
Development of Telecommunications Standards and
Services with the User Requirements Notation

Daniel Amyot and Gunter Mussbacher

SITE, University of Ottawa, 800 King Edward, Ottawa, ON, K1N 6N5, Canada
{damyot, gunterm}@site.uottawa.ca

Abstract. Requirements represent an important aspect of telecommunications
standards, whether they apply to protocols, services, or architectures. This paper
presents an overview of the proposed ITU-T Recommendation Z.151 – User
Requirements Notation (URN), intended for the elicitation, analysis,
specification, and validation of requirements. URN combines modelling
concepts and notations for goals and intentions (mainly for non-functional
requirements, quality attributes, and reasoning about alternatives) and scenarios
(mainly for operational requirements, functional requirements, and performance
and architectural reasoning). Basic concepts and notation elements are
introduced, together with the main requirements analysis, transformation, and
management techniques relevant to URN and supported by the jUCMNav
Eclipse plug-in. Although URN is generally suitable for describing most types
of reactive systems and information systems, we will illustrate its applicability
to the development of telecommunications standards. Other applications of
URN will briefly be enumerated, and an overview of future extensions to URN
will be presented.

Keywords: Goal-oriented Requirement Language, jUCMNav, Use Case Maps,
Scenarios, Standards, Telecommunication, User Requirements Notation.

1 Introduction

The User Requirements Notation (URN) aims to support the elicitation, analysis,
specification, and validation of requirements. URN is the first standardization effort to
address explicitly, in a graphical way and in one unified language, goals and
scenarios, and the links between them. URN models can be used to specify and
analyze various types of reactive systems as well as telecommunications
standards [2].

The kind of modelling supported by URN is different from the detailed
specification of “how” functionalities are to be supported, as described with
languages such as SDL [23], Message Sequence Chart (MSC) [25], or UML [44].
Here the modeller is primarily concerned with exposing “why” certain choices for
behaviour and/or structure were introduced, combined with an abstract view of
“what” capabilities and architecture are required. The modeller is not yet interested in
the operational details of internal component behaviour or component interactions.

Omitting these kinds of details during early development and standardization phases
allows working at a higher level when modelling a current or future standard or
software system and its embedding environment. Modelling and answering “why”
questions leads us to consider the opportunities stakeholders seek out and
vulnerabilities they try to avoid within their environment, whereas modelling and
answering “what” questions helps identify capabilities, services, and architectures
required to satisfy stakeholder goals.

In this paper, section 2 introduces URN’s basic concepts and notation elements.
Section 3 gives an overview of different URN-based analysis and transformation
techniques. In section 4, we discuss the applicability of the notation and these
techniques to the development of telecommunications standards. Section 5 explores
other application domains of URN as well as potential enhancements, followed by our
conclusions in section 6.

2 User Requirements Notation

Section 2.1 first gives an overview of the User Requirements Notation (URN) as
proposed in the ITU-T Z.151 standard. URN consists of two complementary
languages, the Goal-oriented Requirement Language (GRL) summarized in section
 2.2 and the Use Case Map (UCM) notation summarized in section 2.3. Important
URN concepts that are applicable to both, GRL and UCM, are discussed in
section 2.4. The section closes with a description of the capabilities of jUCMNav, the
most comprehensive URN tool currently available.

2.1 Overview of the Proposed Recommendation Z.151

URN is intended for the elicitation, analysis, specification, and validation of
requirements. URN allows software and requirements engineers to discover and
specify requirements for a proposed system or an evolving system, and analyse such
requirements for correctness and completeness.

URN combines the Goal-oriented Requirement Language (GRL) for modelling
goal-oriented and intentional concepts (mainly for non-functional requirements,
quality attributes, and reasoning about alternatives) with the Use Case Map (UCM)
notation for modelling scenario concepts (mainly for operational requirements,
functional requirements, and performance and architectural reasoning). In particular,
URN has concepts for the specification of stakeholders, goals, non-functional
requirements, rationales, behaviour, scenarios, scenario participants, and high-level
architectural structure.

The proposed Recommendation Z.151 [27] adheres to the guidelines of the
proposed ITU-T Recommendation Z.111 [24] for metamodel-based definitions of
ITU-T languages. The proposed Recommendation Z.151 specifies the abstract syntax
of URN, a concrete graphical syntax for URN, an XML-based interchange format for
URN, and a data language that is required for the formalization of conditions and
expressions used by some features of URN. The data language is a subset of SDL’s
supporting Boolean, Integer, and Enumeration data types, with a concrete textual

syntax that supports both SDL and Java/C expressions. The metamodel of the
concrete syntax and the XML schema of the interchange format both specify layout
information enabling the reconstruction of diagrams from the model.

The static semantics of URN is defined with the help of natural language
descriptions and constraints on the abstract and concrete URN metamodel. The
dynamic aspects of URN are defined by requirements and guidelines for (i)
propagation mechanisms for GRL model evaluation, and for (ii) a path traversal
mechanism for UCM scenario interpretation.

The GRL model evaluation allows for the comparison of alternatives and facilitates
trade-offs among conflicting goals of various stakeholders. A general description of
GRL model evaluation is provided along with three examples of
evaluation/propagation algorithms. The language does not enforce a specific
propagation mechanism as GRL can be used in different ways by different modellers,
e.g., for qualitative evaluations or quantitative ones.

The dynamic semantics of the UCM notation, on the other hand, is precisely
described with a list of requirements for a UCM path traversal mechanism. This
mechanism is the basis for many advanced applications of UCMs, such as scenario
highlighting and animation, the generation of MSCs, and the generation of test cases.
Examples further clarify the usage and semantics of URN.

