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Abstract 

 
A new approach for Earthquake Early Warning Systems (EEWS) is presented that uses wireless, self-organising 
mesh sensor networks. To develop the prototype of such IT-infrastructures, we follow a model-driven system 
development paradigm. Structure and behaviour models of network topologies in specific geographic regions are 
coupled with wave signal analysing algorithms, alarming protocols, convenient visualisations and earthquake data 
bases to form the basis for various simulation experiments ahead of system implementation and installation. The 
general objective of these studies is to test the functionality of an EEWS and to optimize it under the real-time, 
reliability and cost-depended requirements of potential end-users. For modelling a technology mix of 
SDL/ASN.1/UML/C++ is used to generate the code for different kind of simulators, and for the target platform 
(several node types). This approach is used for realizing a prototype-EEWS developed within the EU project SAFER 
(Seismic eArly warning For EuRope) in cooperation with the GeoForschungszentrum Potsdam. The first operational 
area of that EEWS is already planned for Istanbul in a region threatened by strong earthquakes. The presented paper 
focuses on our adopted and developed tool-based modelling and data base techniques used in that project, that are 
general and flexible enough for addressing similar prototyping use cases of self-organising sensor-based IT-
infrastructures. 

1 Introduction 

The concept of Self-organising Seismic Early Warning Information Networks (SOSEWIN) is being developed within 
the EU-project SAFER1 in cooperation with the GeoForschungsZentrum Potsdam (GFZ). The work benefits from the 
Graduate School METRIK2 on disaster management, supported by the DFG (German Research Society). It focuses on 
the adoption of METRIK-technologies concerning self-organising, ad-hoc communication infrastructures and model-
based software development for prototyping Earthquake Early Warning Systems (EEWS).  

The SAFER project aims to fully exploit the possibilities offered by the real-time analysis of the signals coming from 
seismic networks for a wide range of actions, performed over time intervals of a few seconds to some tens of minutes. 
These actions include the shutting down of critical systems of lifelines and industrial processes, closing highways, 
railways, etc., the activation of control systems for the protection of crucial structures, as well as supporting the rapid 
response decisions that must be made by emergency management (continuously updated damage scenarios, aftershocks 
hazard etc.) [1] [2]. 

Present EEWS have a number of problems related to insufficient node density due to the high costs per node necessary 
for the purchasing, installation and maintenance of the usual more sophisticated seismological stations. However, such 
problems can be solved by using a low-cost, self-organising, ad-hoc mesh sensor network that avoids more costly plan-
ned infrastructure. Such self-organising communication networks were already successfully used within other appli-
cation areas. One example is the Berlin RoofNet3, which demonstrates the feasibility to build an autonomous wireless 
communication network in the city of Berlin at a moderate budget. 

This paper demonstrates how the concept of such self-organising mesh networks can be extended and adopted for the 
development of low-cost EEWS prototypes. As in Berlin RoofNet inexpensive Commercial-Off-The-Shelf (COTS) 
hardware is used with Linux as operating system and existing communication technologies, such as IEEE 802.11g 
WLAN, which operates in the unlicensed 2.4 GHz ISM band. Communication is close to real-time (delay ~ 0.5 - 1.0s), 
robust (mesh-structure with redundant paths) and based on the Internet Protocol, allowing for easy integration with 
existing applications and with the external public Internet (where available) [3]. Low-cost ground acceleration 
seismometer and GPS receiver are the basic components to recognize wave signals in dependence of time and locality. 

                                                 
1 Seismic eArly warning For EuRope, http://www.saferproject.net
2 Model-based Development of Technologies for Self-organising Systems, http://www.gk-metrik.de
3 http://www.berlinroofnet.de
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A SOSEWIN network consists of nodes of different types with slightly different tasks. The elementary tasks are 

• Routing Task: forwarding of received messages by wireless communication, 
• Sensing Task: monitoring ground shaking using seismometer and GPS functionality, 
• Alerting Task: issuing signals for alarms and reset alarms at different levels, 
• Management Task: supporting installation, maintenance and control SOSEWIN for different manager types 

(seismological or network experts), 
• Visualizing Task: supporting visualisation of SOSEWIN state information for different end users (public, decision 

maker in disaster’s management). 
In principle, each of the SOSEWIN nodes must undertake all of these tasks. However, there are different restrictions, 
depending upon the node’s equipment and the task requirements. Fig. 1 shows a simplified SOSEWIN topology with 
typical nodes. 

Sensing Nodes (SN) 
monitor ground shaking.

A Leading Node (LN) 
processes the information 
of a group of SNs.

Gateway Node (GN)

Visualizing Node (VN)Sensing Nodes (SN) 
monitor ground shaking.

A Leading Node (LN) 
processes the information 
of a group of SNs.

Gateway Node (GN)

Visualizing Node (VN)

Temporary Node 
(TN)

 

Fig. 1 A SOSEWIN example topology with typical nodes. 

Developing the complex IT-infrastructure, we follow a model-driven system development paradigm. Structure and 
behaviour models of network topologies in specific geographic regions are coupled with wave signal analysing 
algorithms, alarming protocols, convenient visualisations and earthquake data bases to form the basis for various 
simulation experiments ahead of system implementation and installation.  

