ITU-T Kaleidoscope 2009 Innovations for Digital Inclusion

An ID/Locator Split Architecture of Future Networks

Ved P. Kafle, Hideki Otsuki, and Masugi Inoue

National Institute of Information and Communications Technology (NICT), Japan kafle_at_nict.go.jp

Presentation Layout

- Background and Motivation
- Related Work
- Host Name and Identifier System
- Network Architecture Components
- Mobility, Scalable Routing Support
- Implementation
- Conclusion and Future Work

Background and Motivation

Related Work

- AKARI Project: (NICT's initiation to clean-slate design of New Generation Network)
 - Includes research on ID/locator split architectures

ITU-T

- Study Group 13
 - Y.2015 (2009): General requirements for ID/locator separation in NGN
 - Y.FAid-loc-split (Q.5/13), Y.ipv6split (Q.7/13)

IRTF/IETF

- Routing Research Group (RRG)
 - developing a technical framework for ID/locator split-based routing architectures
- Host Identity Protocol (HIP) Research/Working Groups
 - developed a number of RFCs (5201-5205) on ID/locator split-based host protocols for secure mobility and multihoming
- SHIM6 Working Group
 - developing protocols to support site multihoming in IPv6

ID/locator Split Architecture Overview

Issues to be resolved:

- 1) Host IDs and mechanisms to generate them. (Locators can be current IP addresses, using them only in L3 protocols)
- 2) Mechanisms for host ID to locator binding storage and distribution
- 3) Functions for host ID to locator mapping in gateways or border routers

Host Name and Identifier System (HNIS)

Host name generation

- Local hostname
 - Generated from feature words
- Global hostname
 - Combination of local hostname and domain name

Host ID formation

- Generated by hashing global hostname
- Two-layered name resolution system
 - Domain Name Registry
 - Host Name Registry

Host name, ID to Locator Resolution

Network Architecture Components

Network Architecture Components (Cont'd)

- Host, GW, Name Registry (HNR + DNR), ID Registry and Routers are the architectural components
- GWs perform L3 protocol/locator translation if
 - L3 protocols used in each edge network differ
 - L3 protocols used in edge networks and global transit network differ

- Host can have in general one hostname, one or more host IDs, and one and more locators depending the number of interfaces and available networks
- Name Registry (HNR+DNR) used for <u>hostname resolution</u> at the beginning of a communication
- ID Registry used for storing, updating and distributing <u>ID to</u> <u>locator and other information</u> mappings for supporting mobility, multihoming, and scalable routing. It can be collocated with GW.

Mobility Management

ID Registry (IDR) control network is used for propagating ID/LOC mapping updates

Scalable Routing

Using different locator spaces at global transit and edge networks

Having ID/locator mapping functions in GW

Using ID Registry to obtain or propagate ID to global locator (GLOC) mapping records

* Approach is similar to what is currently being discussed in IRTF RRG.

Implementation Layout

To verify the basic functions of the architecture, it is implemented in Linux

Implementation Layout (cont'd)

ID/locator split functions supporting conventional protocol stack

TUN/TAPEther frame exchange between conventional and
ID/LOC split applications through TUN/TAP1IPv4 packet sent through raw socket2IPv6 packet sent through raw socket

Architecture Functions Verification

- Verified basic functions for name resolution, mobility, multihoming, security
- Tested mobility: session continuity while moving interface
 - L3 handover time = 12ms (L2 switching time = several seconds)
- Tested multihoming: session continuity while changing interfaces
 - L3 interface switching time = 12ms
- Security: encryption of control signals and data packets
 - OpenSSL's RSA library used; could not cipher heavy traffic such as video promptly

Summary and Future Work

- Presented the ID/locator split-based architecture of future networks
 - new host name and ID system, two-layered name resolution system
 - logical control network for name resolution and ID/locator mapping updates and distribution
 - Verified the basic functions in a local scale testbed
 - As a common platform for mobility, multihoming, scalable routing, and security
 - For integrating different L3 protocols (IPv4 & IPv6)
- Future work
 - Extend and evaluate the architecture in larger scale testbed, e.g., over PlanetLab
 - Extend the logical control network functions to support mobile routers and resource discovery in heterogeneous networks

Thank you for your attention !