URN is applicable within standards bodies and industry. URN helps to describe
and communicate requirements, and to develop reasoning about them. The main
applications areas include telecommunications systems, services, and business
processes, but URN is generally suitable for describing most types of reactive systems
and information systems. The range of applications is from business goals and
requirements description to high-level design.

URN is a notation that complies with Recommendation Z.150 [26]. It includes
concepts and notations satisfying the language requirements of Z.150’s URN-NFR
(for non-functional requirements) and URN-FR (for functional requirements). URN
integrates these concepts and notation into a single language. An assessment of
conformity of the current URN representation with the language requirements for
URN is also included in the standard, together with descriptions of various
compliance levels for tools supporting the notation.

2.2 Goal-oriented Requirement Language

The subset of the URN language that addresses Z.150 URN-NFR language
requirements is named Goal-oriented Requirement Language (GRL), which is a
language for supporting goal-oriented modelling and reasoning about requirements,
especially non-functional requirements and quality attributes. It provides constructs
for expressing various types of concepts that appear during the requirement process.
GRL captures stakeholders, alternatives that have to be considered, decisions that
were made regarding these alternatives, and rationales that helped make these
decisions.

 GRL has its roots in two widespread goal-oriented modelling languages: i* [57]
and the NFR Framework [13]. Major benefits of GRL over other popular notations
include the integration of GRL with a scenario notation, the support for qualitative

and quantitative attributes, and a clear separation of GRL model elements from their
graphical representation, enabling a scalable and consistent representation of multiple
views/diagrams of the same goal model.

The syntax of GRL (see Fig. 1) is based on the syntax of the i* language. There are
three main categories of concepts in GRL: actors, intentional elements, and links. A
GRL goal graph is a connected graph of intentional elements that optionally reside
within an actor boundary. An actor represents a stakeholder of the system or another
system. Actors are holders of intentions; they are the active entities in the system or
its environment who want goals to be achieved, tasks to be performed, resources to be
available and softgoals to be satisfied. A goal graph shows the high-level business
goals and non-functional requirements of interest to a stakeholder and the alternatives
for achieving these high-level elements. A goal graph also documents beliefs
(rationales) important to the stakeholder.

(a) GRL Elements

Belief

Goal Softgoal ResourceTask

Actor with Boundary
Collapsed

Actor

SatisfiedWeakly
Satisfied

Unknown

Denied Weakly
Denied

Conflict None

Make Help Some Positive Unknown

Break HurtSome Negative

(d) GRL Contributions Types

(c) GRL Satisfaction Levels

(b) GRL Links

Contribution

Correlation

Dependency Decomposition

Means-End

(a) GRL Elements

Belief

Goal Softgoal ResourceTask

Actor with Boundary
Collapsed

Actor

SatisfiedWeakly
Satisfied

Unknown

Denied Weakly
Denied

Conflict None

Make Help Some Positive Unknown

Break HurtSome Negative

(d) GRL Contributions Types

(c) GRL Satisfaction Levels

(b) GRL Links

ContributionContribution

CorrelationCorrelation

DependencyDependency DecompositionDecomposition

Means-EndMeans-End

i) Icon only ii) Text only iii) Icon and text

Make Make

iv) Number only v) Icon and number

100 100

(e) Representations of Qualitative and Quantitative Contributions

Fig. 1. Basic Elements of GRL Notation

In addition to beliefs, intentional elements can be softgoals, goals, tasks, and
resources. Softgoals differentiate themselves from goals in that there is no clear,
objective measure of satisfaction for a softgoal whereas a goal is quantifiable. In
general, softgoals are related more to non-functional requirements, whereas goals are
related more to functional requirements. Tasks represent solutions to (or
operationalizations of) goals or softgoals. In order to be achieved or completed,
softgoals, goals, and tasks may require resources to be available. Goals, softgoals,

tasks, resources, and beliefs are intentional because they are used for models that
allow answering questions such as why particular behaviours, informational and
structural aspects were chosen to be included in the system requirements, what
alternatives were considered, what criteria were used to deliberate among alternative
options, and what the reasons were for choosing one alternative over the other.

Links (see Fig. 1.b) are used to connect isolated elements in the requirement
model. Different types of links depict different structural and intentional relationships
(including decompositions, contributions, and dependencies). Decomposition links
allow an element to be decomposed into sub-elements. AND, IOR, as well as XOR
decompositions are supported. XOR and IOR decomposition links may alternatively
be displayed as means-end links. Contribution links indicate desired impacts of one
element on another element. A contribution link can have a qualitative contribution
type (see Fig. 1.d), or a quantitative contribution (integer value between -100 and 100,
see Fig. 1.e). Correlation links are similar to contribution links, but describe side
effects rather than desired impacts. Finally, dependency links model relationships
between actors (one actor depending on another actor for something).

From the NFR framework, GRL borrows support for analysis of strategies, which
help reach the most appropriate trade-offs among (often conflicting) goals of
stakeholders. A strategy consists of a set of intentional elements that are given initial
satisfaction values (see Fig. 1.c; e.g. a chosen intentional element is set to Satisfied
whereas all other intentional elements are set to Denied). These satisfaction values,
which can be qualitative or quantitative, capture contextual or future situations as well
as choices among alternative means of reaching various goals. These values are then
propagated to the other intentional elements through their links taking contribution
types into account. This enables a global assessment of the strategy being studied.

GRL also takes into account that not all high-level goals and non-functional
requirements are equally important to the stakeholder. Therefore, an importance
attribute (again quantitative or qualitative) may be specified for intentional elements
inside actors, which is used when evaluating strategies for the goal model. A good
strategy provides rationale and documentation for decisions leading to requirements,
providing better context for standards/system developers and implementers while
avoiding unnecessary re-evaluations of worse alternative strategies.

