
Adopting Meta-modelling for ITU-T Languages:
Language Tool Prototypes as a by-Product of

Language Specifications

Markus Scheidgen

Department of Computer Science, Humboldt Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
{scheidge}@informatik.hu-berlin.de

Abstract. Grammars have been used to describe computer languages
since the age of the first programming languages. But the kind of lan-
guages that we use in modern engineering has changed drastically over
the last decade. Modern computer languages come in a variety of forms
and their characteristics demand more from a description technique than
grammars can offer. In this paper, we examine two widely different ap-
proaches to language descriptions: grammars and object-oriented mod-
elling. We argue about language requirements and that grammars strug-
gle where object-oriented modelling promises new efficient ways to not
only describe languages, but also prototype language tools. In this paper
we briefly show the differences between grammars and meta-modelling
and show how meta-modelling can be used to automatically develop lan-
guage tool prototypes from language specifications.

1 Introduction

As a language description technique, grammars were used for a long time and
we know them pretty well. Meta-modelling on the other hand is a new promising
technique that still needs a lot of research to exploit its full potential and de-
fine its boundaries. In this position paper, we emphasise on differences between
grammars and meta-modelling in the context of modern computer languages.
One of the more important aspects of language descriptions are frameworks that
can be used to describe languages and generate language tools automatically. We
put a special interest in this generative engineering for language tools and use a
big part of this paper to illustrate how meta-modelling can be used to achieve
automated development of language tools prototypes. The goal of this paper is
to provide arguments for meta-modelling as a language description technique for
ITU-T languages.

Before we can even begin with an introduction, we need to characterise com-
puter languages and create a framework of definitions that allows us to clearly
communicate about the subject. This is especially important, because we discuss
the terms of two communities in this paper. With the given definitions, we in-
troduce context-free grammar-based language descriptions, put this traditional



2

technique into the context of modern computer languages to characterise existing
limitations, and finally we introduce object-oriented meta-modelling (OOMM).
The main part of the paper will give an overview of OOMM techniques and how
they can be used to overcome grammar limitations. We apply OOMM techniques
to describe the ITU-T language SDL to show the range of language aspects that
can be described and how OOMM supports the development of language tools.
We close the paper with related-work and conclusions.

2 Computer Languages

Languages are means to convey information to something. Computer languages
are all those languages that are used to convey information to a computer. Not
surprisingly, this intuitive definition describes computer languages as a means
for communication. Because one of the communicating partners is a computer
system, each utterance of a computer language has to have formally defined
structure and meaning: each computer language utterance must be processable
by a finite automaton (the theoretical model of a computer system) and its mean-
ing must be free of ambiguities. As long as there is no confusion with another
kind of language, we will refer to computer languages simply as languages. In
the following we define what languages and language utterances are; we discuss
the structural aspects of languages, the syntax of language utterances; finally,
we address the representation and meaning of language utterances.

2.1 Languages

As in formal language theory, a language as a set of language utterances. Because
this set forms a class or group of elements with common characteristics, we call
these utterances language instances and define them as follows:

Definition 1 A language instance is a well defined representation for a piece
of information.

To achieve this well defindeness, we introduce the concept of language de-
scriptions. At this point we do not want to elaborate on how this concept can
be realised, we just accept that there are language descriptions that are conform
with the following definition:

Definition 2 A language description is a finite system of rules that describes
what constitutes the valid instances of the described language. Therefore, a lan-
guage description is a means to generate all the valid instances of the described
language by accepting valid instances.

Finally, we can define what a language is:

Definition 3 A computer language (or simply language) is the set of all lan-
guage instances that can be generated by a language description.



3

2.2 Syntax

A language instance is not a monolithic piece, it has a structure and is con-
structed from smaller parts. We call these parts language constructs.

Definition 4 language construct are the building blocks for language instances.
A language comprises several language constructs; language constructs are re-
lated to each other.

Language constructs have to be well defined within a language description. In
other words, a language description comprises a collection of language construct
definitions (it is a system of rules).

Definition 5 A language construct definition defines a language construct. A
construct definition also relates the defined construct to other constructs of the
same language.

A language instance is built up from these language constructs. A language
instance consists of construct instances. Whereby, each of these instances instan-
tiates a construct definition. Construct instances might be connected with each
other according to the relations between corresponding construct definitions.

