

ITU Kaleidoscope 2011

The fully networked human? Innovations for future networks and services

Proposal of A Wired Rural Area Network with Optical Submarine Cables

Yoshitoshi Murata Iwate Prefectural University y-murata@iwate-pu.ac.jp

Cape Town, South Africa 12–14 December 2011

Purpose

How to introduce future networks to rural areas?
Problems

Sparse population
High construction cost of a network
High maintenance cost of a network

Demands for Rural area network systems
 Low total cost
 Fitting to features of each rural area

Existing Rural Area Network Systems

Wireless mesh network by WiFi

Investigating areas

Results of investigation

Average number of residences is 15.
 There are two types:

 Clustered at a cross road
 Clustered along specific section of a road

 Interval between residences is 50–200m.
 They are too sparsely for the Wireless IP

They are too sparsely for the Wireless IP access system.

Residences are plotted on a line so long, and too many for both of them.

Example of residences gathering nearby a crossroad

Example of residences gathering along a road

ITU Kaleidoscope 2011 - The fully networked human? Innovations for future networks and services

Wired rural area network with optical submarine cables, OSC-RAN

Its structure is simple to establish by ourselves for low total cost.

Usage optical submarine cables

Three types cables: - 50m / 100m / 150m SC connectors are joined.

Structure of the control unit

Structure of the relay unit

Field trial place

Cape Town, South Africa, 12-14 December 2011

ITU Kaleidoscope 2011 – The fully networked human? Innovations for future networks and services

Wiring work

(a) Sender

(b) Assistant

(c) Drawer

Network configuration

Cape Town, South Africa, 12-14 December 2011

ITU Kaleidoscope 2011 – The fully networked human? Innovations for future networks and services

Summary of establishing a network

Total working hours was 158 hours.
 It took 3 months for the network system to become stable.

Reasons

Shortage of preparation and experience.
 The daylight hours are short in winter season.

We have original jobs.

Summary of troubles

We had 9 troubles.

4 of them were related to units in the office.
WM encoders and WM server were unstable.
The modem and the router stopped to work.

Shortage of maintaining above units.

5 of them were related to the OSC-RAN.

□ A electric socket of a PoE injector was pulled off.

A cables was cut by a snowplow.

We missed to detect a broken connecter cable and a invalid equipment of a control unit.

Shortage of tests and a test manual.

Throughput and transmission delay

Questionnaires to residents

A number of access	Internet service	IP-TV service
Almost every day	2	0
4-5 days/week	2	0
2-3 days/week	3	3
Few days/week	0	4
No access	2	2
No answer	1	1

Conclusion

As the result of investigation, existing wireless systems would not suited for rural areas around Morioka, north Japan.

We proposed the OSC-RAN to reduce the total cost by getting residents and some helper to establish and maintain networks by themselves.

Through a field trial, we confirmed that they could indeed establish and maintain a network.