As an example, Fig. 2 shows a simple GRL diagram (adapted from [2]) that
describes the impact of the selection of the location of a new wireless service and its
data in an existing network. For the service provider, keeping a low cost is important
but providing high performance is even more important. The vendor is very much
interested in a system that is highly evolvable, and keeping the load on a message
switching center (a wireless switch) to a minimum would be helpful. This example
shows that intentional elements can be decomposed, and that many local alternatives
can have various impacts on different concerns of the stakeholders involved, with no
obvious global solution that would satisfy everyone.

Fig. 2. GRL Model Example

2.3 Use Case Maps

The subset of the URN language that addresses Z.150 URN-FR language
requirements is named Use Case Map (UCM) [10, 11]. UCM specifications employ
scenario paths to illustrate causal relationships among responsibilities. Furthermore,
UCMs provide an integrated view of behaviour and structure by allowing the
superimposition of scenario paths on a structure of abstract components while
abstracting from message and data details. The combination of behaviour and
structure enables architectural reasoning after which UCM specifications may be
refined into more detailed scenario models such as MSCs and UML sequence
diagrams, or into state machines in SDL or UML statechart diagrams, and finally into
concrete implementations. Validation, verification, performance analysis, interaction
detection, and test generation can be performed at all stages. Thus, the UCM notation
enables a seamless transition from the informal to the formal by bridging the
modelling gap between goal models and natural language requirements (e.g. use
cases) and design, in an explicit and visual way. The UCM notation allows modellers
to delay the specification of component states and messages and even, if desired, of
concrete components to later, more appropriate stages of the development process.
The goal of the UCM notation is to provide the right degree of formality at the right
time in the development process.

[CS] [CE]

Path with Start Point with
Precondition CS and End
Point with Postcondition CE

… …

…
…

…
…

[CO1]
[CO2]

[CO3] …

…
……

…
…

…
… …

…

…
…

… …

… …IN1 OUT1

… …IN1 OUT1

OUT1 [ST]… …IN1 S XB

… …

Responsibility

Or-Fork with
Conditions Or-Join

And-Fork And-Join

Empty Point

Waiting Place with Condition
and Asynchronous Trigger

Timer with Conditions, Timeout
Path, and Synchronous Release

Direction Arrow

Static Stub with In-Path ID
and Out-Path ID

… …
…… [CW]

[CTO]

… …
…

[CT]

…

Dynamic Stub with In-Path ID
and Out-Path ID

Synchronizing Stub with
In-Path ID, Out-Path ID,
and Synchronization Threshold
Blocking Stub with In-Path ID,
Out-Path ID, Synchronization
Threshold, and Replication Indicator

… …SIN1 OUT1 [ST]

Team Process Object

Agent Actor

Components:

parent:

Protected Component

Context-dependent
Component

[CS] [CE]

Path with Start Point with
Precondition CS and End
Point with Postcondition CE[CS] [CE][CS] [CE]

Path with Start Point with
Precondition CS and End
Point with Postcondition CE

… …… …

…
…

…
…

[CO1]
[CO2]

[CO3]

…
…

…
…

[CO1]
[CO2]

[CO3] …

…
……

…

…
……

…
…

…
……
…

…
… …

…

…
… …
…

…
…

… …… …

… …IN1 OUT1… …… …… …IN1 OUT1

… …IN1 OUT1… …… …… …IN1 OUT1

OUT1 [ST]… …IN1 S XB OUT1 [ST]… …IN1 S XB

… …… …

Responsibility

Or-Fork with
Conditions Or-Join

And-Fork And-Join

Empty Point

Waiting Place with Condition
and Asynchronous Trigger

Timer with Conditions, Timeout
Path, and Synchronous Release

Direction Arrow

Static Stub with In-Path ID
and Out-Path ID

… …
…… [CW]

… …… …
…… …… [CW]

[CTO]

… …
…

[CT]

…

[CTO]

… …
…

[CT]

[CTO]

… …
…

[CT]

…

Dynamic Stub with In-Path ID
and Out-Path ID

Synchronizing Stub with
In-Path ID, Out-Path ID,
and Synchronization Threshold
Blocking Stub with In-Path ID,
Out-Path ID, Synchronization
Threshold, and Replication Indicator

… …SIN1 OUT1 [ST]… …S… …SIN1 OUT1 [ST]

Team Process Object

Agent Actor

Components:

parent:parent:

Protected Component

Context-dependent
Component

Fig. 3. Basic Elements of UCM Notation

The basic elements of the UCM notation are shown in Fig. 3. A map contains any
number of paths and components. Paths express causal sequences and may contain
several types of path nodes. Responsibilities describe required actions or steps to
fulfill a scenario. OR-forks (possibly including guarding conditions) and OR-joins are
used to show alternatives and path merging, while AND-forks and AND-joins depict
concurrency and synchronization. Loops can be modelled implicitly with OR-joins
and OR-forks. As the UCM notation does not impose any nesting constraints, joins
and forks can be freely combined and a fork does not need to be followed by a join.
Waiting places and timers denote locations on the path where the scenario stops until
a condition is satisfied. If an endpoint is connected to a waiting place or a timer, the
stopped scenario continues when this end point is reached (synchronous interaction).
Asynchronous, in-passing triggering of waiting places and timers is also possible. A
timer may also have a timeout path which is indicated by a zigzag line. End points
and start points of paths can be connected to each other to indicate simple sequences
of paths.