Definition 6 A language construct instance is a single occurrence of a language
construct within in a language instance. In accordance to the corresponding lan-
guage construct definition, construct instances can be connected.

Construct instances and their connections form the structures that constitute
language instances. We call such a structure the syntax of a language instance.

Definition 7 The syntax of a language instance is a representation of this in-
stance that reflects its structure.

The concepts syntax and language instance are closely related; sometimes
both terms describe the very same thing. As we will see later, OOMM uses
graph-structures as language instances. In this case, the language instance and
its syntax (the graph-structure itself) are the same thing. When we look at
textual languages and grammars on the other hand, a language instance is a
piece of text and its syntax is a tree that describes how the text was constructed
from grammar rules. Here language instance and syntax are different things.

2.3 Representation and Semantics

A language instance must have more than just plain syntax; it has to have
meaning to convey information. Now we can look at meaning from two sides: a
language instance can mean something, or it can be the meaning of something.
We defined a language instance as a representative of a piece of information.
To this end a language instances means something: this something is the infor-
mation it represents. On the other hand, a language instance itself is a piece



4

of information, and hence can be the meaning of another language instance (of
another language). We distinguish between semantics and representation. Se-
mantics is the meaning of a language instance, and representation is another
language instance that represents the language instance. These concepts only
differ in the point of view and we use the same means to realise these concepts.

Definition 8 A language instance is only a representation of something (e.g. a
statement, expression, command, program, software model, formula, etc.). The
meaning of a language instance is the something it represents. This something
is the semantics of a language instance.

Definition 9 A language instance (a piece of information) can be represented by
another language instance (of another language). This other language instance
is a representation for the language instance. A language with instances that
are representations for the instances of another (the notated) language is called
notation for this other language. The semantics of notation instances are the
instances of the notated language.

The semantics of a language or notation is defined by a semantic mapping
and a semantic domain. Often the semantic domain is just another language.

Definition 10 A semantic domain is a set. A semantic mapping is a relation
that associates language instances of a language (range) with elements of a se-
mantic domain (domain). A semantics description is a finite description; it com-
prises a description for the semantic mapping and either a description for the
semantic domain or a reference towards an existing semantic domain.

As explained, a language instance conveys information, therefore it is nec-
essary that is has well defined semantics. But does a language instance always
needs a representation? To answer this question, we have to distinguish between
concrete language instances and abstract language instances.

Definition 11 A concrete language instance is a language instance that has a
concrete, physical, tangible form. An abstract language instance is a language
instance that does not have a concrete, physical, tangible form. It can be repre-
sented by many concrete entities (e.g. concrete language instances); an abstract
language instance represents all the possible representing concrete language in-
stances.

A language instance is used to convey information by exchanging language in-
stances (as representatives of information) between two communicating entities.
An abstract language instance can not be exchanged because it is not a tangible
object. But, it is not necessary to transfer a possibly abstract language instance
itself, we can always use a concrete representation instead. Conclusively, if we
want to use a language that consists of abstract language instances, we need a
notation consisting of concrete representations to use this language.



5

3 Comparing Grammars and Meta-Modelling

3.1 Grammar-based Language Descriptions

The most common form of language descriptions are grammar-based language
descriptions (part of the disciple called formal language theory). Grammars were
established as a computer language description technique with the first program-
ming languages and extensively used throughout the last decades. Grammars are
a specific form of language descriptions for a specific type of computer language,
namely textual programming languages. Textual (programming) languages are
addressed in formal language theory:

Definition 12 A textual language instance is a language instance that com-
prises of a sequence of symbols from some set of symbols (alphabet). A textual
language is a language that consists of textual language instances constructed
over a single set of symbols (alphabet).

Grammars are a specific form of language descriptions for textual languages:

Definition 13 A grammar is a specific form of language description used to
describe textual languages. A grammar is a system of rules over a set of sym-
bols (alphabet) that describe which possible sequences of symbols constitute valid
textual language instances.

A grammar can be used in two ways and we can derive two types of tools or
theoretical tool models (automata) form a grammar. First, a grammar describes
which language instances are members of a language. This allows to construct
a recogniser for the described language. A recogniser is a finite automaton that
consumes potential textual language instances and either accepts or rejects them.
Second, a grammar describes how to analyse the structure of language instances.
This allows to construct a parser. A parser is a finite automaton that consumes
language instances and produces the language instances’ syntax. A language in-
stance can have several syntaxes based on the same grammar, because grammars
can be ambiguous.