The general objective of these studies is to test the functionality of an EEWS and to optimize it under the real-time, 
reliability and cost-depended requirements of potential end-users. For modelling a technology mix of SDL/ASN.1/ 
UML/C++ is used to generate the code for different kind of simulators, and for the target on several nodes. This 
approach is used for realizing a prototype-EEWS developed within the EU project SAFER (Seismic eArly warning For 
EuRope) in cooperation with the GeoForschungszentrum Potsdam. The first operational area of that EEWS is already 
planned for Istanbul in a region threatened by strong earthquakes. However, first SOSEWIN model tests were realized 
by using historical earthquake data, recognized by a centralised seismometer network in Taiwan. 

Our paper is structured into several sections. The next Section 2 gives some background information to the application 
area and motivates the impact of earthquake wave signal analysing approaches. Section 3 summarizes the current 
situation in the development of EEWS. Especially the advantages of self-organized systems are discussed here. 
Section 4 describes the general concepts of our SOSEWIN prototype, developed in the ongoing SAFER project. The 
principles of our Alarming Protocol (AP) are outlined in Section 5. One of the simplest protocol entity of AP is 
presented here by an UML state machine. However, all of the protocol entities were described in detail by us in SDL, 
where in the first design stage the Real Time Developer Studio (RTDS) in version 3.4 was used, which supports an SDL 
dialect (SDL-RT [4]) in combination with UML class diagrams and C++ for activity and data type descriptions. This 
toolkit was extended in the context of the development of our EEWS prototyping infrastructure. Section 6 discusses this 
infrastructure, especially the SDL compiler and simulation components. The current status of the SOSEWIN 
development is given by Section 7. The last Section 8 summaries the results and activities in future work. 



 

2 Earthquake Waves, Early Warning and Rapid Response 

Earthquakes produce different types of seismic waves. These waves travel through the earth and provide an effective 
way to create an image of both sources and structures deep within the Earth. In addition their analysis is the foundation 
for different activities in a disaster’s management process, so for earthquake classification, early warning and first 
response.  
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There are four types of seismic waves: P-waves and S-waves (called 
body waves), Rayleigh waves and Love waves (called surface waves). 
Body waves travel through the interior of the Earth. P-waves (primary 
waves) are longitudinal or compressional waves, which brings the 
ground into alternately compressed and dilated movement in the 
direction of propagation. In solids, these waves generally travel almost 
twice as fast as S-waves (secondary waves) and can travel through any 
type of material. In air, these pressure waves take the form of sound 
waves, hence they travel at the speed of sound. Typical speeds are 330 
m/s in air, 1450 m/s in water and about 5000 m/s in granite4. When 
generated by an earthquake they are less destructive than the S-waves 
and surface waves that follow them. Surface waves remain below the 
Earth’s surface. They can be much larger in amplitude than body waves, 
and can form the largest signals seen in earthquake seismograms. 
Seismograms are more strongly excited by surface waves particularly 
when the seismic source (hypo centre) is in close to the surface of the 
Earth. 

Fig. 2 Shake Map Example of a synthesised Earthquake.5

It is not possible to predict an earthquake event. The only chance for preparation on the coming disaster is to use the 
most of the time delay between the arrival times of the P- and S-wave. In dependence of the distance between the 
epicentre of the earthquake (transferred hypocentre on the Earth’s surface) and the critical area locations only few 
seconds to some tens of minutes remain for an early warning. But there is another important task in analysing 
earthquake waves which supports to save human life. This is a fast generation of so-called shake maps, which show the 
wave peaks in the area (influenced by the earthquake event) in form of isobar lines or different colours. The 
combination of such shake maps with existing building and inhabitation structures can offer start estimations of the 
disasters when these information would be available very fast after an event. A special kind of shake map is an alert 
map. It is based on incomplete earthquake event descriptions (only on entrance signal data series) during the earthquake 
itself. The generation of such maps is an actual engineering challenge.  

3 Earthquake Early Warning Systems 

EEWS are based on the detection of P-waves that do not cause damage but precede the slower and destructive S-waves 
and surface waves. Dependent upon the distance between the hypocentre and the target area, a maximum early warning 
time before the S-wave arrives can be computed, based on wave travel characteristics and ground parameters. 
Therefore, the primary goal of an EEWS is simple: maximizing the early warning time under a minimal number of false 
alarms (which includes false positives and false negatives). An important secondary goal is to generate alert maps. 

3.1 Present: Centralised Approach 

Present EEWS always use a centralised approach (for example in the Marmara region, Turkey [5], Southern Apennines, 
Italy [6] and Taiwan [7]). Each station delivers its measured data or the alarm message for the case of P-wave detection 
over a (more or less) direct connection to a central data centre (which usually has a secondary data centre for backup). 
Within the data centre, it can then be decided whether an early warning message should be issued to the end users (e.g. 
nuclear power plants) who can then decide what actions will be instigated.  

                                                 
4 Dependent upon the geology of the specific region and the hypocenter depth, P-waves travel at 5-8 km/s, and S-waves at 3-7 km/s. 
5 Created with the ShakeMap generator software provided by the USGS (http://earthquake.usgs.gov/shakemap) 

http://en.wikipedia.org/wiki/Longitudinal_wave
http://en.wikipedia.org/wiki/Speed_of_sound
http://earthquake.usgs.gov/shakemap


 

In the case of the already existing Istanbul Earthquake Rapid Response6 and Early Warning System (IERREWS), ten 
strong-motion stations were placed as close as possible to the Great Marmara Fault zone, forming the online-sensor-part 
of the early warning system [5]. These stations are connected to the data centre of the Kandilli Observatory and 
Earthquake Research Institute via a digital spread spectrum radio link and continuously deliver ground-motion data for 
archiving and early warning purposes. Depending upon the location of the earthquake’s epicentre and the recipient 
facility, the early warning time can be as high as about 8s [5].  

