
Results in Using the New Version of the SDL-UML
Profile

Alexander Kraas, Patrick Rehm

Fraunhofer Institute for Communication Systems (ESK)
Hansastr. 32

80686 Munich, Germany
{Alexander.Kraas, Patrick.Rehm}@esk.fraunhofer.de

Abstract: In the last two decades the Specification and Description Language
(SDL) has been established in the telecommunication sector as a domain-
specific modeling language. A disadvantage of SDL is the fact that only a small
number of modeling tools for SDL is available. Another graphical modeling
language is the Unified Modeling Language (UML) used for the model-based
development of software systems. Due to the extensibility mechanisms of
UML, this language is not only restricted to the software sector, but can also be
aligned to other technical domains. In contrast to SDL, UML is supported by a
large number of tools from different vendors. In order to make it possible to
specify communication systems with UML, the International
Telecommunication Union (ITU) has specified a UML profile for SDL. The
first version of this profile was published in the year 1999 as recommendation
Z.109. A completely revised version of this standard was prepublished in June
2007. This paper presents a first case study in applying the new standard
version for modeling a communication system. Furthermore, advantages and
open issues of the new standard version are also discussed.

Keywords: SDL-2000, UML2.1, XMI, OCL2.0, Back-to-Back User-Agent,
SIP, Case Study

1 Introduction

On the one hand, for the model-based development of communication systems the
Specification and Description Language (SDL) can be used. This standard is
maintained by the International Telecommunication Union (ITU). New versions of
the SDL standard are published periodically, whereas the latest version is SDL-2000
[2]. On the other hand, software systems can be modeled with the Unified Modeling
Language (UML), in the latest version UML 2.1.2 [6], which is developed and
maintained by the Object Management Group (OMG). In order to exchange UML
models between tools from different vendors, the XMI [8] standard can be used for
this purpose.

2 Alexander Kraas, Patrick Rehm

Owing to the fact that UML becomes more and more popular, not only in the
software industry, several UML profiles have been specified for different technical
domains, e.g. the AUTOSAR profile [12] for the automotive sector. The ITU has also
recognized the potential of UML for the modeling of communication systems. Hence,
a first version of a UML1.3 profile for the combined use of SDL and UML was
published as recommendation Z.109 [1] in the year 1999. In this recommendation not
only the specification of the profile is included, but also a mapping from UML
stereotypes to corresponding SDL elements is defined. By applying those stereotypes
to UML elements, only structural aspects and data types of a SDL system can be
modeled. The specification of behavioral aspects within a UML model is not
explicitly supported. The second edition [3] of the Z.109 recommendation was
published by the ITU in 2007. In contrast to the first edition, the new Z.109 version
specifies a UML2.0 profile which includes also stereotypes for the specification of
behavioral aspects. This enables a seamless modeling of structural as well as
behavioral aspects of a SDL system in UML.

The new possibilities of the second Z.109 edition have inspirited us to analyze the
applicability of the SDL-UML profile for the UML-based specification of a complex
SDL system. For this purpose we have chosen a Back-to-Back User-Agent (B2BUA)
example which is a specialized element within a Session Initiation Protocol (SIP) [11]
environment. A challenge was the lack of tool support for the new version of the
SDL-UML profile. Therefore, we had to construct a toolchain which was suitable for
our requirements. Due to the fact that the focus of our research activities is on the
model-based test generation, we have not regarded the mapping of UML elements to
their corresponding SDL-2000 elements. Instead of this, attention has been paid to the
modeling capabilities of the SDL-UML profile. In future, models on which this
profile has been applied shall serve as an additional input format for our model-based
test case generation toolchain [10]. Apart from the modeling aspects, we have also
specified appropriated OCL constraints for the SDL-UML profile, because in the
Z.109 recommendation constraints are defined only textual.

The rest of this paper is structured as follows. Section 2 discusses other related
UML profiles for modeling communication systems. In section 3 a case study and
information about the required tools are presented. The use of OCL [6] constraints in
combination with the SDL-UML profile is discussed in section 4. Our experiences
which we have made until now by applying the profile can be found in section 5. The
last section provides a brief summary and an outlook on our future work.

