ITU-T Workshop on IP Traffic Flow Measurement

(Geneva, Switzerland, 24 March 2011)

Introduction to IP Traffic Flow Measurements and Packet Sampling

Dr.-Ing. Tanja Zseby

Fraunhofer Institute for Open Communication Systems (Fraunhofer FOKUS) Berlin, Germany

Geneva, 24 March 2011

Overview

Motivation

- IP Packet Observation
- Limitations
- Aggregation and Selection
 - Aggregation: IP Flow Measurements
 - Selection: Filtering and Sampling
- Multipoint Measurements
- IP Flow Information Export
- Summary

Motivation

- Accounting
- Security
- SLA Validation
- Fault Detection
- Traffic Engineering
- Traffic Profiling
- Research (Experiment Supervision)

Packet and Flow Measurements

Observation of IP Packets

Calculation of Metrics

Quelle: [LaCD05] Lakhina, Crovella, Diot: Mining Anomalies Using Traffic Feature Distributions, *SIGCOMM* 2005.

Problem: Limited Resources

Limitations

Capturing

- On router

 capturing competes with routing tasks
- ◆ Specialized hardware → expensive, multiple devices needed
- Storage
 - E.g. flow cache on routers
- Data export
 - Transmission capacity
 - Effort to support reliable transport

Specialized Hardware

Specialized capture cards 10 Gbit Ethernet, full line rate capturing High precision time stamping Examples Endace DAG 9.2X2 (March 2010) Napatec NT20E Capture NTT Advanced Technology PRESTA 10G But: Expensive

Aggregation: IP Flows

Calculation of Metrics

e.g. classification according to IP addresses

Calculation of metrics possible if suitable classification (flow characteristics)

Example: Usage-based Accounting

Example: Usage-based accounting

Flow classification

- Based on source network addresses
- Dependent on tariff model
- Generation of Accounting records
 - Capture packet sizes
 - Calculate number of bytes per flow
- Today: Cisco NetFlow
 - Flow classification based on flow keys

IP Flow Observation on Routers

*Quelle: NetFlow Performance Analysis, Cisco Whitepaper, May 2007

Packet Selection

Estimation Accuracy

Multipoint Measurements

Metrics: Path, one-way delay, loss

- But Challenges:
 - Positioning of Measurement Points
 - Inter-domain Observations
 - Cooperation of network operators
 - Exchange of data, data protection
 - Synchronization of measurement processes
 - Time synchronization → NTP, GPS,...
 - Synchronization of data selection

Example: SLA Validation

Example: Attack Detection

Multipoint Measurements

Multipoint Packet Selection

Hash-based Selection [RFC5475]

Duffield, Grossglauser: "Trajectory Sampling for Direct Traffic Observation", IEEE/ACM Transactions on Networking, vol. 9, 2001

[RFC 5475] Zseby, Molina, Duffield, Niccolini, Raspall. Sampling and Filtering Techniques for IP Packet Selection, RFC 5475, Standards Track, March 2009.

Challenges

- Hash input: suitable header fields
 - Invariant on the path
 - Variable between packets
- Suitable hash function*
 - Performance
 - Representativeness of selection
- Dynamic adaptation of selection rates
 - Configured vs. attained selection rate
 - Coordinated adaptation to available resources

* [HeSZ08] Henke, Schmoll, Zseby: Empirical Evaluation of Hash Functions for Multipoint Measurements, ACM Comput. Commun. Rev. CCR 38, 3, July 2008.

Packet Tracking

Packet Tracking Software Follow the path that a packet takes Based on hash-based selection Deployed in PlanetLab Europe Service for PlanetLab users (researcher) Capture path of packets in network experimenters Used for multipath routing, overlay experiments

Packet Tracking in Federated Environment

Demonstration at SIGCOMM 2010

IP Flow Information Export (IPFIX)

Future protocol for data export

- "Successor" of Cisco NetFlow
- Supports packet and flow measurements
- Allows flexible flow definitions
- Integration of data selection methods possible
- Information Elements (IE)
 - Flow information in IEs (e.g. #packets, bytes)
 - Many information elements exists (see www.iana.org/assignments/ipfix/ipfix.xml)
 - Vendor-specific IEs possible

IPFIX Information Elements

Example: Usage based accounting

- IE: sourceIPv4Address (source IP)
- IE: destinationIPv4Address (destination IP)
- IE: ipDiffServCodePoint (DiffServ class)
- IE: octetDeltaCount (#octets in the Flow)
- Further Examples
 - IPFIX Applicability Statement (RFC 5472)

Summary

- Many applications require measurements
- Problem: Limited resources
- Solution: Aggregation and Data Selection
 - Aggregation: IP Flow Measurements
 - Selection: Filtering and Sampling
- Multipoint Measurements
 - Measurement of path, quality (loss, delay)
 - Synchronization needed
- IPFIX Standard
 - flexible flow and packet reporting

Thank You!

tanja.zseby@fokus.fraunhofer.de