3.2 Dilemma of current EEWS 

Current early warning systems, like the above described IERREWS, often consist of only a few, but expensive (several 
thousands euros) stations. This fact results in a number of problems: 

Malfunction: If one station breaks down, then the area it would normally observe can now only be monitored from afar, 
resulting in time delays that could seriously compromise the network’s early warning capacity.  

Instrumental Density: This problem is related to the generation of precise information about an earthquake’s intensity 
for city square cells, the size necessary being generally of the order of 500 m. Civil protection experts need such 
detailed information for reliable loss estimation maps (destroyed buildings, injured people and fatalities) that are the 
basis for effective planning by rescue teams. By comparison, EEWS usually have a station spacing of several 
kilometres. 

Cost: However, increasing the density of seismic stations is limited by their expense. 

Communication: The reliable transmission of all station information to central data stations or civil protection 
headquarters is very important, especially following an earthquake, where usually centralised communication infras-
tructures may have collapsed. 

3.3 Vision: Decentralised Approach based on Low-cost Wireless Ad-hoc Mesh Sensor Networks 

The basic idea presented in this work aims to avoid the problems identified above by deploying a much higher number 
of much cheaper stations (costing only a few hundreds of euros per station, which is of the order of 10% compared to a 
classical station). 

Another cost factors are the communication modules necessary for the link to the central data centres (in some cases 
within IERREWS, involving several hundred kilometres). Wireless, ad-hoc mesh sensor networks will allow much 
cheaper radio modules because a single station needs only to reach the nearest neighbour station, which would be only a 
few hundred meters away. 

In addition, the reliability of such a mesh sensor net is a crucial point, since while single sensors may be destroyed, the 
whole system nonetheless can still detect the earthquake. This can be achieved because the sensor nodes act 
cooperatively in a self-organising way. However, a number of challenging problems must be solved first (e.g. 
development of strategies for self-organization regarding the special requirements of EEWS; routing in huge multi-hop 
networks; deployment of software components). 

The main advantages of such an approach, besides providing a more robust and cheaper architecture than centralised 
systems, may be summarized as follows:  

• The simple deployment and installation of a temporary sensor net. This would be of particular value to, for example, 
groups such as the German Earthquake Taskforce7, who deploy temporary arrays for the detection of aftershocks. 
Time consuming planning and (costly) installation of a traditional infrastructure-based system can thus be avoided. 

• As mentioned above, in the event of an individual sensor node being destroyed, the self-organising nature of the 
network will allow alternate communication routes to be established, while the information regarding the loss of the 
sensor or sensors may be utilized in damage assessments. 

• At a latter stage it is planned to provide the capability of using the network as an information system. In the event of 
a damaging earthquake, individuals will be able to send short messages such as “I am alive.” or “I need help!” 
through a reliable mesh network that is still functional when other systems such as GSM may have collapsed. 

                                                 
6 The Rapid Response part of the IERREWS comprises about 100 stations that report only peak ground accelerations every 20s in the event of an 
earthquake. This system is used mainly for rapid damage assessment after an earthquake. 
7 http://www.gfz-potsdam.de/pb2/pb21/Task_Force/index_e.html

http://www.gfz-potsdam.de/pb2/pb21/Task_Force/index_e.html


 

4 SOSEWIN Overview 

In contrast to existing EEWS, which are planned and centralised, we propose the use of a self-organising ad-hoc 
wireless mesh network to overcome the problems of planning such a large network and administrating potentially 
thousands of Sensing Nodes (SNs). The advantages of such a network include robustness, independence of 
infrastructure, spontaneous extensibility as required, and a self-healing character in the event of failing SNs. However, 
these networks still pose a great research challenge, particularly regarding a routing-strategy to accomplish scalability 
requirements and time constraints. 

To realise a hierarchical alarming system, the nodes of SOSEWIN are organised into clusters using criteria (the so-
called wireless metric parameter) that determines the optimum communications efficiency. Each cluster is headed by a 
SN that is designated, again based on communications efficiency, as a Leading Node (LN), with whom the other SNs 
within its cluster communicate general "housekeeping/status" information and initial alarms. The LN in turn communi-
cated with other LNs, including the issuing of system alarms, based on each LN knowing the status of the nodes that 
make up their clusters. 

4.1 Hardware  

The Sensing Node prototype consists mainly of two units: 
• The WRAP board  

serves as a wireless mesh network node and computing unit for signal analysing and alarming. It is an embedded PC 
produced by PC Engines that can be purchased off-the-shelf. It is practically a 486er embedded PC with a 266 MHz 
CPU and offers one slot for a CompactFlash card, which acts as the hard disk, and two Mini PCI slots for two 
WLAN Mini PCI cards. In addition, it has a power supply plug, a serial port and 100 MBit/s Ethernet. Supplying the 
WRAP Board over the Ethernet interface by using PoE (Power over Ethernet) is also possible. 

• The sensor board  
which samples the data by analogue-digital-converters and provides them together, with GPS readings, to the WRAP 
Board. It is powered and connected to the WRAP Board via USB.  

4.2 Node Types  

For SOSEWIN, the following node types have been defined: 

• Sensing Nodes (SN) monitor ground shaking. Most nodes in the network are of this type. 
• Leading Nodes (LN) are basically Sensing Nodes as they consist of the same hardware. The “leading” property is a 

role that any SN can fulfil. A LN processes the information of a group of SN in its neighbourhood (usually not more 
than five SN). 

