoding format for the other information shall be defined appropriately by the system.

6.2 Outer coding for TMCC information

Since TMCC information is indispensable for the demodulation at receivers, the TMCC signal should be protected with an forward error correction (FEC) level higher than the FEC used for the main signal. For the same reason, it shall be transmitted with the modulation-code combination having the most robustness against transmission noise.

6.3 Timing references

Two kinds of timing references are contained, i.e., the frame sync word that indicates the start of each frame and the frame identification words that identify the first frame (frame No. 1). These words shall be transmitted by each frame.

After dividing the outer coded TMCC data into M blocks (where M is the number of frames in a super-frame), the sync words shall be inserted in each block, as shown in Fig. 11. The sync word W1 shall be inserted at the beginning of each block. The word W2 shall be inserted at the end of the block that is transmitted in the first frame, while the word W3
shall be inserted at the end of the remaining blocks. The words W1, W2, and W3 shall consist of 2 bytes. W1 shall be 1B95h, W2 shall be A340h, and W3 shall be 5CBFh (W3 is obtained by inverting the bits of W2).

Note that the first 6 bits of the words will be changed by the payload information (contents of the main signal and/or TMCC signal) due to convolutional coding (constraint length of 7), which is applied to the TMCC signal at the succeeding process stage. In other words, the first 6 bits of the word are used as the termination bits of the convolutional code. Consequently, the unique bit pattern in the synchronizing word is 10 bits out of 16 bits of the original word.

6.4 Channel coding for TMCC

The TMCC signal shall be randomized for energy dispersal. The polynomial for the PRBS generator shall be the same as that for the main signal. The pseudo-random sequence shall be initiated at the third byte (just after the sync word) of the first block. The first bit of the output of the generator shall be applied to the first bit (i.e., MSB) of the third byte of the first block. The pseudo-random sequence shall be added to the data except to the timing reference words.

Interleaving processes may not be needed for TMCC signal consisting of a small amount of bits because the effect of interleaving is limited. An appropriate interleaving process should be specified, if necessary.

![Generation of TMCC signal](image)

7 Burst signal

To keep a constant interval between the successive bursts throughout a frame (see Fig. 12), burst signal shall be inserted in every 204 symbols of the convolutional coded main signal. Note that the burst shall be inserted in every 203 symbols when the MPEG sync words are not transmitted (see § 5). The duration of the burst shall be 4 symbols. The data for burst before modulation shall be randomized with an appropriate random sequence for energy dispersal. The modulation scheme for burst signal shall be the same as that applied to the TMCC signal (the most robust scheme against transmission noise).
When carrier recovery in the receiver is carried out only from burst signals, the recovered carrier does not always lock to the right frequency. This problem (false lock of phase-locked loop (PLL)) can be solved by using the transmission signal during the TMCC duration in addition to the burst signal (when the PLL locks falsely, the number of cycles of the recovered carrier in a TMCC duration will be different from the right number, therefore, the PLL can be controlled by the difference in the number of cycles).

8 TDM

The main signal and the TMCC signal shall be time-division multiplexed at every frame. According to the modulation-code combinations designated for each slot, the time base of the multiplexed signal partially (slot basis) expands/compresses due to the convolutional coding process. By this operation, the dummy slots, if included in the main signal, shall be excluded from the transmission signal. Figure 12 illustrates conceptual integration processes of the main, TMCC, and burst signals for forming the transmission signal.

FIGURE 12
Integration of main, TMCC and burst signals
9 Inner coding, symbol mapping and modulation

The system shall allow for a variety of modulation schemes as well as a range of punctured convolutional codes based on a rate 1/2 convolutional code with a constraint length of 7. The generator polynomial shall be 171 octal and 133 octal (see Fig. 13). It may allow for the use of TC 8-PSK (TC 8-PSK), QPSK, and BPSK. When allowing these modulation schemes, the system shall allow for a code rate of 2/3 for TC 8-PSK, code rates of 1/2, 2/3, 3/4, 5/6, and 7/8 for QPSK and 1/2 for BPSK.

Figure 13 shows the convolutional encoder while Fig. 14 shows the punctured and symbol mapping circuitry. The punctured codes shall be those defined in Table 2. The symbol mapping shall be those specified in Fig. 15. With regard to BPSK, the two encoded bits (P0 and P1) shall be transmitted in the order of P1 and P0. The input bit B1 shall be used only in the case of TC 8-PSK, where B1 and B0 are two successive bits of a byte data (B1 represents the higher order bit).

For modulations and convolutional codes other than those described above, the appropriate specifications should be applied.
TABLE 2

Punctured code definition

<table>
<thead>
<tr>
<th>BPSK</th>
<th>QPSK</th>
<th>TC 8-PSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>2/3</td>
</tr>
<tr>
<td>P</td>
<td>d_{free}</td>
<td>P</td>
</tr>
<tr>
<td>$X = 1$</td>
<td>$X = 1$</td>
<td>$X = 10$</td>
</tr>
<tr>
<td>$Y = 1$</td>
<td>10</td>
<td>$Y = 1$</td>
</tr>
<tr>
<td>$P_1 = X_1$</td>
<td>$P_1 = X_1$</td>
<td>$P_1 = X_2 Y_3$</td>
</tr>
<tr>
<td>$P_0 = Y_1$</td>
<td>$P_0 = Y_1$</td>
<td>$P_0 = Y_1 X_3 Y_4$</td>
</tr>
</tbody>
</table>

1: transmitted bit
0: non transmitted bit
P: puncture
d_{free}: convolutional code free distance

NOTE 1 – The punctured code is initialized at the start of the successive slots that are assigned to the corresponding code.

