

# Joint ITU/IEEE Workshop on Ethernet - Emerging Applications and Technologies

(Geneva, Switzerland, 22 September 2012)

# Status Update on 802.3 40 Gb/s and 100 Gb/s Fiber Optic Task Force

Daniel Dove
Sr. Director of Technology
Applied Micro
ddove@apm.com



## **VIEEE IEEE 802.3 Standards**



#### ■IEEE 802.3bm

- Next Generation 40 Gb/s and 100 Gb/s Optical Ethernet
  - Defining 40GBASE-ER4 (40km) solution
  - Defining 100GBASE-SR4 solution
  - Defining 100GBASE-nR4 solution
  - Defining a 4x25G Electrical Interface CAUI-4
- Industry Connections (at the end of presentation)
  - Bandwidth Assessment Ad hoc
    - Identified industry trends and bandwidth growth
  - Consensus Building for Higher Speed of Ethernet
    - Forum for building consensus towards an 802.3 Call For Interest



#### **40GBASE-ER4**



- Plan to modify Clause 87 to enable 40 km reach
  - Allow low cost 40G adoption in metropolitan applications
  - CWDM grid leveraged from 40GBASE-LR4
  - Anticipate early baseline proposal to allow industry adoption with low risk of change
  - Anticipate stable parameters early in 2013



#### **40GBASE-ER4**



#### A 40km 40GBASE standard can simplify networks



#### Existing Solution - bulky & costly

- Requires sophisticated user base
- Requires additional equipment
- Optimized for '00s to '000s of km



#### <u>Proposed Solution – simple...</u>

- New PMD only
- Lack of point to point definition in telecom allows for additional Ethernet application

Ref: cfi\_0312\_2.pdf

\* Added 40GBASE-FR



#### CAUI-4



- ■100G (C) Attachment Unit Interface
  - Four lanes @ 25G data rate
  - Reduces width/cost/power of I/O to module
  - Potentially will leverage OIF CEI-VSR-28G
  - Common electrical channel with 802.3bj
    - Single host budget for copper cables, optics
- Fundamental to reducing cost/power and increasing density of 100G optics
  - Eliminates need for 10:4 mux/demux (aka: Gearbox) in optical modules



#### 100GBASE-SR4



- ■4x25G optical interface for MMF
  - Compatible with new 25G I/O
  - Reduce cost, power of transceivers, solution
  - Reduce # of fibers per link
  - Focus on Data Center application
    - May be a single PMD capable of >100m
    - May be two PMDs, one shorter reach (>20m) costfocused and one >100m
    - Task Force will decide based on cost/performance difference between longer/shorter reach alternatives



### 100GBASE-SR4





Ref: flatman\_01\_0311\_NG100GOPTX.pdf



#### 100GBASE-SR4



- Areas for consideration
  - Equalization; To compensate for BW limitations of VCSELs, PDs, TIAs, traces
  - Forward Error Correction (FEC); To increase reach while maintaining BER
  - Mode Partition Noise Effects of higher speed links on existing channel models
  - Re-timed vs Un-retimed interfaces



#### 100GBASE-nR4



#### ■4x25G optical interface for SMF

- Reduce cost, power of transceivers, solution
- Focus on Data Center application
  - May be a new PMD capable of ≥ 500m
  - May be LR4 with 4x25G electrical interface
  - Decision to add a new PMD will be based on cost
- Alternatives under consideration
  - Multi-pair (4x25G) SMF (eliminate TEC, optical mux/demux)
  - Complex Modulation (reduce optics, move \$ to DSP)
  - CWDM grid spacing (eliminate TEC)



## 100GBASE-nR4









## P802.3bm Schedule (tentative)







# **Thank You**