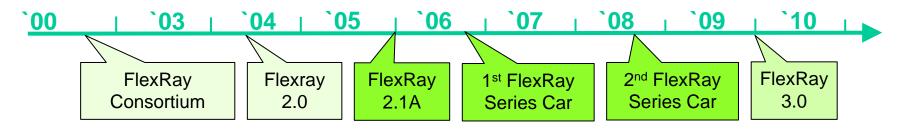
The challenge of state-of-the-art vehicle communication - FlexRay[™] for the Masses



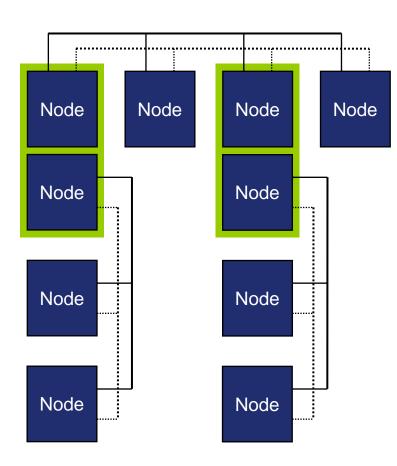
International Telecommunication

- The FlexRayTM Specification Overview of Protocol Enhancements V3.0
- The FlexRayTM Specification Overview of Physical Layer Enhancements V3.0
- o Efficiency of FlexRayTM Architectures

FlexRay Evolution

• Mature Communication Standard:

- Several 10s of Microcontrollers with embedded FlexRay[™] interface have passed conformance test
- FlexRay[™] projects at all Automotive OEMs
- FlexRay 3.0 incorporates experience from several series projects


The FlexRay[™] Specification - Overview of Protocol Enhancements V3.0

The Fully Networked Car Geneva, 4-5 March 2009

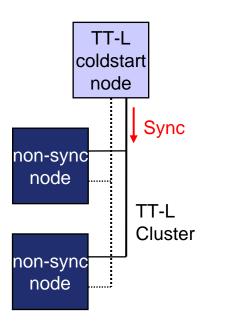
Key Requirement Synchronization Modes

Key Requirement

 Provide simple means for connecting sub-networks to a FlexRay[™] network such that synchronization is retained between the networks.

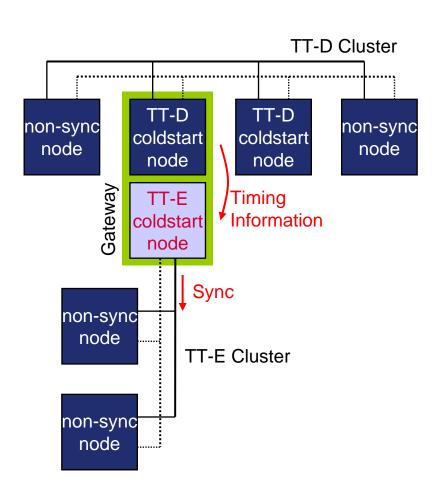
Key Aspects

- Alignment of schedules
- Synchronization transparent to higher layers
- Scalable (single or dual channel)
- Simplicity


Basic Solution

 Introduced time-triggered master mode (TT-L and TT-E)

The Fully Networked Car Geneva, 4-5 March 2009

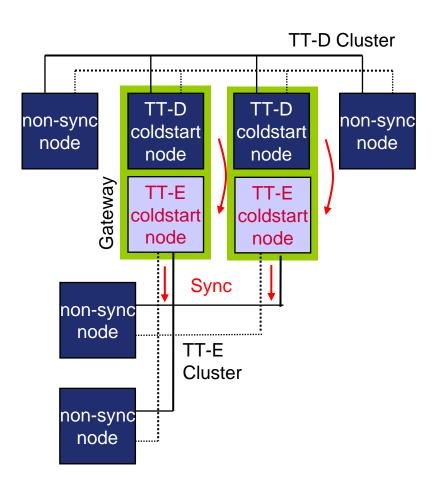


TT-L cold start node for simple networks

- A TT-L coldstart node is able to act as the only start-up node and the only synchronization node in the TT-L cluster.
- TT-L coldstart node sends synchronization frames in two static slots
- TT-L is transparent to nonsync nodes
- Useful for small stand-alone systems and for developing sub-networks for multi-cluster systems