• Gateway Nodes (GN) represent information sinks in the SOSEWIN that have connections to the end users (via the 
internet/satellite/cable) outside of the network, and are used for sending early warning messages. It includes the 
functionality of a SN. 

• External Nodes (EN) are outside of the SOSEWIN and are connected via Gateway Nodes. They are to be informed 
first in the event of an alarm (e.g. GFZ, HU, Kandilli Observatory KOERI, police stations  …). 

• Temporary Nodes (TN) are present in the network only for a short time to access data. An example of a temporary 
node is the laptop of an earthquake task force member, who wants to access ground shaking maps or waveform data. 

• Routing Nodes (RN) ensure that communications between far-away nodes, which could not communicate otherwise. 
A Routing Node only delivers messages that it receives and undertakes no analysis. It is useful in being a low-cost 
way of extending the monitoring to a larger area. 

• Visualizing Node (VN) A Laptop acting as a TN is a typical VN, which is able to come with a GUI to visualise 
subsequent SOSEWIN states on different abstraction levels by request. It’s also easy to imagine that some of the 
SNs also have restricted visualization capabilities. 



 

4.3 Software Architecture  

The software architecture of SOSEWIN identifies all components that have to be installed according to the acquired use 
cases. The architecture is characterized by two main levels, 

• a lower communication layer combined with the operating system and 
• an upper application layer. 

Fig. 3 shows the application layer on top of the communication layer. The lower communication layer is responsible for 
all specific features of SOSEWIN that need communication and/or operating system resources. It offers peer-to-peer 
communications between any nodes of the SOSEWIN. For that it is divided into four levels of functionality abstraction; 
a peer-to-peer message transportation layer (realized in a standardised way as TCP/UDP), a routing protocol layer 
(realized by the Optimized Link State Routing (OLSR) protocol), a Medium Access Layer (MAC) and a Wireless Local 
Area Network protocol layer (WLAN). 

The application layer using operating system functionality and the peer-to-peer message transportation service of the 
OLSR-Layer to regulate the activities between SNs, LNs, and external nodes (ENs) is based on rules specified for event 
detection and for distributing alarm messages among LNs and issuing them to end users identified by the EN. 

Fig. 3 The SOSEWIN software architecture. 
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5 Alarming Protocol 

5.1 Overview of the system hierarchy 

SOSEWIN supports a hierarchical alarming system. That’s why the network is composed of node clusters, each cluster 
headed by a LN, where the cluster members are ordinary SNs or GNs. The definition of the clusters and the designation 
of which nodes are the LNs (which are themselves simply normal SNs within the network) are given by the initial 
installation. However, this can be changed dynamically if the network topology is changed. In principle, every sensor 
node can play two roles, a sensing and a leading role. There is one main rule for the clustering procedure: 

Each cluster (as a set of SNs) has a cluster head, the LN, where communications between the cluster head node to 
any other node of the cluster needs no more than two hops8. 

The Alarming Protocol (AP) uses peer-to-peer communication services realized by the underlying communication layer 
(TCP/UDP, OLSR [8], WLAN). There is one important requirement in the restriction of TCP message length. To avoid 
expensive de-fraction and fraction policies, the length should have a maximum of 1024 bytes. 

As Fig. 4 shows, the AP is realized by different asynchronous communicating protocol entities: 

                                                 
8  A distance in terms of topology and of a length that may be not specified topographically, i.e. one hop is the step from one router to the next, on the 
path of a packet on any communications network (on the Internet often discovered with pings or traceroutes) 
(http://en.wikipedia.org/w/index.php?title=Hop_%28telecommunications%29&oldid=200567153). 

http://en.wikipedia.org/w/index.php?title=Hop_%28telecommunications%29&oldid=200567153
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Fig. 4 Nodes and the associated protocol entities of the SOSEWIN Application Layer. 
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5.2 Informal Protocol Description 

Besides event detection, a general goal of the AP is to offer a network service that actualizes the knowledge about the 
states of all distributed SOSEWIN seismometers by their associated LEs as fast as possible after an individual change. 
The AP functionality is defined by two sub layers, an internal cluster protocol and a protocol for between clusters. The 
internal cluster protocol defines the communications between a SAE and SE, and the communication between all SEs of 
a cluster and their representing LN. The inter-cluster protocol defines the communications between all LEs. If a critical 
number of P-wave triggers have reached the LE of a cluster’s LN, this node informs its neighbouring LNs. In the case 
that a LE of a LN has received enough cluster alarms, a so-called system alarm will be sent as fast as possible to the 
GNs of SOSEWIN that are responsible for forwarding those alarms to defined ENs by peer-to-peer communication. 
According to this hierarchical principle, three alarm levels are recognized by the SOSEWIN: 

• Pre-alarm (recognized by the LE of a LN, the requirement being a registration of a P-wave trigger by at least one SN 
of its cluster); 

• Group alarm (recognized by the LE of a LN, the requirement being a certain number of node alarms of this cluster 
have been registered); 

• System alarm (recognized by the LE of a LN, requires a certain number of group alarms registered by this LE). 
Because of the independent reaction of the distributed nodes and their corresponding protocol entities, these alarm 
levels are reached by the individual nodes in a time-displaced manner. In addition to the three alarm states of the nodes 
represented by their protocol entities, two other states can be distinguished: 

• Idle (recognized by the SE of each node, in that no event is occurring and preliminary analysis of the data input is 
going on);  

• Final reporting (recognized by the LE of a LN, and the SE of all nodes, that the event is considered to be finished 
and the final data/result files (e.g. for ShakeMap) are being produced. 