UCM models can be decomposed using stubs which contain sub-maps called plug-
ins. Plug-in maps are reusable units of behaviour and structure. Plug-in bindings
define the continuation of a path on a plug-in map by connecting in-paths and out-
paths of a stub with start and end points of its plug-in maps, respectively. A stub may
be static, which means that it can have at most one plug-in map, whereas a dynamic

stub may have many plug-in maps which may be selected at runtime. A selection
policy decides which plug-in maps of a dynamic stub to choose at runtime. A
synchronizing stub is a dynamic stub that requires its plug-in maps to synchronize.
Components are used to specify the structural aspects of a system. Map elements
which reside inside a component are said to be bound to the component. Components
can contain sub-components and have various types and characteristics. For example,
a protected component does not allow a second path to enter the component if one
path is already executing inside the component and a component of kind object does
not have its own thread of control while a component of kind process does. A
component of kind actor represents someone or something interacting with the system
under design. A context-dependent component is shown with the keyword “parent: ”
and indicates a component on a plug-in map that is linked to a component on the
parent map through a component plug-in binding. The component on the parent map
therefore defines the component on the plug-in map.

UCM specifications identify input sources and output sinks as well as describe the
required inputs and outputs of a scenario. UCM specifications also integrate many
scenarios or related use cases in a map-like diagram. Scenarios can be structured and
integrated incrementally. This enables reasoning about and detection of potential
undesirable interactions of scenarios and components. Furthermore, the dynamic (run-
time) refinement capabilities of the UCM notation allow for the specification of (run-
time) policies and for the specification of loosely coupled systems where functionality
is decided at runtime through negotiation between components or compliance to high-
level goals.

UCM scenarios can be integrated together, yet individual scenarios are tractable
through scenario definitions based on a simple data model. UCMs treat scenario paths
as first class model entities and therefore build the foundation to more formally
facilitate reusability of scenarios and behavioural patterns across a wide range of
architectures. Given the definition of a scenario or combination of scenarios, a UCM
path traversal mechanism can highlight the scenario path or transform the scenario
into more concrete design notations such as MSCs. The traversal mechanism
effectively turns the scenario definitions into a test suite for the UCM model.

UCM also supports a standard set of annotations targeting performance modelling.
In particular, scenario start points can have various kinds of workloads, components
can be allocated to processing resources, resources can be used and external services
invoked, and probabilities are attached to forks and to selection policies of stubs.
Although no visual representation of these annotations is offered (tools usually
provide access via property panels), their presence enables the reuse of requirements
models for performance modelling and analysis.

As an example, Fig. 4 shows a simple UCM model for a wireless connection use
case composed of three diagrams. The top-level map (a) has an Authorization dynamic
stub that contains two alternative plug-ins, whose selection depends on the states of
global variables initialized in scenario definitions. In the first alternative (b), the
authorization information comes from an external service node whereas in the second
one (c) this information is already in the control function of the message switching
center (referred to as the parent component here). Plug-ins can introduce new
components, make reference to existing ones, or have parameterized (parent)

components. The alternative plug-in maps capture two of the four potential
combinations of choices discussed in the GRL diagram of Fig. 2.

a) Authenticated wireless connection use case: Top-level map

b) Service in MSC, data in external service node: SvcInMSC_DataInSN map

c) Service and data in MSC: SvcInMSC map

Fig. 4. UCM Model Example

UCM share many characteristics with UML activity diagrams, but UCM offer more
flexibility in how sub-diagrams can be connected and how sub-components can be
represented. UCM also integrate a simple data model, performance annotations, and a
simple action language used for analysis. Activity diagrams, however, have better
support for data flow modelling, object flows, cancellation and exception handling,
and a better integration with the rest of UML. UCM, on the other hand, are better
integrated with goal-oriented models, which are most useful in the early phases of
development and standardization.

2.4 URN Links and Metadata

URN links, indicated by small triangles on model elements, can link any two URN
model elements. In particular, links from GRL models to UCM models establish
traceability between goal and scenario models in URN. Modelling both goals and
scenarios is complementary and may aid in identifying further goals and additional
scenarios (and scenario steps) important to stakeholders, or spotting spurious goals or
scenarios, thus contributing to the completeness and accuracy of requirements.

Furthermore, metadata in the form of name/value pairs can be associated with any
URN model element. This allows for domain-specific extensions to be added to URN
and exploited by specialized tool support.

2.5 Tool Support with jUCMNav

The best tool supporting URN modelling, analysis and transformations is an open-
source Eclipse plug-in named jUCMNav [28]. It supports analysis features for
evaluating GRL models (strategies and propagation algorithms, see Fig. 5) [52] and
executing UCM models (scenario definitions and traversal algorithms, see Fig.
6) [29]. A URN model can contain multiple interlinked GRL and UCM diagrams, and
jUCMNav enables the sharing of definitions of actors, intentional elements,
intentional links, responsibilities and components across diagrams.

jUCMNav prevents the creation of syntactically incorrect URN models. The tool
also supports advanced functionalities such as scenario export to MSC (jUCMNav
integrates an MSC viewer), export of performance models based on UCM
performance annotations, integration with the Telelogic DOORS requirements
management system, verification of user-defined static semantic rules written in
OCL [43], import/export of GRL catalogues, report generation in PDF and HTML,
and export of figures to various image formats.

Fig. 5. jUCMNav Tool: GRL Editor with Strategy Evaluation

Fig. 6. jUCMNav Tool: URN Editor with Scenario Traversal

3 URN-Based Analysis, Transformations, and Management

The two key URN analysis techniques are GRL model evaluation with strategies and
UCM model interpretation based on scenario definitions. These two approaches can
also be combined for integrated analysis. Transformations of UCM models to MSCs
and performance models also represent typical applications of URN models. Since
URN models need to coexist with other types of requirements and design artifacts,
they must be amenable to integration with requirements management systems. The
next six subsections briefly illustrate each of these approaches.

