Prof François Bochud Institute of Radiation Physics (IRA–CHUV)

Effects of ionizing radiations on the human body

Radiations can damage living organisms

At high doses, life is threatened in the short term

Table 3.3: Range of doses associated with specific radiation induced syndromes and death in human beings exposed to acute low LET uniform whole body radiation.

Whole body absorbed dose ^a Gy	Principal effect contributing to death	Time of death after exposure (days)
3-5	Damage to bone marrow (LD _{50/60})	30-60
5-15	Damage to the gastrointestinal tract	7-20
5-15	Damage to the lungs and kidney	60-150
>15	Damage to nervous system	<5, dose-dependent

5 Gy is about 5,000 mSv

At low doses, risks of cancer and heritable effects increase

BEIR VII (2005)

External irradiation

Internal contamination

The source does not need to be in physical contact

The person is **not radioactive**

The source is in physical contact

The person is radioactive

... but usually not dangerous for nearby people

Radiations are everywhere

Big Bang

Stars, super novae

hydrogen helium all other elements

solar system

Beginning of life (~3.5 billion years) Man separates from Chimpanzee (~6 million years)

radon-222 in dwellings 1.6 mSv/y

- 528 nuclear bomb tests between 1945 et 1981
- radioactive contamination of food and organisms

Figure 6: Doses moyennes supplémentaires en mSv reçues par la population suisse à la suite de l'accident de Tchernobyl, pour les années 1986 et suivantes.

All Europe contaminated in 1986

Chernobyl

Swiss average: 0.5 mSv Swiss maximum: 5 mSv (<0.01 mSv/y now)

"20 ans après Tchernobyl, les conséquences en Suisse", Rapport OFSP (2006)

Fukushima

North Eastern Japan contaminated in March 2011

More than 20 mSv in the first year: evacuated

IRSN 16.05.2011, Rapport DRPH/2011-10

medical radiology

in 2008, the "average Swiss" received **1.2 mSv/an**

(large variations) (in doses) (in ages)

Conclusion

- High doses of radiation have early effects
- Low doses of radiation can cause cancer
- Radiations are **omnipresent**
 - The main component of the dose is natural with 2.8 mSv/y
 - Radon gas is the highest contribution

1.2