TT-E Use Case "External Sync Mode"

The Fully Networked Car Geneva, 4-5 March 2009


TT-E coldstart node for externally synchronized networks

- A TT-E coldstart node is able to retrieve start-up and synchronization information from another cluster and provide this information to the TT-E cluster.
- TT-E is transparent to nonsync nodes
- TT-E coldstart node can switch autonomously to local sync mode in order to keep communication within the TT-E cluster ongoing if TT-D cluster is not active.

International Telecommunication Union

TT-E coldstart nodes for externally synchronized networks

- Increase robustness: Multiple TT-E coldstart nodes in one TT-E cluster
- Both TT-E coldstart nodes are able to start-up the TT-E cluster and keep communication ongoing without the respective other TT-E cold start node.
- Both TT-E coldstart nodes are synchronized via the TT-D cluster.
- Operation of TT-D and TT-E coldstart nodes remains transparent to non-sync nodes

Enhancements to the Protocol Logic		
Bit rates		
Wakeup		
Synchronization Modes		
Dynamic Segment		
Enhancements to the Controller Host Interface		
Slot Multiplexing		
FIFO Buffer		
Cycle Counter		

9

Overview of Key Protocol Enhancements V3.0

Enhancements to the Protocol Logic

Bit rates	Support for 2.5 MBit/s, 5 MBit/s and 10 MBit/s
Wakeup	Wakeup During Operation Pattern (WUDOP) can be transmitted in symbol window to support wakeup during normal operation
Synchronizatio n Modes	Two new synchronization modes TT-L and TT-E allow a single node to control startup and clock synchronization by transmitting two startup frames per communication cycle
Dynamic Segment	Increased masking of noise in the dynamic segment by re adjusting slot counter for noise events

Enhancements to the Controller Host Interface

Slot Multiplexing

FIFO Buffer

Cycle Counter

The Fully Networked Car Geneva, 4-5 March 2009

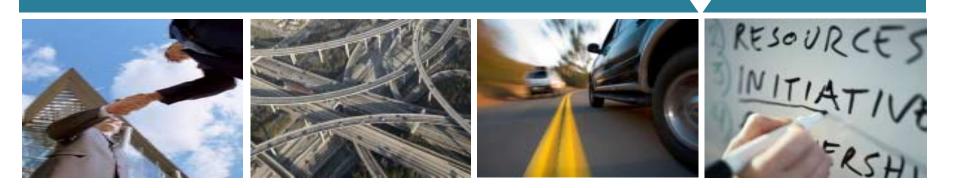
Overview of Key Protocol Enhancements V3.0

Enhancements to the Protocol Logic

	Bit rates			
	Wakeup			
	Synchronization Modes Dynamic Segment			
Enhancements to the Controller Host Interface				
	Slot Multiplexing	Slot multiplexing (i.e. sharing of static communication slots between multiple nodes) is allowed in the static segment for all slots except for keyslots		
	FIFO Buffer	At least one FIFO buffer now mandatory Detailed FIFO filter criteria specified		
	Cycle Counter	Cycle counter wraparound value became configurable (any even number between 8 & 64 possible)		
		Cycle counter filtering extended to repetition values of 5, 10, 20, 40 and 50		

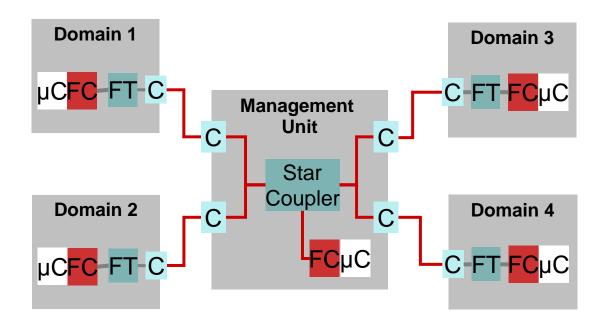
The FlexRay[™] Specification - Overview of Physical Layer Enhancements V3.0