Formal language theory distinguishes between four nested classes of textual
languages with four corresponding types of grammars (known as Chomsky hi-
erarchy). The according grammars can be realised by corresponding automata,
which themselves fall into four classes. The most complex language class that
still has a corresponding automaton type simple enough to be practically imple-
mentable for today’s computers is the class of context-free languages. Therefore,
the context-free grammar formalism (or formalisms based on context-free gram-
mars) is almost exclusively used to define grammars for textual languages.

At this point the details about context-free grammars are not important,
but their implications on language description expressiveness, general form of
corresponding syntaxes, and implications on depending semantics descriptions
are. Context-free grammars and the languages that can be generated have the
following limitations.



6

– Grammar-based language definitions describe tangible language instances.
These language instances are directly used to notate the language. And
grammars are not suited to distinguish between the language and different
notations.1

– Context-free grammars only allow syntaxes that have term structure. This
is too weak, even for the textual programming languages that grammars
are used for. Especially references in programs (e.g. the reference from a
variable usage to an according variable declaration) can not be represented
in a language instance. As a conclusion, grammar-based language definition
almost always have to be augmented with further descriptions, e.g. name-
tables or other static semantics concepts.

– Context-free grammars use simple rules to define the constructs of the lan-
guage. These rules cannot be explicitly defined as generalisations of each
other, and it is hard to express abstractions within a language definition.
As a result, inheritance or other forms of reuse between more abstract and
more concrete language construct definitions are not possible. Furthermore,
grammars do not provide modularisation concepts, and grammars do not al-
low to define auxiliary constructs or construct properties that could be used
for related descriptions (e.g. notations and semantics).

3.2 Language Description Requirements for Modern Computer
Languages

How much do the limitation of grammars effect the description of modern com-
puter languages? Modern software engineering does not solely rely on textual
programming languages anymore. Methodologies like Model Driven Develop-
ment, Product Line Development, or Domain Specific Languages rely on lan-
guage with far more diverse characteristics. Furthermore, we use large number
of languages within a single software development project: we use different lan-
guages to describe the problem domain or software product in different the
project phases and on different abstraction levels. As a result, modern computer
languages have the following characteristics:

– They are not all textual languages. We have languages that are notated
in text, tables, or diagrams. Thereby, a single language instance is often
represented by a number of texts, tables, or diagrams.

– Languages might use several notations. This can mean that a whole language
instance can be represented in different notations, or that different parts of
a language instance are represented in different notations.

– Several instances of different languages describe the same thing on differ-
ent abstraction levels or from different views. As a result, the constructs of
different languages are logically related to each other.

1 Anyhow, grammar-based language definitions distinguish between concrete and ab-
stract syntax, but the corresponding grammars are very similar and basically enforce
the same structures with in the concrete and abstract syntax of a language instance.
As a conclusion, grammar-based language definitions are only feasible for languages
with exactly one textual notation.



7

– More general languages are used in more specific contexts and have to be
specialised for this purpose. This requires means to specialise language con-
structs or create language profiles to alter language representation and se-
mantics.

– Very specialised languages with a narrow set of constructs that are only
used within one domain (Domain Specific Languages) or even for just a
single project.

Not only the character of computer languages has changed, but also the
habits of using them and how these languages are realised in language tools.
Where in the past a plain text editor and compiler was satisfactory, we now
demand integrated development environments (IDE) that combine the tools of
all used languages. We switch between different views on our software, between
different abstraction levels. Changes made to one part of a software system
description automatically changes others. Characteristics of modern computer
language tools are:

– The efficiency and quality of software development depends on the quality
of language tools as much as it depends on the quality of the used languages.

– Highly specialised languages, such as DSLs, require efficient development of
language tools to be economically sustainable.

– Specialised languages also require to change a language often. When the
domain changes, the DSLs has to change as well.

– Tools need to be integrated; language instances are exchanged between tools
of different vendors; changes in one artefact inflict automatic changes in
others.

From those characteristics of computer languages and their usage, we can
derive a set of requirements for language descriptions.

– Language instance and representation have to be two separate things. Lan-
guage descriptions must allow the definition of several notations for a lan-
guage. Different forms of notations have to be combined.