3.1 Tradeoff Evaluation with GRL Strategies

As GRL models can be used for many different purposes, the goal-oriented modelling
community has developed many analysis approaches. It is premature to standardize
any of them, but three examples of evaluation algorithms based on strategies are
formalized and illustrated in an appendix of proposed Recommendation Z.151. They
are all based on the grammar metaclasses of GRL. Two of them are illustrated here
for the GRL example introduced in section 2.2, where tradeoffs between stakeholders’
objectives need to be analysed. These are bottom-up algorithms that compute the
satisfaction level of link targets based on the satisfaction of source intentional

elements and the nature of the links. Decomposition links are evaluated first, followed
by contributions/correlations and finally dependencies.

 Fig. 7 illustrates an example of qualitative analysis approach, where qualitative
contributions, satisfaction levels, and importance levels are used. The strategy being
evaluated here contains three initial satisfaction values (shown with stars *): the data
and the service are located in a service control point, and the maximum hardware
utilisation is weakly satisfied. These values are propagated to the other intentional
elements through the various links. jUCMNav supports this analysis and also utilises
a color palette to highlight what is satisfied (green), neutral (yellow), or denied
(red) [52]. Globally, one can see the impact of all the decisions on the actors and their
top-level goals.

Fig. 7. GRL Model Evaluation: Qualitative Analysis Example

 Fig. 8 shows an example of a quantitative analysis approach. This time, integer values
ranging from -100 (denied) to 0 (none) to +100 (satisfied) are used for satisfaction
levels. The same scale applies to negative and positive contribution links. In this
example, the service is in a message switching center, the data is in a service node,
and the maximum hardware utilisation is partially satisfied. The service provider has
more or less the same level of satisfaction as for the previous strategy, but this time
the vendor is quite dissatisfied. Hence, the first strategy seems better than this one
(although usually they should be both compared based on the same propagation
algorithm). Quantitative analysis provides more precise results than a qualitative
approach but requires more precise input up front, something that is not always
possible.

Fig. 8. GRL Model Evaluation: Quantitative Analysis Example

Such evaluations provide rationale and documentation for requirements-related
decisions in context. URN also allows for quantitative values and qualitative values to
be both used in a single propagation algorithm.

3.2 Scenario Analysis with UCM Scenario Definitions

The UCM path traversal mechanism is based on the abstract grammar metaclasses of
the UCM notation. This mechanism traverses a UCM model by starting at the first
start point as defined in a scenario definition by the modeller. A scenario definition
contains start points, preconditions, expected end points, postconditions, and variable
initializations. The actual path to be traversed is determined by the initial, user-
defined values of global path variables and the changes to these values at
responsibilities during the traversal. The URN data model contains a simple action
language that supports variable assignments, expressions, and conditional statements.
The path traversal mechanism moves from one path element to the next (forks, joins,
timers, stubs, etc.) if path continuation criteria are met. If more than one next path
element meet the continuation criteria, all of these path elements are visited in
parallel. The traversal ends when the last end point is reached. Various errors and
warnings are reported when progress is no longer possible or when non-deterministic
choices are encountered.

UCM path elements have specific continuation criteria, which are defined among
the 80 requirements that collectively capture the dynamic semantics of UCM models.
These requirements allow implementers to develop their own traversal algorithm and
optimize or extend various aspects of it according to their needs. jUCMNav
implements such a traversal mechanism.

The pre- and postconditions of scenario definitions that must be met respectively at
the beginning and at the end of the traversal enable the testing and validation of the
model. Definitions can also be grouped and they can include other scenario
definitions to simplify the maintenance and use of large collections of scenarios.

As an example, suppose two simple scenario definitions for the UCM model of
section 2.3:

• ServiceInMSC_OK: The start point is StartConnection, the authorization
variable is true ([Ok]), and the selected deployment plug-in map for the
dynamic stub is SvcInMSC.

• ServiceInMSC_DataInSN_NotOK: The start point is StartConnection, the
authorization variable is false ([NotOk]), and the selected deployment
plug-in map for the dynamic stub is SvcInMSC_DataInSN.

jUCMNav uses such scenario definitions to highlight, in red, the paths traversed
while running the scenario on the UCM model (see Fig. 6). Any error or warning is
reported in the Eclipse Problems view. In addition, the scenario path resulting from
the traversal can be exported as a separate URN model, so a flattened representation
of the scenario can be visualized as a UCM diagram. For instance, the above scenario
definitions resulted in the two diagrams in Fig. 9. Only the path elements and
components traversed are represented. Also, stubs are flattened and alternatives are
resolved thanks to the variable initializations in the scenario definition.

Fig. 9. UCM Models Resulting from the Two Scenarios

3.3 Combining Strategies with Scenario Definitions

GRL strategies and UCM scenario definitions can be used jointly, and their results
can influence each other. The following example is not strictly part of the Z.151
proposed standard but it is not forbidden either. In [29], jUCMNav was extended to
enable the automatic creation of UCM integer variables for each GRL intentional
element. The current satisfaction level of an intentional element can hence be used in
a UCM conditional expression, hence influencing the selection of paths at OR-forks
and of plug-ins in dynamic stubs. Also, responsibilities can assign new values to these
variables, hence influencing the propagation of satisfaction levels in a GRL graph.

This functionality was explored in [3] to support dynamic composition of services
and runtime adaptation of changing context. The approach was illustrated using a
multimedia call service with access control requirements.