The AP is characterized by the principle that all SNs inform their LNs with as short time delays as possible about their 
current state without any explicit demand. Doing so, the LNs will be informed about the whole life cycle of an 
earthquake event according to their SNs. An explicit demand is necessary if ENs (via GNs) or TNs want to collect 
detailed information on the last event observed by the SOSEWIN. Once the first SN of a cluster has been triggered, the 
LN assigns an ID to the event, which will be based on the GPS time of the trigger at the first SN that detected it. The ID 
of the event is therefore the minimum event time, and maybe also with a code identifying the SN. Hence, both the real 
and false events will be recognized by the network by that code. 
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Fig. 5 Scheme of Signal Analysing by SAE. 
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5.3 Signal Analysing Entity 

The SAE is a good example for the impact of a behaviour description, which requires an integration of state machine 
concepts with C/C++ as action description language, how it is offered by SDL-RT.   

The scheme of signal analysing by an SAE is described in Fig. 5. This entity continuously records its local acceleration 
[a] in three dimensions (e - latitudinal, n - longitudinal, z - vertical) with a given sampling rate (e.g. 100Hz). These raw 
acceleration data are processed first by an IIR pass band filter of Butterworth type. The filtered vertical acceleration is 
used to detect a P-wave when its signal-noise ratio exceeds a P-threshold value. The filtered accelerations in all 
directions are moreover used to compute the local velocities [v] and displacements [d]. This is done by Kanamori-filters 
which numerical integrate and filter simultaneously. After P-event detection all vertical magnitudes are monitored to 
derive crucial parameters of the earthquake event. The function senseP allows asking the current state in continuously 
processing the sensor signals, whether there is an P-wave detection or not. Starting from the P-event a combination of 
the filtered horizontal accelerations is used both to watch for the S-wave (another S-threshold value for signal-noise 
ratio) and for a progressive measurement of the energy released by the event. After an S-event all derived data are 
monitored to derive further crucial parameters of the event until the energy gain falls below a quantile9. The function 
senseS allows asking the current state in continuously processing the sensor signals, whether there is a S-wave detection 
or not. 

The signal analysing functions, derived from that scheme, are called by the SAE state machine within the 
processRecord method (see Fig. 6).  

eventDetected eventDescribed

[not_pwave]

processRecord

noEvent

processRecord

[pwave]
/send EventDetected
set t_Swave

[swave]
/send EventDescribed
set t_EventFinished,
stop t_Swave

[not_swave]

[endOfEvent],
t_EventFinished
/send EventFinished
stop t_EventDescribed

processRecord

nextRecord

nextRecord

t_sWave
/send NoEvent

nextRecord

[endOfEvent]
/send NoEvent
stop t_Swave

SignalAnalysingEntity

Fig. 6 Signal Analysing Entity as an UML State Machine. 

Fig. 6 describes the SAE behaviour in form of a simple UML state machine with three real states. Most of the time the 
entity is in the state noEvent. In this case, the received accelerometric data records were identified only as noise by the 
senseP. However, if a P-wave arrival event is recognized the entity will go into the state eventDetected. In addition an 
eventDetected message will be sent to the associated SE and the timer t_Swave will be started. 

In the state eventDetected the incoming data record will be analysed by a function call senseS in relation to the current 
aggregated state, with the aim of detecting the epected S-waves. The SAE will remain in the same state or it will switch 
to the eventDescribed state at which point two more timers (t_EventFinished, t_EventDescribed) will be started, and a 
EventDescribed status message will be sent. In the case of the expiring t_Swave message, NoEvent will be sent to the 
SE and the entity will return to the state noEvent. 

                                                 
9 Sampling rate, thresholds and quantiles are only some of the analysis parameters which are to be configured and tuned by seismological experts. 



 

Also in the state eventDescribed each incoming data record will be analysed by the function processRecord (which is 
senseP, senseS and endOfEvent) where the signal status will be actualized by each call. This status will be delivered to 
the SE using EventDescribed messages. The SE can access the computed values via a shared memory segment 
actualized by the SAE. Finally, if t_EventFinished expires, the SAE will return to the state noEvent. 

5.4 Evaluation of SDL-RT Model Descriptions 

All AP entities are described in detail in SDL-RT as process types where data and actions semantics come from C/C++. 
This allows not only a simulated execution and testing of the protocol entities, it also simplifies the code generation by 
an available cross compiler for the target hardware/operating system architecture. In addition to that the built-in real 
time features of SDL-RT also support the design and implementation process. For the simulated execution of our formal 
described protocol entities we have to distinguish different main analysing goals, where each of them is of certain 
complexity: 

• functional evaluation of a single SAE SDL process by varying historical or synthesised earthquake data to check and 
improve the used signal analysing numerical methods.  

• functional evaluation of a single SN as an ensemble of different communicating state machines. 
• functional evaluation of a configuration of SNs and LNs by varying historical or synthesized earth quake data,  
• performance evaluation of a configuration of SNs and LNs by varying historical or synthesized earthquake data to 

estimate the capability of early warning. 
A lot of parameters have to be tuned by the above scenarios in dependence on the target local area, the network size and 
topology, on the influence of environmental noise, on the behaviour of used underlying transport protocols. The 
successful realisation of this complex task to fulfil a compromise of different requirements is the base of continuation of 
further development steps, so for code generation, software deployment, network installation, network test, and finally 
for network operating. 