FIGURE 15

Symbol mapping

![8-PSK Symbol Mapping](image1)

![QPSK Symbol Mapping](image2)

![BPSK Symbol Mapping](image3)
Prior to modulation, the I and Q signals shall be square-root raised cosine filtered for spectrum shaping. The roll-off factor shall be 0.35. The baseband square-root raised cosine filter shall have a theoretical function defined by the following expression:

\[
H(f) = \begin{cases}
1 & \text{for } |f| < f_N(1 - \alpha) \\
\frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{2f_N} \left[f_N - \frac{|f|}{\alpha} \right]^{1/2} & \text{for } f_N(1 - \alpha) \leq |f| \leq f_N(1 + \alpha) \\
0 & \text{for } |f| > f_N(1 + \alpha)
\end{cases}
\]

where

- \(f_N\): Nyquist frequency
- \(\alpha\): roll-off factor = 0.35.

APPENDIX 1

TO ANNEX 1

Parameters for system using TC 8-PSK modulation

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
<th>Notation</th>
<th>Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of slots per frame</td>
<td>(N)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Number of frames per super-frame</td>
<td>(M)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Number of bytes per slots during transmission</td>
<td>(B)</td>
<td>203</td>
<td>MPEG sync words not transmitted</td>
</tr>
<tr>
<td>4</td>
<td>Number of symbols per data frame</td>
<td>(I_D)</td>
<td>38,976</td>
<td>For main signal only</td>
</tr>
<tr>
<td>5</td>
<td>Number of symbols per frame combinations</td>
<td>(7)</td>
<td>TC 8-PSK ((r = 2/3)), QPSK ((r = 1/2)), QPSK ((r = 2/3)), QPSK ((r = 3/4)), QPSK ((r = 5/6)), QPSK ((r = 7/8)), BPSK ((r = 1/2))</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Highest spectrum efficient modulation-code combination</td>
<td>(E_{max})</td>
<td>2 ((\text{Bits/symbol}))</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Maximum number of modulation-code combinations used simultaneously</td>
<td>(C_M)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Maximum number of TSs transmitted simultaneously</td>
<td>(T_M)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Outer coding for TMCC</td>
<td>RS (64,48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Interleaving for TMCC</td>
<td>Not applied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Other information by TMCC</td>
<td>Order of change (5) bits, Flag for emergency alert (1) bit, Uplink information (4) bits, Reserved (62) bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Total bits of TMCC information</td>
<td></td>
<td>384</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4
Payload bit rates for various RF bandwidth

<table>
<thead>
<tr>
<th>Bandwidth (MHz)</th>
<th>Symbol rate (MBd)</th>
<th>MPEG-TS bit rates (Mbit/s)(^{(2)})</th>
<th>(r = \frac{1}{2})</th>
<th>(r = \frac{2}{3})</th>
<th>(r = \frac{3}{4})</th>
<th>(r = \frac{5}{6})</th>
<th>(r = \frac{7}{8})</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>30.1</td>
<td>BPSK (r = \frac{1}{2})</td>
<td>13.6</td>
<td>27.2</td>
<td>36.3</td>
<td>40.8</td>
<td>45.4</td>
</tr>
<tr>
<td>34.5</td>
<td>28.9</td>
<td>BPSK (r = \frac{2}{3})</td>
<td>13.0</td>
<td>26.1</td>
<td>34.8</td>
<td>39.1</td>
<td>43.5</td>
</tr>
<tr>
<td>33</td>
<td>27.6</td>
<td>BPSK (r = \frac{3}{4})</td>
<td>12.5</td>
<td>25.0</td>
<td>33.3</td>
<td>37.4</td>
<td>41.6</td>
</tr>
<tr>
<td>30</td>
<td>25.1</td>
<td>BPSK (r = \frac{5}{6})</td>
<td>11.6</td>
<td>23.1</td>
<td>30.1</td>
<td>34.7</td>
<td>38.5</td>
</tr>
<tr>
<td>27</td>
<td>22.6</td>
<td>BPSK (r = \frac{7}{8})</td>
<td>10.2</td>
<td>20.4</td>
<td>27.2</td>
<td>30.6</td>
<td>34.0</td>
</tr>
<tr>
<td>24</td>
<td>20.1</td>
<td>TC 8-PSK (r = \frac{2}{3})</td>
<td>9.1</td>
<td>18.1</td>
<td>24.2</td>
<td>27.2</td>
<td>30.2</td>
</tr>
</tbody>
</table>

\(^{(1)}\) The values express the occupied bandwidth (99% energy) when assuming typical non-linear characteristics of TWT and when assuming an RF filter bandwidth (–3 dB) that is 1.3 times the symbol rate.

\(^{(2)}\) The values express the payload bit rates when the designated modulation-code combination is applied to all slots.