The Fully Networked Car Geneva, 4-5 March 2009



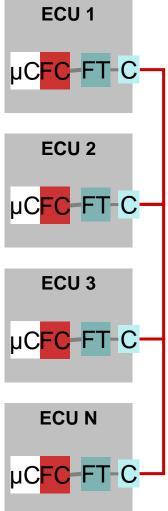
Overview of Key Physical Layer Enhancements V3.0

Enhancements				
	Bit rates	Support for 2.5, 5 & 10MBit/s		
		eye diagrams for 2.5, 5 & 10MBit/s added & reworked		
		minimum bit time was reduced to 70ns		
		introduction of the signal integrity voting		
	Active Star	Interface to a CC/host added		
		distinguishing between monolithic and non-monolithic implementations		
	Signal Integrity & Timing	Detailed consideration of ringing effects		
		bus timing harmonized with Jaspar		
	Interfaces	Specification of the CC-BD interface (timings, thresholds, PCB influences etc.)		
		Timing specifications covering all components between the transmitting and receiving protocol engine		
		Leakage and short circuit currents defined		


Efficiency of FlexRayTM Architectures

The Fully Networked Car Geneva, 4-5 March 2009

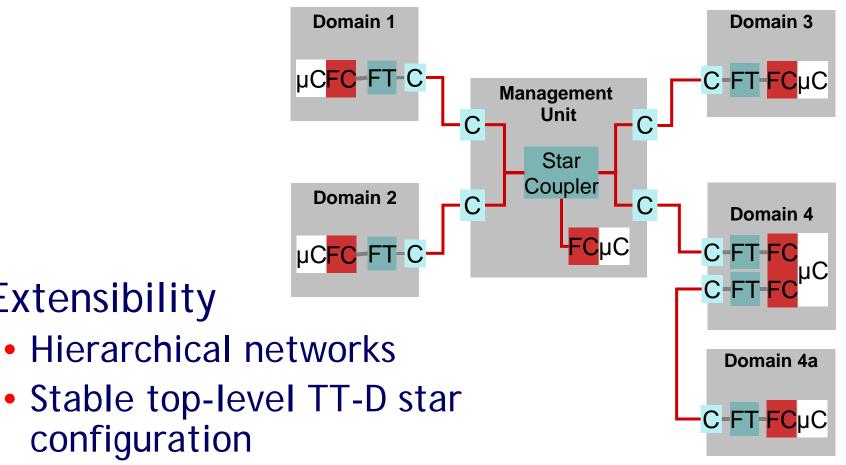
FlexRay™ Implementation Cost



o Integration

- Monolithically integrated FlexRay[™] active star (4 or more FlexRay[™] busses)
- FlexRay[™] System Basis Chips (SBC)

FlexRay[™] Implementation Cost



Lower cost topologies

- Large linear bus topologies (> 20 members) w/ high wiring margin, use of 2.5 MBit/s speed
- Use of TT-L local sync mode
- Simple CAN replacement, efficient use of dynamic segment

FlexRay[™] Implementation Cost

Variations of fitting confined to lower level TT-E bus topologies

The Fully Networked Car Geneva, 4-5 March 2009

o Extensibility

Summary

- The FlexRay[™] communication system has become the standard solution for automotive distributed control systems
 - The next generation will focus on cost effective FlexRay[™] systems
 - Easy replacement of CAN: simple, linear bus structures
 - Multi-tiered topologies: FlexRay-2-Flexray architectures

 At the same time, innovation in Chassis Electronics can still continue to use the FlexRay[™] system as a vehicle for Domain-based architecture redefinition

Getting Assistance

o FlexRay Specifications: www.flexray.com

• Freescale FlexRay Portal: www.freescale.com/flexray

o Inquires

- Freescale Sales & FAE representative
- FlexRay Technical Experts: via Service Request on www.freescale.com