3.4 Transformation to Message Sequence Charts

Scenarios resulting from UCM path traversals can be transformed to representations
other than UCM. For many years, UCM scenarios have been converted to Message
Sequence Charts in order to visualize scenarios in a scalable, linear form as well as to
pave the way towards more detailed design activities where messages and component
states need to be considered [33]. The main challenges here are to infer necessary
messages ensuring that causal relationships between responsibilities in different
components are correctly supported, and to handle the well-formedness rules of a
linear scenario representation like MSCs, which are stricter than the general graph
representation of UCMs.

jUCMNav supports the export of scenarios to MSCs [25]. For example, Fig. 10 and
 Fig. 11 present MSCs that correspond to the scenarios of section 3.2 and shown in
 Fig. 9. MSC instances are created for the UCM components involved, and each UCM
responsibility becomes an MSC action. Start and end points are converted to self-
messages. UCM conditions evaluated at OR-forks and in dynamic plug-ins are
preserved as MSC conditions. Concurrent paths are converted to parallel inline
statements. Note how messages, which do not exist in UCM, were synthesized during
the transformation in order to ensure causality of actions in and across MSC
instances. These abstract messages can be refined later on (with parameters, better
names, or with more complex sequences of messages) as we progress towards
protocol definitions.

3.5 Transformation to Performance Models

As discussed in section 2.3, modellers can supplement UCM model elements with
performance annotations. These are not taken into consideration for the path traversal
mechanism, but they can be used in transformations of UCM models to specialized
performance models. This enables performance analysis from URN requirements
models, before serious barriers to performance are frozen into the design and
implementation.

Fig. 10. Message Sequence Chart Resulting from Scenario ServiceInMSC_OK

Fig. 11. Message Sequence Chart Resulting from Scenario ServiceInMSC_DataInSN_NotOK

The generation of Layered Queueing Network (LQN) performance models [14]
directly from UCM models was explored and prototyped in [45]. LQN performance
models can be used as a basis for exploring the performance solution space of a
system. The kinds of analysis that can be performed include sensitivity analysis (how
important are different values for parameters, especially estimated values), scalability
analysis (how well does the system cope with more users or higher workload),
concurrency analysis (how does the system respond to changes in the number of
processing resources) and configuration analysis (how does the system respond to
different deployments configurations in terms of bandwidth limitations, network
delays, etc.).

More recently, the annotations have evolved to become more in line with the new
UML profile for real time and embedded systems (MARTE). Also, instead of
generating performance models directly, newer approaches now target the generation
of an intermediate representation, such as the Core Scenario Model (CSM)
representation [48]. CSM’s purpose is to capture the essence of a range of scenario
notations (e.g., from URN and UML) and enable simple transformations to various
target formalisms (e.g., LQN, regular queueing networks, and stochastic Petri Nets),
hence reducing the number and complexity of tools needed to analyze various aspects
of a same system. The UCM annotations are very close to CSM’s.

A transformation from UCM to CSM is defined in [58]. It has recently been
adapted to a more recent version of the URN metamodel and implemented in
jUCMNav. One of the main benefits of this approach is that the acquisition and
release of resources is inferred implicitly from UCM models rather than requiring
them to be defined explicitly as in profiled UML models. This simplifies substantially
the creation and maintenance of models. Transformations from CSM models to LQN
models and other types of performance models are discussed in [47] and are now
supported by prototype tools.

3.6 Requirements Management

URN models capture only a fraction of the requirements of telecommunication
standards and software products. Accordingly, such models need to be used in
cooperation with complementary general requirements, and both views must be linked
in a way that supports traceability, navigation, and analysis. The proposed URN
standard ensures that model elements are uniquely identifiable inside a specification,
which helps supporting such links. However, one of the main challenges that needs to
be addressed here is the maintenance of these links as models and general
requirements evolve.

In [30, 46], an approach is proposed to introduce scenario models into the
Telelogic DOORS requirements management system and to maintain relationships as
both views evolve over time. This is supported as an export filter for jUCMNav. The
tool also provides a link auto-completion mechanism to minimize the possibly large
number of links that have to be created manually by the DOORS user between
external and UCM requirements. Automatically created links allow the DOORS user
to become aware of and exploit links directly that would otherwise need to be

discovered transitively via (potentially many) intermediate links. This tool was
extended to support GRL in [52].

4 Standards Development with URN

Most of the URN notation elements and analysis, transformation, and management
techniques covered in the previous two sections are directly applicable to the
development of a wide range of telecommunications standards.

Pioneering ideas on how URN could complement standardization development
processes and existing formal description techniques in the wireless domain were
provided nearly a decade ago [20]. They were further explored for a group
communication service [4] and wireless ATM mobile networks [8]. It was realized
that goals and scenarios would fit particularly well the so-called “stage 1”
requirements descriptions described in Recommendation I.130 [21]. These motivated
in part the work that led to the proposed URN standard. UCMs were actually used in
several proposals for new services for Wireless Intelligent Networks. UCM models
were used to guide the development of an SDL specification for an IETF standard
targeting a complex refreshment function for the Open Shortest Path First (OSPF)
dynamic routing protocol in IP networks [34].

In the telecommunications networks management domain, Recommendation
M.3020 proposes the description of various types of requirements (functional, non-
functional, administrative, etc.) with textual use case and UML use case
diagrams [22]. Again, URN models fit nicely in such a process as they bring formality
and executability to the use cases while enabling concrete support for goal models,
which are useful to derive and analyse non-functional and administrative
requirements.