– Language description techniques, include techniques for the description of
language, notations, and semantics must provide the means to express ab-
stractions within language constructs. Language construct definitions should
form specialisation hierarchies, including the reuse/inheritance of construct
characteristics and related descriptions for representation and semantics.

– Language description must allow the development of language tools. There-
fore, it is critical that language description techniques are well align with
predominant programming paradigms, especially object-orientation.

– Language descriptions must allow the efficient development of language tools
and prototypes.

– It must be possible to combine different language description. The descrip-
tion techniques must allow to relate language constructs of different lan-
guages. Language descriptions must facilitate the description of mappings
between different languages.



8

3.3 Object-oriented Language Description Techniques

There are several approaches that issue the limitations of context-free grammars.
Examples are graph-grammars and attributed grammars. It is not the goal of
this paper to evaluate all these approaches to find the ultimate replacement
technology for context-free grammars. In this paper, we look at one specific
technology, and examine to what extend this technology can fulfil the listed
requirements and what the future potential of this technology is.

This technology can be called object-oriented meta-modelling (OOMM); we
will call is MOF-like meta-modelling based on the MOF OMG recommendation.
OOMM uses object-oriented structure models to describe what possible lan-
guage instances are. In the same way a context-free grammar (in the following
just grammar) uses rules and symbols, a MOF-like meta-model (in the following
just meta-model) uses classes and properties to define structures (language in-
stances). But MOF-like meta-modelling promises the following advantages over
context-free grammar based language descriptions:

– A meta-model describes language instances independent from their notation.
The described language instances are graph-structures: an instance and the
instance’s syntax are the same thing. This allows to define several indepen-
dent notations and all forms of notations for a language.

– Meta-models describe graphs and not trees. This makes meta-models more
powerful: for example, references in textual languages can be modelled or
languages that are notated by diagrams (graphs themselves).

– Meta-models are object-oriented and abstractions between constructs can
be expressed. Classes can form specialisation hierarchies and properties can
be inherited. As a conclusion abstract language constructs can be reused.
This is not only imported for the meta-models themselves, but also for the
language tool design based on this models. Furthermore, meta-models can
be modularised.

4 Generative Engineering of Language Tool Prototypes

The most important aspect of language engineering is the development of lan-
guage tools, because the tools are prerequisite to use a language. Therefore, a
language specification needs to address efficient tool development. State of the
art language description techniques (and OOMM in particular) can be used for
the generative engineering of language tools.

4.1 Generative Engineering

In this paper, we focus on the generation of language tool prototypes from lan-
guage specifications. In this section we want to look at generative engineering2

2 This is also often referred too as Domain Specific Modeling[1] or Model-Driven Soft-
ware Engineering[2].



9

in general. Instead of manually programming similar programs again and again,
generative engineering uses specialised description languages to generate the
instances of a class of similar computer programs. This raises the level of ab-
straction and reduces development efforts because you describe the things that
are specific for a concrete computer program and neglect the things that are
common for the whole class of similar programs.

Description languages are intended to describe a specific class of things. A
description language for textual notations, for example, is used to describe the
concrete syntax of textual computer languages. Descriptions in general can be
used to generate computer programs. This requires a generator based on a spe-
cific description language. The generator can create a specific class of computer
programs based on the specific class of things that the description language can
describe. Diagram editors for graphical computer languages, for example, are all
very similar. They provide a drawing canvas and a tool box. Users can select tools
and create graphical items. They can select objects and move or delete them. All
this is common for graphical editors. The only thing that is language specific is
the used notation: the used symbols and possible connections. With generative
engineering a language developer only describes the notation and generates the
editor with all its common characteristics from that description.

A description can be unambiguous or ambiguous: it either describes exactly
one thing or it describes, deliberately or not, two similar but different things.
A description language can have unambiguous or ambiguous semantics: all in-
stances of a unambiguous description language are unambiguous; some instances
of an ambiguous description language are ambiguous. Only unambiguous descrip-
tion languages are reasonable for a generator framework, because only those
guarantee that the generated computer program reflects the intended meaning.