2 Related Work

Apart from the already mentioned two version of the Z.109 recommendation, also
other approaches for the UML-based specification of communication systems were
proposed. At the European Telecommunication Standardization Institute (ETSI) the
working group STF-250 had been working on this topic until May 2004. As a result
of the work a specification for a „UML Profile for Communicating Systems“ [5] was
presented. Unfortunately, this specification was incomplete and the work on the
profile was discontinued. However, another profile [4] with the same name (UML-

Results in Using the New Version of the SDL-UML Profile 3

CS) as the ETSI’s one was originated by the Telematics Group of the University of
Göttingen. In comparison to the SDL-UML profile of the ITU, the approach of the
Telematics Group introduces some additional modeling concepts which can not be
directly mapped to SDL. These concepts are especially dedicated for the modeling of
internet protocols. A further difference between both profiles is the specification of
OCL constraints for the UML-CS profile, whereas the SDL-UML profile only defines
textual constraints.

As a matter of principle, instead of using the new version of the SDL-UML profile
for our work, we could also use the UML-CS profile. But we have chosen the SDL-
UML profile, because it rests on the standardized Z.109 recommendation, while the
other one is not standardized.

3 Case Study and Required Tools

Before the model for the case study could be created, in a first step a convenient
modeling tool chain had to be arranged. This was necessary due to a lack of tool
support for the SDL-UML profile at the moment of writing this paper. A brief
overview of the utilized tools and their necessary adaptations is given in the first part
of this section. In the second part the Back-to-Back User-Agent (B2BUA) case study
is discussed in detail.

3.1 Utilized Modeling Tools

Most of the following requirements are derived form the Z.109 recommendation, as
postulated in section 1.1 – “Conformance”. However, since we have analyzed UML
modeling aspects only, SDL relevant requirements have not been considered for the
tool selection.

Tool Requirements
Since SDL-UML is defined as a UML2.0 profile, an appropriated modeling tool has
to implement the UML2.0 Superstructure. Furthermore, the utilized tool has also to
support the usage of profiles and stereotypes. Without such a feature, it is infeasible to
apply the SDL-UML profile on a UML model. Additionally, the Z.109
recommendation requires that a tool supporting the SDL-UML profile should be able
to import/export models from/to other tools. The standard exchange format for UML
models is the XML Metadata Interchange (XMI) [8] which is tightly coupled to the
corresponding Meta Object Facility (MOF) [9]. This is the reason that UML2.0
models can only be exchanged with the XMI2.0 format, but not with older XMI
versions. Therefore, a further requirement is the support of XMI2.0.

Apart from the requirements postulated explicitly in the standard, specified
modeling constraints has also to be validated against the model. Due to the fact that
the SDL-UML profile does provide constraints only as textual information, OCL [6]
constraints were specified according to the given textual constraints. These constraints
can be used in a UML tool to validate the correctness of created models. Since our

4 Alexander Kraas, Patrick Rehm

intention was to specify OCL constraints for each stereotype, contained in the SDL-
UML profile, an appropriated tool have to support the specification and processing of
constraints on UML metamodel level (M2). An example for the <<ActiveClass>>
stereotype is provided in section 4.

Toolchain Architecture
A convenient modeling tool which can be used for the specification of SDL-UML
compliant models has to fulfill the already mentioned requirements. Therefore, we
have evaluated different UML2.0 modeling tools. Great disadvantages of the most
considered tools were a missing support for XMI2.0 model interchange and only a
restricted support for UML profiles. Furthermore, only a small number of those tools
have supported OCL constraints on metamodel level. For our modeling tasks, we
have selected MagicDraw [13]. As a matter of principle, this tool is also capable to
validate OCL2.0 constraints which are specified for each stereotype of the SDL-UML
profile. Due to some limitations related to the syntax check of OCL expression and
some other problems concerning OCL constraints for properties of stereotypes, we
have made the decision to use a further tool for the constraint validation. Hence, the
Eclipse framework has been chosen for this purpose, because it provides plug-ins
which support OCL and UML.

