

ITU Kaleidoscope 2011

The fully networked human? Innovations for future networks and services

A Hybrid MAC with Intelligent Sleep Scheduling for Wireless Sensor Networks

Mohammad Arifuzzaman Waseda University, Tokyo,Japan arif@fuji.waseda.jp

Outline of Presentation

Introduction Standardization of MAC protocol for Sensor Network Proposed MAC protocol Result & Discussion Summary

Introduction

have

- Wireless sensor networks (WSNs) become very popular in recent years.
- The sensor nodes are typically
 - small,
 - Iow-cost, and
 - equipped with low-powered battery
- Prolonging lifetime of sensor nodes is definitely a critical issue.
- Therefore, in order to design a MAC protocol for WSNs it is important to consider energy efficiency. The other important attributes are latency, delivery ratio, fairness etc.

Introduction

- Idle listening is the major source of energy wastage for WSNs.
- Therefore, nodes do not wake-up all the time to maximize throughput and minimize delay
- Rather nodes prefer energy preservation by going to sleep from time to time.
- So, a straightforward approach can be to assign each communication link a time slot.
- But this scheme requires much more time slots than necessary.

Introduction

Minimizing the number of slots assignment for an interference free link scheduling is a NP complete problem.

- Broadcast scheduling is less energy efficient.
- Henceforth, we propose a new hybrid MAC protocol for wireless sensor network, called IH-MAC(Intelligent Hybrid MAC), which combines –
 - the strength of CSMA,
 pair wise TDMA (link scheduling)
 broadcast TDMA.

Standardization

- The first step of standardization for low rate wireless personal area networks was taken in 2003 when IEEE 802.15.4 was approved.
- IEEE 802.15.4 standard specifies only the lowest part of OSI communication model: PHY layer and MAC sub-layer.
- But unlike 802.11 WLAN cards where MAC is usually included as part of the chipset,
- In WSNs the MAC designer has absolute control on the design of MAC layer.

Standardization

Fig 1. Structure of IEEE 802.15.4 protocol stack and the area of our proposed work

Cape Town, South Africa, 12-14 December 2011 ITU Kaleidoscope 2011 – The fully networked human? Innovations for future networks and services

7

- Each slot in IH-MAC is a periodic interval which consists of
 - fixed length SYNC period,
 - fixed length Listen period (For RTS/CTS)
 - sleep period.
- Nodes are allowed to transmit in any slot, but owner of the slot will get the priority.
- Contention window size ensures priority.
- Each node can make some of its owned slot as a *rendezvous slot*.
- A rendezvous slot is a slot explicitly dedicated to a pair of nodes to communicate.

- Owner calculation is performed by each sensor node locally by clock arithmetic.
- Let there are 8 neighbor nodes (every node is 1 or 2-hop neighbor to each other),
- T1, T2...represent the slot sequences and S1, S2...represent the sensor nodes.
- According to clock arithmetic (mod 8) sensor node S1 will be the owner of slot T1 & T9.

S1	S2	S3	S4	S5	S6	S7	S8	S1	S2
Т1	Т2	тз	Т4	Т5	Т6	Т7	Т8	Т9	T10

Fig.2 Owner selection of each slot for 8 sensor nodes

- The rendezvous slots can also be calculated by clock arithmetic,
- Let node S1 wants to create a rendezvous.
- By using modulo 16, the rendezvous slots of node S1 will be a subset of [1, 17...].
- S1 can make T17 as its rendezvous slot.
- Though S1 is owner of both T9 and T17 but S1 cannot make T9 as its rendezvous slot. It is because 9 is not a subset of [1, 17].

S1	S2	S 3	S4	S5	S6	S7	S8	S1	S2
т9	Т10	T11	T12	T13	T14	T15	T16	T17	T18

Fig.3 Rendezvous slot selection for 8 sensor nodes (T17 is rendezvous slot for S1 but T9 is not rendezvous slot)

Consider a simple case of four sensor nodes A, B, C,& D. And there are four consecutive slots. During Slot i, Let data transmission occur between node **B** and **C**. But A and D also need to wake up Subsequently they go to **sleep**

WASEDA UNIVERSITY

Matsumoto

Fig 4. Network of 4 Sensor Nodes connected to each other

Node A	Listen	Sleep	Listen	Sleep	Listen	DATA	Listen	Sleep
Node B	Listen	DATA	Listen	DATA		Sleep	Listen	Sleep
Node C	Listen	DATA	Listen	Sleep	Listen	DATA	Listen	Sleep
Node D	Listen	Sleep	Listen	DATA		Sleep	Listen	Sleep
	Slo	ot i	Slot	i+1	S	lot i+2	Slot	i+3

Fig.5. Timing Diagram of sensor nodes working in IH-MAC (The blue portion of figure is rendezvous slot of IH-MAC and the remaining slots are like S-MAC, T-MAC etc.)