A description language can use constructs that are either similar or com-
pletely different to the computational concepts of a target platform. This influ-
ences whether or not a generator framework for this description language and
this target platform is feasible or not. For example, a description language that
relies on abstract mathematical constructs that are hard to realise on a computer
platform makes it hard to create a generator for that language. This usually cor-
responds to the level of abstraction that a description language facilitates. The
more abstract a description is, the more details a generator has to create by
itself. Since a generator is written for a description language and not specific for
each description, the abstract to concrete mapping solutions that a generator
provides are generic for all descriptions. This either makes it impossible to de-
velop a generator, because creating such details requires more intelligence than
one can put into such a generator, or the generator creates computer programs
that do not perform well enough. As a general rule of thumb, the more abstract a
description language is relative to the target platform, the more intelligence has
to be put into the generator and the more generic and therefore less performing
are the generated computer programs.

As a conclusion, description languages for generator frameworks have to be
reasonably concrete. This presents a trade-off: on one hand a description should



10

be as abstract and as small as possible, on the other hand a description has to al-
low efficient (automatic at best) development of performing computer programs.
Therefore, the description languages of today’s generator frameworks present a
compromise. They provide constructs on a fairly high abstraction level. This
allows to realise a small amount of the most frequently appearing use cases, but
does not cover the very special and therefore seldom details. The argument be-
hind this strategy is that one can describe the bigger part of what one needs to
describe and for all the specialities one has to leave the realm of the description
language and use a different technique. Most generator frameworks therefore al-
low to augment the instances of specific description languages with pieces of code
written in multi-purpose programming languages. This renders the development
of corresponding computer programs at least partially automatic. As a result,
generator frameworks are very popular for the development of prototypes that
do not necessarily need to contain all the specific details that are required for
the final software product.

4.2 Generative Engineering for Language Tools

What does one need to use a language? Two things. First, a language specifica-
tion that allows potential language users to learn and use the language. Second,
language tools: editors that allow language users to create language instances,
analysers, code-generators, or interpreters that allow to process and execute lan-
guage instances. Besides describing a language to humans, generative engineering
allows to use a language description to automate the creation of language tools.
Where a language tool is a tool that processes language instances or represen-
tations of language instances.

Language tools fall into several categories and so do descriptions for lan-
guages. A language description determines what the instances of a language are.
Besides describing the language itself, we also need to describe possible notations
and semantics. We distinguish between the language aspects language, notation,
and semantics. We already showed that the aspects notation and semantics re-
quire the description of other languages (notation or semantic domain) and the
description of mappings between notation/semantic domain and language. For
each different language aspect we use different description languages and we
generate different kind of tools.

A description itself, no matter if it is a language description or mapping
description, is just a piece of information. A way to represent this information is
in a language specialised for this kind of information. This becomes confusing,
if we neglect to strictly distinguish between different levels of description and
described object. Therefore we define:

Definition 14 A meta-language is a computer language used to describe other
computer languages.

It is not necessary to write a description in a computer language, but, as we
will see later, describing a language in a computer language allows us to process



11

language descriptions. Specific computer programs allow to generate language
tools that in turn allow us to process instances of the described language. We
need to make the same distinction between language tools, and programs that
generate language tools (meta-language tools):

Definition 15 A meta-tool is a computer software that generates language tools
based on a description written in a corresponding meta-language.

The relationship between meta-language and meta-tool is the same as be-
tween language and language tool. While language tools that realise seman-
tics might simulate, analyse, or compile language instances, meta-tools generate
language tools from meta-language instances. The only difference between a
common computer language and meta-language (the same holds for tools and
meta-tools) is its purpose. A meta-language is just a computer language with
the specific purpose to describe other computer languages. Meta-language and
corresponding meta-tools form generator frameworks in the sense of generative
engineering.

5 OOMM and Generative Engineering of Language Tools
for SDL

In this section, we want to illustrate the usage of OOMM language descriptions
and generative engineering for the specification of SDL and the development of
prototypical SDL tools.

5.1 A meta-model for the SDL language

A meta-model is just an object-oriented model of SDL’s language constructs. We
derived a SDL meta-model from SDL’s abstract syntax grammar in [3]. Existing
OOMM meta-modelling languages are all very similar, so the SDL meta-model
is available in the important MOF dialekts: MOF 1.x, CMOF, EMOF (the two
meta-modelling languages of the MOF 2.x), and eclipse’s ecore.

The SDL meta-model is the basis for the description of other language as-
pects, like SDL’s notations and its operational semantics. The SDL meta-model
is a visual specification of SDL’s concepts and structure. The SDL meta-model
thereby specifies a set of valid SDL models. It allows to store and exchange SDL
specifications based on XMI.

