ITU-T Workshop on Bridging the Standardization Gap and Interactive Training Session

(Cyberjaya, Malaysia, 29 June – 1 July 2010)

Business Experience in Implementation of WiMAX

Do-Young, Kwak Researcher, KT Corporation

Contents

IMT-Advanced Standardization

- Mobile WiMAX
 - Introduction of Mobile WiMAX
 - Deployment Issues
- Summary

IMT-Advanced Standardization

Mobile Data Explosion

Source: Cisco Visual Networking Index

Evolution Path in Standardization toward IMT-Advanced

IMT-Advanced

- Official name of 4G defined by ITU-R SG5 WP8F [TG8/1('85)→WP8F('00)→WP5D(`08)]
- Key features
 - Worldwide commonality
 - Service compatibility
 - Interworking capability
 - High-quality mobile service
 - Worldwide usability of user equipment
 - User-friendly applications, services and equipment
 - Worldwide roaming capability
 - Enhanced peak data rates
- Candidate RIT
 - 3GPP LTE-Advanced, IEEE 802.16m

Cyberjaya, Malaysia, 29 June – 1 July 2010

alleh K

5

IMT-Advanced Standardization Schedule

Steps in radio interface development process:

- Step 1: Issuance of the circular letter
- Step 2: Developement of candidate RITs and SRITs
- Step 3: Reception of the RIT and SRIT submissions and
- acknowledgement of receipt Step 4: Evaluation of candidate RITs and SRITs
 - by evaluation groups

Critical milestones in radio interface development process:

March 2008

October 2009

- (0): issue an invitation to propose RITs
- (1): ITU proposed cut off for submission of candidate RIT proposals

- Step 5: Review and coordination of outside evaluation activities
- Step 6: Review to assess compliance with minimum requirements Step 7: Consideration of evaluation results, consensus building and decision
- Step 8: Development of radio interface Recommendation(s)
- (2): Cut off for evaluation report to ITUJ(3): WP 5D decides framework and key
characteristics of IMT-Advanced RITs and SRITsO(4): WP 5D completes development of radio
interface specification RecommendationsF
- June 2010 October 2010

February 2011

Spectrum Identification for IMT at WRC

No distinction of IMT-2000 & IMT-Advanced in the use of frequency

4(00	600)	800		1000	17	/00	19	00	210	0	23	00	25	00	270	0 3	400	360	00
WARC -92									1885	140M	5 21	90W	00								230M
WRC -00				¢	06 154	960 M	17	10 17	1885 5 M						2500	26 190	90 M				519M
WRC -07	450 470 2 <mark>0 M</mark>)	698 1 Regio	60 08 M na1	6 72M	2							2	300 2 100N	400			34 Cou ba	00 201 ntry se	360) M	。 428M 392M

IMT-Advanced Standardization Progress

- Issuance of Circular Letter (2008. 2)
- Minimum requirements (2008. 6)
- Technology Description Template : ITU-R Report M.2133
- Compliance Template : ITU-R Report M.2134
- Evaluation guideline : ITU-R Report M.2135
- WP5D 6th meeting(2009. 10)
- Six IMT-Advanced Candidate Proposals submission

Candidate Proposals	Proponent	Contents					
	IEEE	IEEE 802.16m (TDD/FDD)					
1602 16m	Japan	IEEE Technology excluding IPR					
002.10	Korea	IEEE Technology excluding IPR					
	3GPP (39 members)	LTE Release10&Beyond (TDD/FDD)					
LIE- Advanced	Japan	LTE Release10&Beyond (TDD/FDD)					
Advanced	China	LTE Release10&Beyond (TDD)					

Preliminary Evaluation Reports WP5D 7th meeting (2010. 2)