To ease the management of the complex prototyping task of EEWS an infrastructure was developed in parallel to the 
model development itself, implemented by a student project.  

6 Prototyping Infrastructure 

6.1 Infrastructure Components 

The foundation of the tool integration in our EEWS prototyping infrastructure is a centralised management of models, 
software artefacts, and simulation results by several repositories that are implemented by data base technologies. Fig. 7 
shows an overview on the core components realizing the identified requirements and concepts, which are shortly 
described in the following (from top to down in Fig. 7). 

• The Experiment Management System 
supports planning, configuration, automated execution of simulations and storage of simulation results. It provides 
additionally GIS-based visualization capabilities for simulation results (e.g. Detection Maps) that can also be used 
for planning software deployment and monitoring of an installed SOSEWIN network. 

• The Model Repository 
stores used SDL(-RT), UML and C++ models defining the entities of the AP. It also holds models of the 
environment (e.g. for network clustering, message transport properties or node breakdowns). 

• The Model Configurator 
knows the target platform and uses platform dependent artefacts to configure the compiler (e.g. cross-compilation). 
It also specifies certain input parameters (e.g. threshold values or network clustering) and stores the whole 
configuration into the Experiment Repository. 

• The Compiler (with libraries) 
is indeed a tool chain of several transcompilers, which accept SDL-RT models and compile C++ code at the end into 
different executable binaries (simulators, target code). 
 



 

• The Simulator 
represents in fact a collection of several simulators of different functionality (simulation framework). 

• The Earthquake Repository 
comprises time series of historical recorded or synthetic generated earthquake data stored in a relational database 
system. Various input formats, such as (Mini-)SEED, SAC and several well-known-text (WKT) formats where 
mapped to the same database scheme, that is used as an uniform interface for simulations. 

Using this infrastructure, different testbeds can be offered, namely for the detection of P-waves, for the functional 
correctness of different protocol concepts, and for the simulation of complete EEWS models. In addition, our infra-
structure will be used for prototyping software components of the target EEWS. Additional a TN equipped by 
components of this infrastructure can play a temporary manager of the EEWS to visualise different dynamic 
installation, maintenance and operating activities. 

Some of the concepts will described now more in detail. 
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Fig. 7 Model-based Prototyping Infrastructure for EEWS. 

6.2 Experiment Management System (EMS) 

The results of the simulator runs will also be stored within the relational database Experiment Repository, which is part 
of the Experiment Management System (EMS). Experimental results can then be evaluated manually by the Visualiser. 
This tool allows the presentation of a P-wave travelling through the network, with its detection (or non-detection) being 
marked by the sensor nodes changing colour (green to red, Detection Map). Other experimental output would include 
the so-called Alert Maps and Shake Maps [12]. Both maps describe the spatial variation in the maximum ground 
shaking resulting from an earthquake for a given ground motion quality. A shake map is generated from the complete 
time series of an event for each sensing node. In contrast, alert maps follow an evolutionary approach. Based only on 
the first few seconds of an earthquake’s time series, a predicted shake map is computed. Hence, while alert maps have a 



 

lower quality/accuracy than shake maps, they are generated during an earthquake and are an early warning tool while 
shake maps are used for post-event response planning. 

The experimental results can also used to evaluate several event detection algorithms and vary their parameters. Fig. 8 
shows a time-distance diagram for a simulation based on the ChiChi earthquake data (simulation number 84). The time-
distance diagram is a useful method for quick manual reviews of a simulation’s result. The event detection by each 
station is correlated to a point in time and the distance from the epicentre of the detecting station. The minimal and 
maximal wave travelling velocities are visualised as linear functions. They form two overlapping planes in the diagram 
that are actually time windows, one for the P-wave and one for the S-wave. 
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Fig. 8 Time-distance diagram of event detections for ChiChi earthquake (showing simulation 84). 

Based on the time window idea, an automated evaluation and comparison of simulations is possible by counting the 
detections that are within the P-wave time window. 

For the configuration of EEWS models (network topology, software architecture of nodes, geographic area) under load 
(earthquake events, transmission disturbances) a graphical Topology Editor based on a Geographic Information System 
(GIS) is necessary. Adding and removing nodes is implemented using the OGC standard Web Feature Service (WFS). 
With WFS, a layer of spatial objects (e.g. points and lines with additional attributes) defined by the OGC standard 
Simple Features for SQL can be placed in a topographic map (overlay). 



 

Fig. 9 shows a screenshot of the GIS-based Visualiser and network Topology Editor displaying the ChiChi earthquake 
in Taiwan, 1999. The black squares on the map represent the stations of the KNet10 for monitoring seismic activities. 
The circles visualise the wave propagation through the network (the outer yellow circle represents the P-wave, the inner 
red is for the S-wave). After the waves have passed a station, its colour will change according to their detection per-
formance. Seismograms recorded by selected stations can also be displayed, as shown in Fig. 9. 

Fig. 9 Screenshot of GIS-based Visualiser and Topology Editor (showing simulation 84). 

It is planned to extend the Visualiser to show alert and shake maps that are calculated during a simulation. 