In slot i+2, node A and C created rendezvous between them. On that slot node B and D will not wake up. Thus, B and save energy by lingering sleep time avoiding transition

Node A	Listen	Sleep	Listen	Sleep	Lister	DATA	Lister	Sleep
Node B	Listen	DATA	Listen	DATA		Sleep	Listen	Sleep
Node C	Listen	DATA	Listen	Sleep	Listen	DATA	Listen	Sleep
Node D	Listen	Sleep	Listen	DATA		Sleep	Listen	Sleep
	Slo	ot i	Slot	i+1	S	lot i+2	Slot	i+3

Fig.5. Timing Diagram of sensor nodes working in IH-MAC (The blue portion of figure is rendezvous slot of IH-MAC and the remaining slots are like S-MAC, T-MAC etc.)

□ Node A & C save N energy by avoiding RTS, CTS **contention** for getting the slot. Thus, creation of ^N rendezvous slot enhance energy efficiency for all nodes in two hop neighbor whether they participate in transmission or not

lode A	Listen	Sleep	Listen	Sleep	Listen	DATA	Listen	Sleep
lode B	Listen	DATA	Listen	DATA		Sleep	Listen	Sleep
lode C	Listen	DATA	Listen	Sleep	Listen	DATA	Listen	Sleep
lode D	Listen	Sleep	Listen	DATA	Sleep		Listen	Sleep
	Slo	ot i	Slot	i+1	Slot i+2		Slot	i+3

Fig.5. Timing Diagram of sensor nodes working in IH-MAC (The blue portion of figure is rendezvous slot of IH-MAC and the remaining slots are like S-MAC, T-MAC etc.)

The power adjustment features of IH-MAC allow the sensor nodes to suitably vary the transmission power to reduce energy consumption.

$$P_{desired} \approx \frac{P_{\max}}{P} \times Rx_{thres} \times C$$

Here, Rx_{thres} is the minimum necessary signal strength, P_r is the received power level and C is a constant. And sensor node transmits the **RTS** and **CTS** packets with **maximum power** P_{max}
 The source node uses power level P_{desired} to transmit data packet.

We also develop an analytical model for the energy consumption of nodes for IH-MAC. For time constraints we will omit the detail.
 Simulation time,

 $t_{SIM} \approx t_{TX} + t_{RX} + t_{OH} + t_{IDLE} + t_{SLEEP} + t_{TRANS}$

 \Box t_{TX} , t_{RX} , t_{OH} , t_{IDLE} , t_{SLEEP} , t_{TRANS} , are denoted as the time spent for transmitting, receiving, overhearing, idle listening, sleep, and radio transitions during sleep to wakeup state of a sensor node, respectively.

Energy consumption during t_{SIM}

- $e \approx n_{TX(w)} \times e_{TX(w)} + n_{TX(R)} \times e_{TX(R)} + n_{RX(w)} \times e_{RX(w)}$
- $+ n_{RX(R)} \times e_{RX(R)} + t_{OH} \times e_{OH} + t_{IDLE} \times e_{IDLE}$
- $+t_{SLEEP} \times e_{SLEEP} + t_{TRANS} \times e_{TRANS}$

*n*_{TX(w)}, *n*_{TX(R)}, *n*_{RX(w)}, *n*_{RX(R)} represents the total number of times that a node transmits or receives with or without rendezvous during *t*_{SIM}
 And *e*_X represents the required energy for

the operation *x*

Simulation Parameter

The parameter we use in performance evaluation:

Parameter	Value
Channel Bandwidth	20 kbps
Data Packet length	20 bytes
Transmission power	36 mW
Receive power	14.4 mW
Idle power	14.4 mW
Sleep state	15 µW
Frame Length	1 sec
Threshold value for the buffer size	
(for IH-MAC)	3 packet
Duty cycle	15 %

We took existing S-MAC (Sensor MAC) and T-MAC (Time out MAC) protocol for comparison. Performance metrics used in evaluation of IH-MAC protocol are Energy consumption, Delivery ratio and Average Packet Latency. **Energy Consumption:** During heavy traffic **IH-MAC** outperforms S-MAC and performs like T-MAC. It is because during heavy traffic **IH-MAC** makes rendezvous slots.

- But as traffic declines energy efficiency of IH-MAC deteriorates.
- T-MAC perform better during low traffic. But, T-MAC trades off latency for energy savings.
- It is evident from that If we can implement power adjustment feature of IH-MAC it will be more energy efficient.

Fig. 6(a) Average energy consumption per bit under different traffic load

packet

Average latency:

- The IH-MAC protocol achieves better delay performance.
- It is because during heavy traffic load IH-MAC use the link scheduling where it minimizes
 control signal
 - contention phase.

Fig. 6(b) Packet latency under different traffic load

WASEDA UNIVERSITY

The average packet delivery ratio is the number of packet received to the number of packets sent over all the nodes.

Delivery ratio of IH-MAC is higher due to use of link scheduling which is like TDMA.

Fig. 6(c) Packet delivery ratio under different traffic load

Summary

The contribution of the paper are:

- Identification of need for standardization work in the area of MAC protocol of WSNs.
- Proposal of a novel MAC protocol which can be consider as a candidate for standardization.
- Introducing the concept of link scheduling and broadcast scheduling together.
- Introducing power adjustment feature for the sensor nodes during transmission.
- As a future work, we intend to implement the power adjustment feature of IH-MAC and also we have a plan to implement our protocol on the Mote hardware.

Thank You