

A Study on Fast MMD Session Control Methods in 3G mobile communications

Satoshi Komorita KDDI R&D Laboratories, Inc. sa-komorita@kddilabs.jp

- 1. Research Background
- 2. MMD (MultiMedia Domain) Overview
- 3. Problems of MMD Session Sequence
- 4. Proposal of MMD Session Fast Control Methods
- 5. Implementation and Evaluation
- 6. Summary

Research Background

- NGN attracts attention for providing high advanced network services
 - Integration of fixed and mobile networks
 - Service Example: VoIP, IPTV
- IMS/MMD have been gating importance as the key technologies of NGN
 - Platform for providing multimedia services over IP network
 - IMS and MMD have almost the same architectures

Features of MMD

Functions for providing multimedia services

- QoS Control Function
- Flexible Accounting according to contents
- Easy Integration with third party services
- Communication Management
 - Session Management: SIP
 - Call Control such as calling, establishment of communication between terminals.
 - Mobility Management: Mobile IP
 - Ensure reachability of mobile terminals

These are called "Session Control" in this presentation

Simple MMD Network Architecture

Network Configuration

- Home Network (HN)
 - Core Network
- Visited Network (VN)
 - There are some VNs depending on Access media and Areas
- There are network delays in Backbone and Radio Access Network

Session Control Nodes

- SIP: S(/I)-CSCF, P-CSCF
 - Distributed P-CSCF
- Mobile IP: HA, FA
- Authentication: HSS/AAA

Sequence Overview of Basic Mobile IP/SIP

- Reachability of Mobile host is ensured after Mobile IP registration
- Call Control becomes available after SIP Registration
 - Establishment of IPSec Connection and Gate Open
- Both Registrations
 are needed for being
 provided with MMD
 Service

Problems of MMD Session Control

- Fast Session Control is needed
 - Voice Data is blocked until session control is finished when handover occurs
 - Mobile IP and SIP are effective, respectively
- Redundancy caused by Independent Procedures of Mobile IP and SIP
 - Redundant Route
 - SIP messages within a VN are routed through a HA
 - Similar Procedure
 - Sequential Registration of Mobile IP and SIP
 - Individual authentication of Mobile IP and SIP

We propose Collaborative Methods between Mobile IP and SIP

Proposed Methods

- Method1: Selective Reverse Tunneling
 - Optimization of route of SIP Message
- Method2 : PiggyBacking
 - Optimization of a number of Control Messages
- Method3:Collaborative Authentication
 - Optimization of Authentication Procedure without reducing the level of security
- Method4: Integrated Method
 - Integration of the above three methods

8

Method1 : Selective Reverse Tunneling

Method2 : PiggyBacking

Method3 : Collaborative Authentication

Method4 : Integrated Method

Implementation

Experimental MMD Network Configuration

- I HN and 3 VNs
 - VNs: 2 radio access networks, 1 fixed network
 - RAN Emulators and delay generators
- Mobile IP and SIP Constituent Nodes
- Specifications of Nodes
 - Hardware: General PCs
 - Pentium4: 2.8GHz, Memory: 2GB, OS: Fedora Core 3
 - Partly, FreeBSD 5.5-RELEASE
 - Software: Free Programs and Our original Programs
 - SIP Client: Sip Communicator
 - DB: MySQL
 - Mobile IP: dynamics

Evaluation

- Evaluation Methods
 - Mode1: Baseline Sequence
 - Mode2: Collaborative Authentication
 - Mode3: Integrated Method
- Evaluation Index
 - Registration Time: Time required for Mobile IP and SIP registration
 - Re-Connection Time: Interrupting time while handover

Measurement Methods

- Measurement Procedure
 - MN communicates with CN using VoIP, then move to other VN, and resumes the communication
 - Calculates Registration Time and Re-Connection Time based on times of captured packets
- Change of delay
 - The delay of the backbone network is calculated on the basis of ITU-T Y.1541
 - The delay of the radio access network comes from ITU-T G.114

	Delay of Backbone Network	Delay of Radio Access Network
Delay Pattern1	20,22,24,33,53,68, 88,136,150ms	80ms fixed
Delay Pattern2	24ms fixed	40,80,110,220ms

Registration Time and Re-Connection Time for Delay Pattern 1

Result(2/2)

- Registration Time and Re-Connection Time for Delay Pattern 2
 - The result follows a similar pattern to the result of Delay Pattern 1

Estimated and Observed Values(1/2)

 Estimated Value of Reduction of Registration Time for Delay Pattern1

- Observed values are about 50 ms smaller than estimated values
 - The amount of process at each node is reduced by reduction of messages

Estimated and Observed Values(2/2)

- Estimated Value of Reduction of Registration Time for Delay Pattern2
 - The result follows a similar pattern to the result of Delay Pattern 1

Improvement of Re-Connection Time

- The result of Experiment is not enough
 - 7 sec is still taken for re-connection in Mode 3
 - Delay of Backbone network: 150ms
 - Delay of Radio Access Network: 80ms

Time is taken for processes to which proposed methods are not applied

Geneva, 12–13 May 2008 First ITU–T Kaleidoscope Conference – Innovations in NCN

Summary

- IMS/MMD are the key technologies of NGN
 - There is redundancy caused by individual procedures of Mobile IP and SIP
- Fast Session Control Methods are proposed based on collaboration between Mobile IP and SIP
 - Selective Reverse Tunneling, PiggyBacking, Collaborative Authentication, Integrated Method
- Effectiveness of proposed methods are verified by measurement and evaluation using real machines
 - The fast methods for other processes are needed

Geneva, 12–13 May 2008 First ITU-T Kaleidoscope Conference - Innovations in NCN

Estimated Value of Time Reduction

$D_{back} \times N_{back} + D_{access} \times N_{access}$

- Dback : Delay of Backbone Network
- Nback : A number of messages reduced over Backbone network
- Daccess: Delay of Radio Access Network
- Naccess : A number of messages reduced over Radio Access Network