5.2 SDL’s notations

SDL has two different notations that one can use to represent SDL specifications.
These are a graphical notation and a textual notation, whereby the graphical
SDL notation is highly interspersed with elements of the textual notation. In [4],
we used GMF[5] to describe SDL’s graphical notation. With the GMF generator
framework we can automatically generate a graphical SDL editor that can be



12

used to create instances of the SDL meta-model. While GMF allows to define
most of SDL’s graphical notation out of the box, there are detailed features that
require manual (programmed) augmentations to the notation description. This
emphasises that GMF is definitely a technology capable of generating useful
editors, but if you have a concrete graphical notation that uses elements not
common among other graphical languages, you need to manually augment the
generated editors. An example SDL feature hard to realise with GMF is the dis-
tribution of an SDL state automaton specification over multiple diagram pages,
or to add gates to diagram pages (i.e. have connections with an open end).

SDL’s textual syntax can be realised with generator frameworks like TEF [6]
or xText [2]. In these frameworks, a notation description relates a regular context-
free grammar that describes the textual notation with the SDL meta-model.
From such descriptions one can generate text editors with features like syntax
highlighting, code-completion, and error-annotations. TEF’s ability to combine
graphical GMF-based editors with a TEF generated text editors [7] can be used
to integrate textual editing for the extensive textual parts of SDL’s graphical
notation.

5.3 SDL’s operational semantics

SDL’s operational semantics is already formally defined based on Abstract State
Machines. This semantics can be adopted to work on meta-model-based SDL
specifications as well. In fact, the structure of operational semantics descrip-
tions is always the same. One needs a description language to describe a set
of configuration. Here, both grammars and meta-models are suitable description
languages, because both describe a set of elements. The grammar or meta-model
for SDL’s syntax merely has to be augmented with structures that can store the
additional runtime-information that is necessary to hold the state of a running
SDL specification.

Once all possible configurations are specified, transitions between configura-
tions can be described more or less independent of the configuration description
technique. Here, we can reuse the existing ASMs, which basically describe up-
dates on the actual configuration (transition) based on conditions within this
actual configuration. There are several languages that can be facilitated to de-
scribe transitions between meta-model-based configurations. In [8], we used UML
activities and OCL to describe operatinal semantics. In [9] the authors provide
a platform that allows to choose from scheme, prolog, QVT, or ASMs to define
the operational semantics for a meta-model. In [4] we already described how to
use the existing SDL ASMs on the basis of an SDL meta-model.

6 From generated prototypes to industry strength
language tools

We used the eclipse platform and its OOMM technology EMF to create proto-
typical SDL tools based on a SDL meta-model. Due to the limitations of the



13

used generator frameworks (GMF for SDL’s graphical notation, TEF for SDL’s
textual notation, MAS (semantics described with UML activities and OCL) for
SDL’s semantics), these prototypical SDL tools can only be prototypes and lack
the quality that we are used from hand crafted, industry strength SDL tools. For
example, the generated graphical editors only reflect a rough approximation of
SDL’s actual notation; the generated simulator for SDL specifications does not
nearly show the performance of generated code, because the simulation is driven
by the interpretation of UML activities and OCL expressions. Furthermore, some
aspects of SDL already had to be implemented by hand: static analysis features
like identifier resolution for example could not be described with the used gen-
erator frameworks, and already required a considerable amount of programming
work.

However, most of the used generator frameworks and existing generator
frameworks allow to deal with this limitations by implementing troublesome
language features manually. This combination of language description on a high-
level of abstraction and implementations in a multi-purpose programming lan-
guage allows to create industry strength tools with lower development efforts.
The generator frameworks hereby provide a series of advantages: one can has
a running product very early in the development process (this can be used to
implement an agile development strategy); generator frameworks provide a rea-
sonable tool design and thereby reuse this design for all tools of the same kind;
generator frameworks are enhanced all the time and each enhancement of the
framework automatically enhances all tools described in this framework.

7 Related Work

There are several language workbenches that combine generative engineering
frameworks for languages based on OOMM that cover multiple language aspects
like notation, analysis, transformations, or operational semantics. These work-
benches are GME [10], XMF [11] (originated in the MMF approach [12]), AToM3
[13] and meta-programming facilities like MPS [14], kermeta [15], AMMA [16]
MetaEdit+ [17]. Some of these frameworks define semantics through general pur-
pose programming languages (MPS, MetaEdit+), others provide specialised lan-
guages to define semantics (XMF, kermeta, AToM3). Two different approaches
to semantics can be identified: GME and AToM3 use model transformations into
a different language or formalism (semantic domain). AMMA, Kermeta, XMF,
and MPS use an action language to define operational semantics.