Fig. 1. Modeling toolchain architecture

Fig. 1 shows the architecture of the prototypical toolchain for creating and validating
SDL-UML compliant models. As determined by the already mentioned requirements,
the model interchange between the different components rests on the XMI format.
Since the MagicDraw tool and the Eclipse framework only support the latest
XMI2.1.1 standard, this version has to be used instead of XMI2.0. Furthermore, both
tools implement the UML2.1.2 Superstructure instead of the required 2.0 version. The
mentioned circumstances have had no further effects on the functionality of the
toolchain.

Besides the built-in features of the Eclipse OCL plug-in, an additionally plug-in
was implemented in order to validate automatically OCL constraints of the SDL-
UML stereotypes. Apart from the “Modeling” components, it is conceivable that in
future additional components, e.g. for SDL code or test case generation, are added to
the prototypical toolchain.

Results in Using the New Version of the SDL-UML Profile 5

3.2 Case Study: SIP System

In the following section a case study in applying the new version of the SDL-UML
profile is provided on the example of a SIP Back-to-Back User Agent. For the sake of
clarity the same conventions for the notation of the different kinds of modeling
elements are used as defined in the Z.109 recommendation.

− A name written within double pointed brackets (<< … >>) refers to a stereotype of

the SDL-UML profile.
− An underlined name refers to an element of UML Superstructure [7].
− SDL-2000 elements [3] are referred by names written in italic style.

The first approach to the Z.109 profile was the modeling of a SIP [10] System
containing two User Agents, one Back-to-Back User Agent and a Registrar Server.
Since this system has already been designed in SDL, not only the SDL-UML model
could be compared with the SDL model, but also the methodology used to design
those two models could be matched against each other. The first step in both
approaches was to create the overall structure of the system.

Modeling of Structural Aspects and Data Types
In SDL models data types are specified in the same diagrams and context as the
structure, while the new SDL-UML Profile separates those two modeling domains.
Fig. 2 shows the layout of the SIP User Agents and data-constructs of the SIP-
System. Note that a Class stereotyped with an <<ActiveClass>> represents an SDL
Agent and the Stereotype <<PassiveClass>> maps to the concept of a SDL Abstract
Data Type. These two stereotypes are concrete subtypes of the abstract <<Class>>
Stereotype, as defined in the Z.109 standard. However, some elements contained in
the shown classes are omitted in the figure. The declaration of signals and parameters
of the classes for example, are hidden for the sake of simplicity.

The tagged value “isConcurrent” indicates that the <<ActiveClass>> contains other
active classes, which will be executed concurrently. If this value is set to “true”, a
<<ActiveClass>> Class is mapped to a Block reference, otherwise to a Procedure
reference. The main part of the designed SIP-System is the <<ActiveClass>>
UserAgent. This class contains the SIP specific functions and the other (“Non-SIP”)
functionalities of a SIP-Terminal. The “Non-SIP” function blocks implement
mechanisms used for the communication with the system environment, whereas the
SIP specific function blocks realize the layered design of a SIP User Agent. The
<<PassiveClass>> classes are used to represent the SIP-Messages with their large
headers, which are impossible to be modeled as single signal parameters. Instead, they
are encapsulated in classes which can be specified as parameters.

The used concepts of object orientation are also shown in Fig. 2. For example, the
Back-to-Back User Agent is only a redefined inheritance of a “normal” User Agent
and the same applies to the registrar server. The classes “SIP_Header” and
“SIP_Startline” are only abstract super-classes, which are altered to the concrete
classes of the different message types. However, this class model does neither
describe the structural relations and communication channels between the system
components, nor are ports or gates of the SIP User Agent defined.