More recently, the growing interest in Next-Generation Networks brought new
needs for improved service description and engineering approaches. Ideally one
would like to specify and analyse services on a high level of abstraction, using
modelling concepts close to the user and problem domain rather than at the platform
and implementation domain, and then be able to derive design components and
implementations from service models with a high degree of automation. This is
essentially the abstraction level targeted by URN, as discussed in [3]. GRL goal
models offer a holistic view that integrates stakeholder goals, non-functional
requirements, and alternative operational solutions for design time decisions,
supplemented with indicators that enable adaptive behaviour at runtime. UCM offer
scenarios that express variability points explicitly while offering much flexibility in
ordering activities, which may be bound to components or not. The integration of
GRL and UCM, as well as of strategies and scenario definitions as discussed in
section 3.3, emphasizes the importance of enabling dynamic choices in the service
modelling and design phases in order to take into account contextual information and
differentiated service availability requirements in dynamic service composition,
which are key aspects of NGN services.

5 Other Applications of URN

This section discusses a subset of the extensive body of research comprising over 200
publications and theses related to UCM, GRL, and URN available at the URN Virtual
Library [54]. Many examples of URN models can be found in the publications
referenced in this section.

Over the last decade, GRL and UCM have successfully been used for different
types of service-oriented, concurrent, distributed, and reactive systems outside the
telecommunications domain, including Web and e-commerce systems [6, 51],
operating systems [9], and health information systems [42, 50].

Business process modelling is a growing area of application for URN, where its
combination of goals and scenarios is a perfect fit for business objectives and
processes/workflows [35, 37, 55]. In [49], GRL is extended with the concept of Key
Performance Indicators (KPIs), and jUCMNav is enhanced to support new analysis
features for managing business processes and for better aligning scenarios with goals.
Strategies are also extended to access external sources of information (e.g. data
warehouses or performance management tools) for online monitoring and runtime
adaptation of business processes. The DOORS integration for requirements
management discussed in section 3.6 is further extended to assess and maintain
compliance of business processes and organizational policies with governmental
policies, regulations, and legislation [15, 50].

In terms of other analysis and transformations approaches, it is worth noting the
generation of test goals from UCM models [6, 7], the detection of undesirable
interactions between (telecommunications) features and services [4, 31, 53, 56], the
experimental synthesis of state machines in SDL [19] and UML [12] from UCM
models, the specification and analysis of user interface requirements [1], and the
formalization of patterns [40]. URN models can also be used in reverse-engineering
and re-engineering contexts to describe existing systems and services [32], and both
static and dynamic approaches to recovering UCM scenarios from code [5] and
execution traces [16] have been proposed. Formal semantics and time extensions,
which enable formal verification, are explored for UCMs in [17, 18].

Given the recent interest in aspect-oriented software development and the
potentially high benefits of using such concepts to better encapsulate crosscutting
concerns in requirements models, new extensions have been proposed for GRL and
UCM in order to create a unified Aspect-oriented URN (AoURN) [36, 39, 41]. Partial
tool support in jUCMNav is already available. The application of AoURN to the
modelling of software product lines is explored in [38].

6 Conclusions

This paper presents an overview of the User Requirements Notation (URN) as defined
in the proposed Recommendation Z.151. The two constituent languages of URN, the
Goal-oriented Requirement Language (GRL) and the Use Case Map (UCM) notation
are discussed as well as the analysis capabilities of URN, most notably GRL model
evaluation with strategies and UCM model interpretation based on scenario

definitions. Resting on the pillars of these two languages, URN complies with
Recommendation Z.150, satisfying language requirements for both, non-functional
and functional, requirements.

URN is a general purpose modelling language for the communication of and
reasoning about requirements. URN can be applied to standards development as well
as to telecommunications systems, services, business processes, and most types of
reactive systems and information systems. URN spans the areas of business goals and
requirements descriptions to high-level design activities. Examples for the
applicability of URN for standards development are given. Tool support provided by
the Eclipse-based jUCMNav plug-in is discussed and used to illustrate the potential
benefits of using the notation.

The last part of the paper gives an overview of other types of applications as well
as an outlook into the future of URN, illustrating possible future extensions of the
proposed Recommendation Z.151. In particular, we can identify a better support for
improved requirements for GRL evaluation algorithms, advanced workflow
patterns [37], support for time in UCM [18], formal semantics (based on abstract state
machines) [17], extensions for business process modelling with KPIs [49], and aspect-
oriented extensions for URN [36].

Acknowledgments. This research was supported by the Natural Sciences and
Engineering Research Council of Canada, through its programs of Discovery Grants
and Postgraduate Scholarships.

References

1. Alsumait, A.: User Interface Requirements Engineering: A Scenario-Based Framework.
Ph.D. thesis, Concordia University, Canada, August 2004.

2. Amyot, D.: Introduction to the User Requirements Notation: Learning by Example.
Computer Networks, Vol. 42(3), 285-301, 21 June 2003.

3. Amyot, D., Becha, H., Bræk, R., and Rossebø, J.E.Y.: Next Generation Service
Engineering. ITU-T Innovations in NGN Kaleidoscope Conference, Geneva, Switzerland,
May 2008.

4. Amyot, D. and Logrippo, L.: Use Case Maps and LOTOS for the Prototyping and
Validation of a Mobile Group Call System. Computer Communication, Vol. 23(12), 1135-
1157, July 2000.

5. Amyot, D., Mussbacher, G., and Mansurov, N.: Understanding Existing Software with Use
Case Map Scenarios. 3rd SDL and MSC Workshop (SAM02), Aberystwyth, U.K. LNCS
2599, Springer, 124-140, June 2002.

6. Amyot, D., Roy, J.-F., and Weiss. M.: UCM-Driven Testing of Web Applications. Prinz A.,
Reed R., and Reed J. (Eds) SDL 2005: Model Driven, LNCS 3530, Springer, 247-264, June
2005.