With our EMS, various automatic evaluations of the experiments can be computed. It considers the seismic wave 
velocities for a certain area and computes the estimated arrival of the P- and S-wave for each sensing node based on the 
hypocentre information in the repository. Then it checks the P-wave arrival time as determined by the sensing node, and 
determines whether this time is within a certain tolerance. In Fig. 9 this is visualised by several colours for the station’s 
squares (see legend in the upper left corner or the first column in the table). Based on that mechanism, our EMS offers a 
comparison feature to evaluate different experimental results, for example the efficiency of different detection 
methodologies. Furthermore, it ensures reproducibility and consistency between the various development cycles of the 
simulator. 

Fig. 10 shows a screenshot of the EMS tool. The upper table (green coloured) lists the executed and planned 
simulations. Simulation number 84 is highlighted, which is the same as depicted in Fig. 9 visualizing the ChiChi 
earthquake event. The attributes of the simulated event are displayed in the second table (from top). 

                                                 
10 KNet, Kyoshin Network, National Research Institute of Earth Science and Disaster Prevention, Japan, http://www.k-net.bosai.go.jp. 

http://www.k-net.bosai.go.jp/


 

Fig. 10 Screenshot of the EMS tool (showing simulation 84). 

6.3 SDL-UML-C++ Transcompiler 

By adopting PragmaDev-tools11 our transcompiler follows the UML MDD approach to produce code for different 
platforms starting from SDL-RT model descriptions. This allows to process compositions of UML12 (class, use case and 
sequence diagrams), SDL (communicating processes) and C++ (data structures and sequential actions). We are able to 
use the RTDS13 simulator to debug the model execution by SDL interpretation. In addition to this technique, other 
simulation frameworks can be coupled according to specific modelling and investigation requirements. Whereas by an 
SDL-based simulation, so far “only” functional characteristics have been examined, the ODEMx library ([17], [18]) 
will allow non-functional performance characteristics of self-organising systems to be determined by simulation, while 
varying the topology and environmental influences. The RTDS compiler is currently adopted by following extensions 

• annotations (prefixed SDL identifiers) in the SDL-RT source code allow a post-processing of the generated C-code, 
produced by RTDS, 

• additional pattern-controlled transcompiler which transforms the generated C-code of RTDS to C++ supporting 
different targets. Using these patterns special parts of the structured RTDS C-Code will be substituted in each case 
following the related substitution patterns. Currently two alternatives are supported by our transcompiler: 

− transcompilation to C++ using the network simulator library ODEMx14 which also handles time 
dependencies of state machine actions and message transportations by the network (as a main preposition 
for a model-based performance evaluation of SOSEWIN networks), 

                                                 
11 www.pragmadev.com
12 Standardized by the Object Management Group (OMG). 
13 Real Time Developer Studio (V3.4) supports SDL-RT (a combination of UML, SDL, and C/C++) as a suited representation in the embedded / real 

time world today because it is basically a set of graphical representations of classical concepts such as tasks, messages, states, timers, and 
semaphores. 

14 Object-oriented Discrete Event Modelling is a C++ library for modelling and simulation of ensembles of discrete event driven processes combined 
with time-continuous processes. 

http://www.pragmadev.com/


 

− transcompilation by using Boost library thread and network functionality[13] to C++ as target code for the 
SOSEWIN nodes running a POSIX-compliant Linux. 
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Fig. 11  SDL-UML-C++ Transcompiler Architecture. 

6.4 Simulation Framework 

Our prototyping infrastructure integrates various simulators for different evaluation goals under common experiment 
management strategies. The last section has demonstrated different kinds of C/C++ code generations, where two of 
them were related with the simulation framework. 

6.4.1 Simulator-I: Evaluation of Signal Analysing Algorithms 

This simulator executes for a given number of SNs and provided time series of sensor’s raw data (for each of them) the 
behaviour of their SAEs without any communication between themselves. With the help of this simulator an isolated 
test of the signal analysing functionality can be realized. With the EMS topology editor the nodes can be positioned in a 
map. Using their GPS coordinates a synthesiser of an Earthquake can produce event data individually for each node by 
fixing a hypocentre and the earthquake parameters (e.g. rupture length, depth, energy). The simulator visualises on one 
hand side the distribution of the earthquake waves in dependence of time and on the other side the P-wave detection by 
switching a virtual light controller from green to red by each of the node (Detection Map). 

So, the simulator allows to evaluate several event detection algorithms and to vary their parameters. Fig. 8 shows a 
time-distance diagram for a simulation based on the ChiChi earthquake data (simulation number 84). The time-distance 
diagram is a useful method for quick manual reviews of a simulation’s result. The P-wave detection by each station is 
correlated to a point in time and the distance from the epicentre of the detecting station. The minimal and maximal wave 
travelling velocities are visualised as linear functions. They form two overlapping planes in the diagram that are 
actually time windows, one for the P-wave and one for the S-wave. 

Based on the time window idea, an automated evaluation and comparison of simulations is possible by counting the 
detections that are within the P-wave time window. 

6.4.2 Simulator-II: Functional Evaluation of AP Entities (SDL-Systems) 

Here we use the RTDS SDL-RT-simulator to test the functional behaviour of smaller ensembles of the SOSEWIN 
nodes. We abstract from concrete earthquakes, and underlying protocol layers. One further important preposition is a 
perfect transmission behaviour of used communication channels over the air. The results of functional tests allow us to 



 

evaluate and improve the logic of our alarming protocol. Typical outputs here are MSCs, which can be represented as 
XML and also stored in the experiment repository for further filtering by using data base functionalities. 