6 Alexander Kraas, Patrick Rehm

These important aspects of a communication system are shown in Fig. 3. It shows
the internal structure of the SIP-specific block of the <<ActiveClass>> “UserAgent”

<<ActiveClass>>
<<Class>>

SIP
{isConcurrent}

<<ActiveClass>>
<<Class>>

BackToBackUserAgent

<<ActiveClass>>
<<Class>>

Registrar_Server

<<PassiveClass>>
<<Class>>

SIP_Startline

<<PassiveClass>>
<<Class>>

Response_Header

<<PassiveClass>>
<<Class>>

Request_Header

<<PassiveClass>>
<<Class>>

Request_Line

<<PassiveClass>>
<<Class>>

SIP_Header

<<PassiveClass>>
<<Class>>
SIP_Body

<<PassiveClass>>
<<Class>>

Status_Line

<<ActiveClass>>
<<Class>>

UserAgent
{isConcurrent}

Fig. 2. The Class Overview of the SIP-System

The “initialNumber” tagged values are used to determine the initial number of object
instances at the start of execution. According to the SIP standard [11], transaction
instances are only created by the “Transaction User” during runtime.

The other parts of the diagram are similar to the common SDL notations. SDL
Channels are defined in SDL-UML as communication paths between the instances
and can be delayed or not. The signals that can traverse these channels are also
defined here, but they are omitted in the example. In order to ensure a correct
mapping to SDL, all UML elements are stereotyped in compliance to the SDL-UML
profile.

Results in Using the New Version of the SDL-UML Profile 7

<<Property>>
TU_Layer : Transaction_User [1]

{initialNumber = 1 }
to_non_SIP

to_Transaction to_Transport

<<Property>>
Transport_Layer : Transport [1]

{initialNumber = 1 }
to_Net

to_Transaction

to_TU

<<Property>>
Transaction_Layer : Transaction

{initialNumber = 0 }

to_Transport

to_TU

to_Net

to_NON_Sip

Fig. 3. The internal structure of the SIP User Agent

Modeling of Dynamical Behavior
The main difference between a native SDL model and a corresponding SDL-UML
model is the methodology to specify the behavior of the system. In SDL behavioral
diagrams which represent “Extended Finite State Machines” (EFSM) are used to
characterize all dynamical aspects of a system in one modeling layer. The only way to
organize such an EFSM in a hierarchical manner is to use SDL Procedures that
encapsulate parts of the behavior. On the other hand, SDL-UML introduces a new
level of abstraction in the modeling process. The StateMachines in the SDL-UML
approach contain only state transitions and basic decisions, as shown in Figure 3. An
Activity, which is executed during a state Transition, is specified as its effect.

8 Alexander Kraas, Patrick Rehm

Fig. 4. SDL State Machine

<<State>>
Completed_Non_Invite

<<State>>
Proceeding_Non_Invite

TimerE_Fires

<<State>>
Trying

TimerE_Fires

idle

MSG_Received

Terminated

Start

 [INVITE]

TimerF_Fires

TimerF_Fires

 [>200]

 [<200]

 [Non_INVITE]

TimerK_Fires

 [>200]

 / First_MSG_Received

 [<200]

Fig. 5. SDL-UML State Machine

Fig. 5 shows an extract of the UML StateMachine (including applied SDL-UML
stereotypes) which specifies the transaction layer of the SIP-User Agent in the case of
a “Non-Invite-Client” transaction. Fig. 4 shows a classical SDL State Machine of the
same functional block. The most notable difference between both kinds of diagrams
concerns transitions which are not any longer stimulated by direct input symbols, like
in the SDL case. Instead, in SDL-UML models they are triggered by
SignalReceiveEvents which are defined as the trigger of a Transition. Additionally,
Transitions can be protected by guards, which must be fulfilled in order to enable the
transition to be fired.

Decisions which are depending on, for instance, the current value of a variable are
represented in SDL-UML StateMachines by Pseudostate choice elements, which
correspond to the SDL Decision elements. When the system reaches such a
Pseudostate, the guards of the outgoing Transitions determine the next step in
execution.

