

ITU Kaleidoscope 2011

The fully networked human? Innovations for future networks and services

OPTIMAL SPECTRUM HOLE SELECTION & EXPLOITATION IN COGNITIVE RADIO NETWORKS

Mahdi Pirmoradian Kingston University m.pirmoradian@kingston.ac.uk

Outline

Introduction
Cognitive Radio
System Model
Performance Evaluations
Conclusion and Future Works

Introduction

- The mobile data traffic grew by 280% (during last two years)
- A huge increase in the machine-to-machine (M2M) wireless communications
- Radio spectrum needs to fulfill the above demands

Cape Town, South Africa, 12-14 December 2011

ITU Kaleidoscope 2011 – The fully networked human? Innovations for future networks and services

Cognitive Radio

A radio or system that senses, and is aware of, its operational environment and can dynamically and autonomously adjust its radio operating parameters accordingly [ITU].

Cognitive Radio (CR) is defined as a radio that can change its transmitter parameters based on interaction with the environment in which it operates [Ofcom].

Cognitive Radio Capability

Intelligent wireless system that possess rapidly reconfigurable radio functions.

 Uses SDR technology (Technology that enables reconfigurable system for wireless networks.)

Is Aware of its environment

- Network Traffic.
- RF spectrum occupancy
- Transmission Quality.

Can learn from its environment and adapts to new situations based on its previous experiences.

Dynamic Spectrum Access

Dynamic spectrum access and cognitive radio techniques

 Concepts of a spectrum hole and opportunistic spectrum sharing:

Concept of opportunistic spectrum sharing: secondary utilization of the identified spectrum holes.

DSA Benefits and Challenges

- Dynamic spectrum access can drastically improves the performance of wireless networks struggling under increasing user demand.
- Ofcom believe DSA technology could generate up to 6.5 bn for UK economy in next 20 years.
- More efficient use of spectrum
- Minimize cost of changing channels
- Coordination
- who uses which channels when
 - Synchronization
 - overhead for coordination

System Model

Analysis Specifications

- Primary user channel utilization is Poisson process.
- OFF/ON channel model (identical independent random variable)
- µoff and µon: OFF and ON arrival rates
- OFF/ON period of times are exponential random variable

$$f(t, \mu_{off}) = \begin{cases} \mu_{off} e^{-\mu_{off} t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

$$f(t,\mu_{on}) = \begin{cases} \mu_{on} e^{-\mu_{on}t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

Secondary transmission cycle

Spectrum Hole Selection Schemes

Minimum Collision Technique (MCT)
 Based on the minimum evaluated probability of collision.

 $H_{j}(t) = argmin(i | P^{i}(Y^{i} \leq T_{th}^{I}) < \varepsilon) i \epsilon \mathbb{N}(t)$

Maximum Remain Lifetime Technique (MRLT)
 Maximum remain lifetime of the idle channel at time instance t.

 $H_{j}(t) = argmax(i|T_{R}^{Idle\,i})\,i\epsilon\mathbb{N}(t)$

Proposed Algorithm

 Channels mean OFF time values; 1, 5, 3, 6, 2, 1, 7, 1, 4, 3 seconds
 Channels mean ON times: 2second
 Minimum period of secondary transmission: 3.2ms

1. Begin **2.** Inputs N, μ off, μ on, ε , δ , *TthI* 3. For i=1.N4. Sense channels 5. Nt←unoccupied channels 6. Evaluate (12) 7. end 8. If Nt is empty 9. Stop Transmission 10.Else 11.Hjt=argminiPi Υ i \leq TthI $<\varepsilon$ i ϵ N(t) **12.If** (*j*≠0) 13. Transmission on channel j 14.Else 15.Stop Transmission 16.End (If) 17.Hj1t=argmaxiTRIdle i≥TthI i∈Nt **18.If** (*j*1≠0) 19. Transmission on channel i1 20.Else **21.Stop** Transmission 22.End (If) 23.End

Algorithm. Channel selection algorithm using (13) and (14)

Research Group Ingeton University London

Average Channel Utilization

Average channel utilization through MRLT and MCT schemes

Channels 4, 7 and 9 will be targeted because of channel OFF time.

Secondary Data Delivery

Data delivery will be more through MRLT scheme during 100s.

Conclusion & Future works

- It can be seen that MRLT scheme improves spectrum utilization in comparison with MCT.
- Adaption delay and real sensing delay and sensing time need to be considered.
- Cooperative spectrum selection scenario in coexistence networks.

Thank you for your attention

Mahdi Pirmoradian Wireless Multimedia & Networking Research Group Faculty of Science Engineering & Computing (SEC)Kingston University London KT1 2EE, Surrey, UK

m.pirmoradian@kingston.ac.uk