There are several approaches using a specific meta-language for the defini-
tion of operational semantics. In [18] Engels et al present a graphical modelling
approach for UML semantics based on collaboration diagrams and graph trans-
formations. This approach provides strong mathematical foundations, but results
in very verbose semantic rules, which are hard to read and execute. In [16] Ab-
stract State Machines (ASM) are integrated into the DSL framework AMMA to
support specification of execution semantics for DSLs, using ASMs as just an-
other DSL. Muller et al [19] use a textual action language in combination with



14

OCL for high level semantics descriptions. This action language is executable
and provides the foundation for the DSL framework kermeta [15]. A similar ap-
proach is used in Mosaic [11] which uses an OCL version extended with actions
to define language semantics. We recycled the idea of using OCL for expres-
sive model navigation in our approach. In [20] Gerson Sunyé et al explore the
possibility of UML action semantics [21] to create executable UML models and
already suggest the use of activities with action semantics for meta-modelling.
We use this idea and reduce the set of actions to those necessary to describe
operational semantics based on model changes.

Along with structural operational semantics [22], semantics are tradition-
ally defined based on grammars for abstract syntax. A formalism, like term
re-writing, is used to describe manipulation of abstract syntax trees (AST are
instances of grammars). This describes interpretation of an input program rep-
resented by an AST. The formal SDL semantics definition [23] uses Abstract
State Machines (ASMs) to realise a similar approach: it defines abstract syntax
and runtime states with grammars and represents corresponding ASTs as evolv-
ing algebras manipulated by ASMs. Our approach replaces grammars/signatures
with meta-models, ASTs/algebras with models, and re-writing/ASMs with our
combination of activities, OCL, and actions.

The idea to create textual notations based on meta-models is as old as meta-
modelling itself. Work based on meta-modelling with MOF: Alanen et al [24],
Scheidgen et al [3], Wimmer et al [25]. This basic research was later utilised in
frameworks for textual model editors. These are either based on existing meta-
models (TCS [26], TCSSL [27], MontiCore [28]), or they generate meta-models
or other parse-tree representations generated from the notations (xText [2], Sa-
fari [29]). Besides using context-free grammars and parsing, textual modelling
can also be conducted using the model-view controller pattern. The same pat-
tern is used to build graphical model editors. MVC for textual notations is used
in intentional programming [30] and the meta programming system [31].

The GMF framework itself, provides some very simple means to describe
structured text. It allows to create simple templates that assign different por-
tions of a text to different object features. These simple templates allow less than
regular languages, and are therefore inadequate for many textual language con-
structs. Further attempts to describe the relations between graphical notations
and textual notations have been made by Tveit et al [4].

8 Conclusions

Grammars have been successfully used for decades, but recent trends in com-
puter languages (e.g. graphical languages) and language tool development (e.g.
generative engineering) give reason to reconsider. OOMM in particular provides
interesting properties. OOMM is well aligned with object-oriented programming
platforms that are usually used to realise language tools and therefore allow
for easier generative engineering. OOMM’s independence of language instances
and their representation render it more suitable for the specification of graphical



15

languages. In particular does OOMM use graphs for languages instances, in-
stead of terms (trees) used by grammars. Other advantages over grammars are
better (quasi-) standardisation and conclusively better tool support and higher
interoperability.

OOMM and generative engineering are successfully used for domain specific
languages in many instances, and recent case-studies for more complex languages
like SDL and UML show OOMM’s potential as a specification technique for ITU-
T languages.