The Z.109 recommendation specifies several rules, how guards and message
triggers must be defined in order to allow a proper mapping to SDL elements. In order
to be standard compliant, the StateMachine must not contain any other UML
elements, than those that are required to perform state transitions. Neither
VariableActions nor SendSignalActions are allowed here.

Results in Using the New Version of the SDL-UML Profile 9

The comparison of Fig. 4 and Fig. 5 shows clearly that the SDL-UML
StateMachines provide a much higher abstraction level of the system behavior,
because actual activities are encapsulated inside the transition’s effect.

<<SequenceNode>>

test <<ExpressionAction>>

body <<sequence>>

<<AddVariableValueAction>>
Assign_SIP_MSG

<<SendSignalAction>>
SIP_MSG

test <<ExpressionAction>>

body <<sequence>>

<<AddVariableValueAction>>
Assign_SIP_Response

<<SendSignalAction>>
SIP_RESPONSE

<<Decision>>

Fig. 6. Example for activity during a state change

The next step in modeling a SDL-UML system is the definition of UML actions for
an Activity used as the Transition’s effect, which occurs during a state transition. Fig.
6 shows a basic example of how this can be realized. Owing to rules specified in the
Z.109 recommendation, most of the UML elements in Activities have to be
encapsulated in SequenceNodes. In the given example the SequenceNode contains a
<<Decision>> node (ConditionalNode) with two outgoing paths. One path sends an
SIP-Response and the other path sends a SIP-Request.

However, the designer has acquired an additional degree of freedom with this
method, since he can decide if such basic decisions are to be made in the
StateMachine layer by introducing a new transition or in the Activity layer. Like most
of the additional parameters of all elements, the target or the path of outgoing signals
have to be defined in the signal properties. Generally, all actions and tasks that a SDL
System performs, while changing into a new state, are coupled to such Activities and
SequenceNodes.

10 Alexander Kraas, Patrick Rehm

Future Topics
An open work item which will be finished next is the verification of the SDL-UML
model using constraints defined within the profile, but in the following section a short
outlook on the results of this work is given. Furthermore, a mapping of the SDL-UML
model to SDL code which can be used to generate simulators or executable code to
verify the model is also conceivable. Unfortunately, no tool which implements such a
feature is available at the moment. But the presented case study will be checked
against the OCL constraints in the near future, when the corresponding work item is
finished.

4 OCL Constraints for the SDL-UML Profile

In section 1 it was already mentioned that constraints for UML stereotypes of the
SDL-UML profile are specified in the Z.109 recommendation only as textual
information. These constraints are inconvenient for an automatic validation against a
SDL-UML model. In order to remedy this situation, convenient OCL2.0 constraints
which can be automatically validated by a UML modeling tool have been specified.
Since no standalone tool could fulfill the already mentioned requirements (s. section
3.1), a modeling toolchain was constructed and the Eclipse framework [14] was
chosen for the OCL constraint validation.

Limitations of OCL2.0 constraints
The Object Constraint Language in its latest version 2.0 [6] is tightly coupled to the
UML2.0. As a matter of principle, OCL constraints can be used on different modeling
levels of the UML, for instance on UML metamodel level (M2). Since stereotypes
reside on the M2 model level also, a tool which evaluates OCL constraints of
stereotypes against a SDL-UML model have to support such a feature. In particular,
attributes and associations of UML Metamodel elements, including properties of
stereotypes, have to be accessible by OCL expressions.

A problem exists for accessing properties of stereotypes, because neither the UML
[7] nor the OCL [6] standard define rules therefore. UML tools can only solve this
problem in a proprietary way. This leads to the fact that OCL expressions including
properties of stereotypes are tool-dependent. Usually, such constraints can not be
interchanged without any adaptations between different UML tools.

<<ActiveClass>> Example
Owing to the fact that the Z.109 recommendation specifies approximately 150
different textual constraints for all stereotypes contained in the SDL-UML profile, it
is nearly infeasible to depict them in this paper. Furthermore, until now we could not
verify all OCL constraints, so only an example for the <<ActiveClass>> stereotype
can be provided in Table 1. Besides other kinds of constraints, OCL also provides
invariant constraints which are OCL expressions of type Boolean and they are
associated to UML Classifiers. When an invariant constraint is evaluated, its result
must be “true” otherwise the constraint is not fulfilled. All defined OCL constraints
for the SDL-UML profile are of kind invariant.