Candidate technologies satisfy the minimum requirements of ITU-R IMT-ADV

●(submission)				3GF	PLTE-	Advar	nced		IEEE 802.16m					
	paruarsubmission) □(expected)	Contribu		FDD		TDD			FDD			TDD		
לג(ו	Inder consideration) X(No evaluation)	tion #	I	A	s	I	A	S	I	A	S	I	А	s
(Evaluation Groups)		629	v	Ŷ	v	v	īv.	v	V	V	ÿ	Ŷ	v	×.
2	ATIS(USA)	670/671	 ●											
3	CEG(Canada)	668	õ	0		Ō	0		Ō	0		õ		
4	ChEG(China)	650	•	•		•	٠	•						
5	RFG(Russia)	662		Ш	Ľ1				0	Ο	•	Θ	O.	
6	TCOE(India)	657	•	0	Ļ.	•	0							
1	TR-45(USA)	669	Ö	O.		Ο	Ö		Ö	O,	Π	Ö	O	
8	TTA PG707(Korea)	652/653			0	쓝	×	¥			٥O	Ē.		Ö
9	WCAI(USA)	667	-	-"		4	<i></i> ′	-		•		•	•	•
10	WFEG(WIMAX)	651	1 - 1	-	- 44	-		-	4-	-	•		-	•
11	WINNER+(EU)	661	•	•			•			-	-	-	-	1 2
12	Argentina													
13	Israel] -	. - ⁶	-		-		-	×	-	-	·-*	-	(-
14	ETSI(EU)			7										

Mobile WiMAX Introduction

Key features of M-WiMAX

M-WiMAX Network Architecture

ASN Reference Model

Cyberjaya, Malaysia, 29 June – 1 July 2010

13

Mobile WiMAX Deployment Issues

KT WiBro(Mobile WiMAX) Commercial Service Stage

olleh kt 15

Operator's General Requirements

 RFP consists of traffic assumption, price, training plan, system feature list, network architecture, O&M requirement, optimization, etc.

Coverage

Maximum coverage based on IEEE 802.16e

BW (MHz)	3.5	5	10	8.75
Effective symbols	33	47	47	42
Unallocated Frame Duration (TTG+RTG)	248.0	165.7	165.7	161.6
RTG (µs)	60	60	60	74.4
TTG (μs)	188	105.71	105.71	87.20
RTD (µs) = TTG – SSRTG	138.0	55.7	55.7	37.2
Maximum Range (km)	20.7	8.36	8.36	5.58

* RTD: round trip delay BS to MS, TTG: Tx to Rx transition gap at BS, RTG: Rx to Tx transition gap at BS

* SSRTG: mobile station receive to transmit transition gap

KT coverage criteria

- Minimum supportable TP per user: 512kbps(DL), 128kbps(UL)
- CINR \geq 5dB
- KT BS coverage in Seoul: 300 ~ 400 m
 - About 500 BSs excluding subway BS in Seoul

Coverage: Link budget

Link budget

- An assessment of the losses and gains that occur on a link between transmitter and receiver
- To predict cell coverage

- Link budget analysis process
 - MAPL(dB) = Tx_EIRP Rx_sensitivity + sum of (gains & losses)
 - Tx_EIRP: Max Tx power per traffic channel + Tx ant. gain cable loss
 - Rx_sensitivity: Required minimum received signal power at Rx

Coverage? Remote RF Unit

Cyberjaya, Malaysia, 29 June – 1 July 2010

olleh kt 19

Coverage? Indoor Solution

Fast Link Adaptation

Adaptive Modulation on a burst by burst basis

 Each subscriber operates at the data rate corresponding to its link quality

- MCS table: MCS level transition criterion
- Outer loop power control: efficiency improvement at user throughput

Handover Process

- Handover in M-WiMAX: Hard handover
- Handover Process
 - Cell reselection
 - Receiving neighbor BS information (MOB_NBR-ADV)
 - Scanning neighbor BSs
 - HO decision & Initiation
 - Handover decision from Serving BS to Target BS
 - Synchronization to Target BS Downlink
 - Ranging
 - Handover RNG processing for synchronization to target BS uplink
 - Handover optimization process
 - Termination of MS context in serving BS
- Inter-sector, Inter-BS, Inter-ACR Handover

Performance Evaluation

Simulation components

Performance Evaluation Link level simulation

- To probe the characteristics of a point-to-point linkResult
 - Link performance curves (as a function of received SNR)

Performance Evaluation System level simulation

- To evaluate the overall performance of a whole system
- Result: System throughput

Summary

- IMT-Advanced standards establishment
 - Scheduled to be early 2011 through the expert evaluation process
 - 2 Candidate RITs: LTE-Advanced, IEEE 802.16m
 - Now evaluation stage
 - Candidate RITs satisfy the minimum requirements
- Mobile WiMAX
 - Flat architecture due to All-IP services
 - Deployment issues
 - Coverage
 - Fast link adaptation
 - Handover
 - Performance evaluation

Thank You

Q & A

E-mail: dykwak@kt.com