References

1. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. Wiley-IEEE Computer Soci-
ety Press (2008)

2. Homepage: openArchitectureWare See http://www.openarchitectureware.org.
3. Fischer, J., Piefel, M., Scheidgen, M.: A metamodel for sdl-2000 in the context

of metamodelling ulf. In Amyot, D., Williams, A.W., eds.: SAM. Volume 3319 of
Lecture Notes in Computer Science., Springer (2004) 208–223

4. Prinz, A., Scheidgen, M., Tveit, M.S.: A model-based standard for sdl. In Gaudin,
E., Najm, E., Reed, R., eds.: SDL Forum. Volume 4745 of Lecture Notes in Com-
puter Science., Springer (2007) 1–18

5. Homepage: Graphical Modelling Framework (GMF)
See http://www.eclipse.org/gmf/.

6. Homepage: Textual Editing Framework (TEF)
See http://www.informatik.hu-berlin.de/sam/meta-tools/tef.

7. : Textual modelling embedded into graphical modelling
8. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable spec-

ifications of operational semantics. In Akehurst, D.H., Vogel, R., Paige, R.F., eds.:
ECMDA-FA. Volume 4530 of Lecture Notes in Computer Science., Springer (2007)
157–171

9. Sadilek, D.A., Wachsmuth, G.: EProvide 2.0: an Extensible Framework for De-
scribing Operational Semantics

10. Agrawal, A., Karsai, G., Ledeczi, A.: An End-to-End Domain-Driven Software
Development Framework. In: OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ACM Press (2003)

11. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodeling, A Founda-
tion for Language Driven Development. Xactium (2004) http://www.xactium.com.

12. Clark, T., Evans, A., Kent, S., Sammut, P.: The MMF Approach to Engineering
Object-Oriented Design Languages. In: Workshop on Language Descriptions, Tools
and Applications. (April 2001)

13. The Modelling, Simulation and Design lab (MSDL), School of Computer Science of
McGill University Montreal, Quebec, Canada: AToM3 A Tool for Multi-Formalism
Meta-Modelling. http://atom3.cs.mcgill.ca/index.html.

14. Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm.
onBoard, electronic monthly magazin (November 2004)

15. Team, T.: Triskell Meta-Modelling Kernel. IRISA, INRIA. www.kermeta.org.
16. Ruscio, D.D., Jounault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending

AMMA for Supporting Dynamic Semantics Specifications of SDLs (2006) technical
report.



16

17. Case, M.: MetaEdit+. http://www.metacase.com.
18. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A

Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML.
In: UML 2000 - The Unified Modeling Language. Advancing the Standard.

19. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-
Oriented Meta-languages. In: Model Driven Engineering Languages and Systems:
8th International Conference. LNCS, Springer (2005)

20. Sunyé, G., Pennaneac’h, F., Ho, W.M., Guennec, A.L., Jézéquel, J.M.: Using UML
Action Semantics for Executable Modeling and Beyond. In: 13th International
Conference on Advanced Information Systems Engineering. LNCS, Springer (2001)

21. OMG: Action Semantics for the UML. Object Management Group (2001) ad/2001-
08-04.

22. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

23. ITU-T: SDL formal definition: Dynamic semantics. In: Specification and Descrip-
tion Language (SDL). International Telecommunication Union (November 2000)
Z.100 Annex F3.

24. Alanen, M., Porres, I.: A Relation between Context-Free Grammars and Meta
Object Facility Metamodels. Technical report, TUCS (2004)

25. Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In: Satellite
Events at the MoDELS 2005 Conference. (2006) 159–168

26. Jouault, F., Bézivin, J., Kurtev, I.: Tcs:: a dsl for the specification of textual
concrete syntaxes in model engineering. In: GPCE ’06: Proceedings of the 5th
international conference on Generative programming and component engineering,
New York, NY, USA, ACM Press (2006) 249–254

27. Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger, R.,
Gérard, S., Jézéquel, J.M.: Model-Driven Analysis and Synthesis of Concrete Syn-
tax. In: Proceedings of the 9th International Conference, MoDELS 2006. (2006)
pp. 98–110

28. Krahn, H., Rumpe, B., Völkel, S.: Integrated definition of abstract and concrete
syntax for textual languages. In Engels, G., Opdyke, B., Schmidt, D.C., Weil,
F., eds.: MoDELS. Volume 4735 of Lecture Notes in Computer Science., Springer
(2007) 286–300

29. Charles, P., Dolby, J., Fuhrer, R.M., Stanley M. Sutton, J., Vaziri, M.: Safari: a
meta-tooling framework for generating language-specific ide’s. In: OOPSLA ’06:
Companion to the 21st ACM SIGPLAN conference on Object-oriented program-
ming systems, languages, and applications, New York, NY, USA, ACM (2006)
722–723

30. Simonyi, C.: The death of computer languages, the birth of Intentional Program-
ming. Technical report, Microsoft Research (1995)

31. Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm.
onBoard (1) (November 2004)