Results in Using the New Version of the SDL-UML Profile 11

Due to the already mentioned lack of standardization for accessing properties of
stereotypes with OCL constraints, the invariant constraints in Table 1 are defined on
an abstract level. Following assumptions are made:

− Properties of a stereotype can be accessed in the same manner as attributes and

associations of UML Metamodel elements.
− If it is necessary to refer to a stereotype, its name is written within double pointed

brackets (<< … >>). In particular, this can be necessary for checking the type of an
addressed UML element (oclIsTypeOf) or for type casting (oclAsType).

Table 1. OCL invariant constraints for the <<ActiveClass>> stereotype

1. An <<ActiveClass>> Class shall have isActive: Boolean = true

self.isActive = true

2. If isConcurrent: Boolean is false, isConcurrent of any contained instance shall be
false.

self.isConcurrent=false implies
 self.nestedClassifier
 ->forAll(oclAsType(<<ActiveClass>>).isConcurrent=false)

3. If the <<ActiveClass>> Class has a classifierBehavior: Behavior [0..1], it shall be
a StateMachine.

self.classifierBehavior->notEmpty() implies
 self.classifierBehavior->forAll(oclIsTypeOf(StateMachine))

4. If an <<ActiveClass>> Class has a classifierBehavior: Behavior [0..1] and it has a
superClass: Class [*] that is another <<ActiveClass>> Class that also has a
classifierBehavior, the Statemachine of the sub-class shall redefine the
Statemachine of the superClass. The reason is that in SDL the state machines of
agents automatically extend each other, whereas this is not the case in UML.

let sClass:Class = self.superClass->asSequence()->at(1)
in (self.classifierBehavior->notEmpty() and sClass->notEmpty())
 implies
 (sClass.oclIsTypeOf(<<ActiveClass>>) and
 sClass.classifierBehavior.oclIsTypeOf(StateMachine) and
 self.classifierBehavior.redefinedBehavior
 ->includes(sClass.classifierBehavior)
)

5. An <<ActiveClass>> Class used as the type: Type [0..1] of a composite property
object (of another <<ActiveClass>> Class) shall have isAbstract = false (that is a
typebased agent in an agent type shall not be based on an abstract type).

self.part->notEmpty() implies
 self.part->select(oclIsTypeOf(Property)).type
 ->select(oclIsTypeOf(<<ActiveClass>>))
 ->forAll(oclAsType(<<ActiveClass>>).isAbstract=false)

12 Alexander Kraas, Patrick Rehm

6. An ownedAttribute : Property [*] that has a type that is an <<ActiveClass>>
Class and where aggregation == composite shall not have public visibility (an
agent instance set cannot be made visible ouside the enclosing agent type).

self.ownedAttribute->notEmpty() implies
 self.ownedAttribute
 ->select(oclIsTypeOf(Property))
 ->select(type.oclIsKindOf(<<ActiveClass>>))
 ->select(aggregation=AggregationKind::composite)
 ->forAll(visibility<>VisibilityKind::public)

7. A nestedClassifier: Classifier [*] shall not have public visibility (an agent type,
data type, interface type or signal definition cannot be made visible outside the
enclosing agent type).

self.nestedClassifier->notEmpty() implies
 self.nestedClassifier
 ->forAll(visibility<>VisibilityKind::public)

8. An ownedConnector shall not have public visibility (a channel cannot be made
visible outside the enclosing agent type that owns the channel).

self.ownedConnector->notEmpty() implies
 self.ownedConnector
 ->forAll (visibility<>VisibilityKind::public)

9. An ownedPort shall have public visibility (gates are visible ouside the enclosing
agent type).

self.ownedPort->notEmpty() implies
 self.ownedPort->forAll(visibility=VisibilityKind::public)