Fig. 12 visualises the issuing of a system alarm by a SOSEWIN-SDL-model with four node clusters (groups) and three 
nodes per group. The figure shows a shortened Message Sequence Chart (MSC) containing six lifelines per group: one 
for each SE, one for the active LE and two for the idle Leading Nodes (SN with idle LE). The most left lifeline 
pSimulation, takes the role of an SAE and sends signals for detecting the P-Wave directly to the corresponding SE of a 
SN. The next two lifelines are for organising the simulation and can be filtered out. 

Fig. 12 Alarm issuing by an example SOSEWIN. 

6.4.3 Simulator-III / IV: Performance Evaluation of SDL-Systems 

Here we use the capability of our general-purpose ODEMx library [21], which supports the modelling and simulation of 
parallel process, where their state changes are described by discrete events in combinations with differential equations. 
This library contains especially concepts for simulation computer networks, where the protocol entities are extensions 
of the built-in ODEMx process concepts. Using this library two different simulators are produced by our transcompiler 
technology: 

• Simulator III allows the estimation of required transmission times and transmission quality of alternative SOSEWIN 
configuration which guarantees the early warning functionality in dependence on different earthquake scenarios. 

• Simulator IV should support in extension of SIMULATOR III the simulation of node breakdowns and of the 
behaviour of underlying protocol layers. Especially this simulator could be used for the training of disaster’s 
management experts. 

Alternative to Simulator IV a NS2-Simulator [14] could eventually be used similar to the known SDL-NS2 approach 
from [26]. For that purpose our transcompiler technology has to be extended before. 



 

All simulators produce MSCs and other event traces for a further information aggregation or visualisation. To simplify 
this kind of operations the trace raw data are managed by our experiment repository, realized as a data base system. 

6.5 Earthquake Repository 

The Earthquake Repository is implemented by a relational database system holding historical or synthesized time series 
of ground motion in the same format as a real sensor would provide. GFZ has suggested selecting those earthquakes 
with a magnitude greater than 5 and a close distance (< 200 km) between the network and the hypocentre. Currently the 
repository comprises 56 earthquakes, including the well-known ChiChi event in Taiwan and ten events in Japan. Both 
countries provide a dense and high-quality monitoring network. The other 45 events in Europe are recorded by only a 
few stations and the data is of a lower quality. 

The synthetic seismograms are generated by the method of Wang (1999) [15]. This involves the use of a 
computationally efficient and stable propagation method applying orthonormalization for the calculation of the Green's 
functions of a half-space consisting of an arbitrary number of laterally homogeneous layers with a stress-free surface on 
top and the homogeneous deepest layer extending to infinite depth. From these functions, the ground motion resulting 
from a defined seismic event, or combination of events, is determined. 

Synthetic seismograms offer the opportunity to test different methods of event detection and classification, with the 
freedom to introduce as much (or as little) “noise” to the data as required. Likewise, different configurations of seismic 
stations can be assessed to determine which is the optimal array geometry, or on the other hand, to determine the 
limitations of a given network that is bounded by certain practical considerations (terrains, buildings, etc.). 

7 Current Status – A Prototype for Istanbul 

Besides an existing small laboratory testbed of ten SOSEWIN nodes at Humboldt-Universität, the main field test was 
planned to be in Istanbul. In order to establish a small (about 40 nodes) network in the city of Istanbul, in April 2008 a 
scientists group performed an inspection of the Ataköy area in the Bakirköy district. 

During the inspection, two communication tests with SOSEWIN nodes were performed, in order to verify the quality 
and distance capability of the communication between nodes when they operate into the urban context. 

During the first test the quality and strength of communications between the base station and three buildings at 80m, 
140m, and 180m were measured, while at the second base station a building at the considerable distance from the base 
station of 260m was tested. The positive results obtained from these preliminary tests make possible the planning of the 
SOSEWIN test network in June 2008 ( Fig. 13). 

8 Conclusion 

We have presented a prototyping infrastructure for the model-driven development of EEWS based on self-organising 
sensor networks. This architecture is based on OGC, OMG and ITU-T standards and combines different technologies 
GIS, databases, behaviour modelling, code generation and simulation technologies for special application domain by 
one integrated framework. So, it allows the evaluation of the real-time behaviour of projected earthquake monitoring 
and alarming systems and supports automatic code generation from evaluated structure and behavioural models. 
Modelling techniques which we used here are based on SDL and UML under special real-time requirements. Our 
prototyping infrastructure, implemented in C++, is used in the projects SAFER and EDIM for optimizing self-
organising seismic earthquake early-warning and rapid response systems, a real testbed is in preparation for Istanbul.  

An evaluation of the real-time behaviour of such complex systems is almost impossible or too expensive without prior 
modelling experiments, involving computer simulations. For that we identified several investigation goals supported by 
different simulators. This involves functional and performance evaluation of EEWS models by tuning topologies and 
parameters. Additionally to the model-based development our prototyping infrastructure supports also the installation, 
test, and operating of the network. 



 

 Fig. 13 Planned SOSEWIN network in Istanbul 

Currently the concepts of a cooperative signal analysing are tested and experiments to evaluate and improve 
performance characteristics will start very soon after stabilisation of our compiler technology.  

Although this contribution is naturally focussed on earthquake driven applications, the presented architecture of 
prototyping system may be adopted to those use cases where meshed sensor-based self-organising  infrastructures in 
combination with GIS are applied, such as in Heat Health Warning Systems [19]. 
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