10.An ownedBehavior: Behavior [0..*] shall not have public visibility (a procedure
or composite state type cannot be made visible outside the enclosing agent type).

self.ownedBehavior->notEmpty() implies
 self.ownedBehavior
 ->forAll(visibility<>VisibilityKind::public)

11.An ownedBehavior: Behavior [0..*] shall only contain a StateMachine.

self.ownedBehavior->notEmpty() implies
 self.ownedBehavior->size()=1 and
 self.ownedBehavior->forAll(oclIsTypeOf(StateMachine))

Discussion
The above shown <<ActiveClass>> example proves that OCL can be principally used
in order to express constraints for stereotypes of the SDL-UML profile. On the one
hand, OCL constraints are more precise than textual specified constraints. On the
other hand, complex textual constraints can also induce complex OCL expressions,
e.g. constraints 4 and 5 in the example.

However, owing to the fact that OCL constraints are more precise than their
corresponding textual constraints, it should be deliberated, if OCL could be a more

Results in Using the New Version of the SDL-UML Profile 13

convenient alternative as the textual ones. Additionally, some UML modeling tools
are able to check OCL invariant constraints not only on demand, but also during the
creation time of a model which means that every time when the model is altered,
associated constraints are validated automatically. For the model designer such a
feature can be very helpful, because in the case of an error the designer can react
directly.

5 Advantages and Open Issues

After providing a case study and showing the usage of OCL invariant constraints in
the last two sections, advantages and open issues are briefly discussed here. But since
our work is ongoing, not all topics can be covered completely.

Advantages of the new SDL-UML profile
One of the big advantages the new SDL-UML profile provides is clearly shown, when
Fig. 4 and Fig. 5 in section 3.2 are compared to each other. The UML StateMachines
used to model the system provide a much better overview of the system’s overall
behavior, than the “one in all” State Machines in SDL did. This is, of course, very
beneficial to modern design paradigms like modularity. Different model designers can
work on different parts of a model at the same time.

SDL-UML also benefits from the fact that various UML modeling tools from
different vendors are available. Between these tools models can be interchanged in the
XMI format. In the case of SDL there exist only two major commercial modeling
tools from different vendors. Furthermore, some concepts of SDL have not been
implemented in both tools until now, whereas some vendor-specific features can be
used.

Another major advantage of the SDL-UML profile, however, is the improved split-
up between the different parts of a model. In SDL everything was basically designed
in one big diagram for every layer, including structure, data and behavior. The Z.109
on the other hand utilizes all the benefits the UML design process offers. There are
different diagrams for every part of the system. The data is modeled independent from
the structure or the behavior and so on. Apart from UML elements required in SDL-
UML models, also additional UML diagrams or elements can be contained in a
system model. The additional information can be used for other purposes than SDL
code generation, for example advanced test case generation or system analysis. This is
a big advantage in contrast to existing SDL tools, because it is nearly infeasible to
augment such legacy tools with new features.

Open Issues
As any new profile or new modeling technique, the SDL-UML profile also has some
open issues. One major drawback will probably be solved over time, but owing to the
fact that the profile is relatively new, there are neither adequate modeling tools
available for modeling with the profile, nor is the profile itself available in an
applicable form for modeling tools. Every developer that have to design a system
using the SDL-UML profile has to implement the profile itself, which is quite an

14 Alexander Kraas, Patrick Rehm

arduous task when considering all the constraints. The fact that there are no
specialized tools available only complicates any design process at the moment.

For example, in the provided case study, which has already been simplified a little
bit, the UML StateMachine of the Transaction Layer in the SIP User Agent alone
contains about 25 transitions, that all have to be filled with Activities, Triggers and
Guards one by one. Also the design process itself is quite laborious, because every
single detail has to be specified and modeled by hand. In order to improve the
usability of SDL-UML, a proper tool could provide customizable features enabling
the user to configure or to create diagram templates or user specific diagrams. With
such a feature, for instance, Activity diagrams could be automatically created when
the Effect of a Transition have to be specified.

Another open issue is the specification of constraints for the stereotypes contained
in the SDL-UML profile. As stated in section 4, OCL invariant constraints are more
formal than textual constraints. Additionally, the model designer can also benefit from
UML modeling tools supporting the automatic validation of OCL constraints during
the creation of SDL-UML models. Due to these reasons, we propose to consider
whether OCL constraints could be a useful extension for the Z.109 recommendation.

6 Conclusion and Future Work

The Specification and Description Language (SDL) has been established in the
telecommunication industry for a long time. Also the language itself has been
improved and extended continuously. One of these extensions is the development of
the SDL-UML profile in its second version, enabling the specification of SDL
systems by means of UML modeling tools. In contrast to dedicated SDL modeling
tools, this solution has the advantage that not only SDL-UML specific model
elements can be used, but also additional elements. This can encourage the
development of advanced tools and modeling methodologies which going beyond the
scope of the native SDL.

The case study provided in this paper has shown that the SDL-UML profile is
convenient for modeling complex communication systems, like the Back-to-Back
User-Agent example. Owing to the fact that the profile has been introduced one year
ago, the tool support until now is quite inadequate. As discussed in section 4, a
feasible improvement could be the introduction of OCL constraints which are
automatically validated during the model creation.

Since work on OCL constraints for the SDL-UML is still in progress, in future we
will provide a complete set of constraints for the profile. Also we consider to improve
our developed plug-in for the Eclipse framework which makes it possible to validate
the OCL constraints automatically against a SDL-UML model. Last but not least, we
also plan to use SDL-UML models as input for our toolchain for automatic test case
generation.

Results in Using the New Version of the SDL-UML Profile 15

References

[1] International Telecommunication Union (ITU): SDL combined with UML, ITU-T
Recommendation Z.109, November 1999

[2] International Telecommunication Union (ITU): Specification and Description Language
(SDL), ITU-T Recommendation Z.100, August 2002

[3] International Telecommunication Union (ITU): SDL-2000 combined with UML, ITU-T
Recommendation Z.109, June 2007

[4] Kraatz, S., Hogrefe, D., Werner, C.: A UML Profile for Communicating Systems. In: 5th
International Workshop on System Analysis and Modeling, SAM 2006, LNCS, vol.
4320, pp. 1--18, Springer Verlag , 2006

[5] Telecommunication Standardization Institute (ETSI), STF-250: The UML Profile for
Communicating Systems, 18. October 2004, http://portal.etsi.org/docbox/MTS/MTS/05-
Meetings/ARCHIVE/2004/200410-MTS39/39TD28%20UMLCS%20book.pdf

[6] Object Management Group (OMG): OCL 2.0 Specification, Version 2.0, ptc/2005-06-06,
June 2005

[7] Object Management Group (OMG): Unified Modeling Language (UML), Superstructure
V2.1.2, formal/2007-11-02, November 2007

[8] Object Management Group (OMG): MOF 2.0/XMI Mapping, Version 2.1.1,
formal/2007-12-01, December 2007

[9] Object Management Group (OMG): Meta Object Facility (MOF) Core Specification,
Version 2.0, formal/06-01-01, January 2006

[10] Kraas, A. et al.: A generic toolchain for model-based test generation and selection. In
Testing of Software and Communicating Systems: Work-in-Progress and Position
Papers, Tool Demonstrations and Tutorial Abstracts of TestCom/FATES 2007, Tartu
University Press, 2007, pp. 14-17

[11] Internet Engineering Task Force (IETF), RFC 3261 SIP: Session Initiation Protocol. June
2002

[12] AUTOSAR: UML Profile for AUTOSAR, Version 1.0.1, 27.06.2006
http://www.autosar.org/download/AUTOSAR_UML_Profile.pdf

[13] No Magic Inc., MagicDraw 15.1, Commercial UML modeling tool,
http://www.magicdraw.com/

[14] The Eclipse Foundation, Eclipse 3.3.2, Open source software,
http://www.eclipse.org/platform