7. Amyot, D., Weiss, M., and Logrippo L.: UCM-Based Generation of Test Purposes.
Computer Networks, 49(5), 643-660, December 2005.

8. Andrade, R.: Applying Use Case Maps and Formal Methods to the Development of
Wireless Mobile ATM Networks. Lfm2000: Fifth NASA Langley Formal Methods
Workshop, Williamsburg, Virginia, USA, 151-162, June 2000.

9. Billard, E.A.: Operating system scenarios as Use Case Maps. ACM Workshop on Software
and Performance, 266-277, 2004.

10. Buhr, R.J.A. and Casselman, R.S.: Use Case Maps for Object-Oriented Systems. Prentice-
Hall, 1996.

11. Buhr, R.J.A.: Use Case Maps as Architectural Entities for Complex Systems. IEEE
Transactions on Software Engineering, Vol. 24(12), 1131-1155, December 1998.

12. Castejón Martínez, H.N.: Synthesizing State-Machine Behaviour from UML Collaborations
and Use Case Maps. Prinz A., Reed R., and Reed J. (Eds) SDL 2005: Model Driven, LNCS
3530, Springer, 339-359, June 2005.

13. Chung, L., Nixon, B.A., Yu, E., and Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, Dordrecht, USA, 2000.

14. Franks, G. Maly, P., Woodside, M., Petriu, D.C., and Hubbard, A.: Layered Queueing
Network Solver and Simulator User Manual. Carleton University, Dec. 2005.
http://www.sce.carleton.ca/rads/lqns/LQNSUserMan.pdf

15. Ghanavati, S., Amyot D., and Peyton, L.: Towards a Framework for Tracking Legal
Compliance in Healthcare. 19th Int. Conf. on Advanced Information Systems Engineering
(CAiSE'07), Trondheim, Norway. LNCS 4495, Springer, 218-232, June 2007.

16. Hamou-Lhadj, A., Braun, E., Amyot, D., and Lethbridge, T.: Recovering Behavioral
Design Models from Execution Traces. 9th European Conference on Software Maintenance
and Reengineering (CSMR), IEEE Computer Society, 112-121, March 2005.

17. Hassine, J., Rilling, J., and Dssouli, R.: An ASM Operational Semantics for Use Case
Maps. 13th IEEE International Requirement Engineering Conference (RE05), IEEE CS
Press, 467-468, September 2005.

18. Hassine, J., Rilling, J., and Dssouli, R.: Formal Verification of Use Case Maps with Real
Time Extensions, 13th SDL Forum (SDL'07), Paris, France. LNCS 4745, Springer, 225-241,
September 2007.

19. He, Y., Amyot, D., and Williams, A.W.: Synthesizing SDL from Use Case Maps: An
Experiment. 11th SDL Forum (SDL'03), Stuttgart, Germany, July 2003. LNCS 2708,
Springer, 117-136.

20. Hodges, J. and Visser, J.: Accelerating Wireless Intelligent Network Standards Through
Formal Techniques. IEEE 1999 Vehicular Technology Conference (VTC'99), Houston,
Texas, USA, 1999.

21. ITU-T – International Telecommunications Union: Recommendation I.130 (11/88), Method
for the characterization of telecommunication services supported by an ISDN and network
capabilities of an ISDN. Geneva, Switzerland, November 1988.

22. ITU-T – International Telecommunications Union: Recommendation M.3020 (07/07),
Management interface specification methodology. Geneva, Switzerland, July 2007.

23. ITU-T – International Telecommunications Union: Recommendation Z.100 (11/07),
Specification and Description Language. Geneva, Switzerland, April 2008.

24. ITU-T – International Telecommunications Union: Draft Recommendation Z.111,
Notations to Define ITU-T Languages. Geneva, Switzerland, September 2008.

25. ITU-T – International Telecommunications Union: Recommendation Z.120 (04/04),
Message Sequence Chart (MSC). Geneva, Switzerland, 2004.

26. ITU-T – International Telecommunications Union: Recommendation Z.150 (02/03), User
Requirements Notation (URN) – Language Requirements and Framework. Geneva,
Switzerland, February 2003.

27. ITU-T – International Telecommunications Union: Draft Recommendation Z.151, User
Requirements Notation (URN). Geneva, Switzerland, September 2008.

28. jUCMNav 3.2, University of Ottawa, September 2008.
http://jucmnav.softwareengineering.ca/jucmnav/

29. Kealey, J. and Amyot, D.: Enhanced Use Case Map Traversal Semantics. 13th SDL Forum
(SDL'07), Paris, France. LNCS 4745, Springer, 133-149, September 2007.

30. Kealey, J., Kim, Y., Amyot, D., and Mussbacher, G.: Integrating an Eclipse-Based Scenario
Modeling Environment with a Requirements Management System. 2006 IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE06), Ottawa, Canada, 2432-
2435, May 2006.

31. Leelaprute, P., Nakamura, M., Matsumoto, K., and Kikuno, T.: Derivation and Evaluation
of Feature Interaction Prone Scenarios with Use Case Maps. IEICE Transactions on
Communications, Vol. J88-B, No.7, 1237-1247, July 2005.

32. Medve, A.: Advanced steps with standardized languages in the re-engineering process.
Computer Standards & Interfaces, 30 (5), 315-322, July 2008.

33. Miga, A., Amyot, D., Bordeleau, F., Cameron, C. and Woodside, M.: Deriving Message
Sequence Charts from Use Case Maps Scenario Specifications. Tenth SDL Forum
(SDL'01), Copenhagen, Denmark, June 2001. LNCS 2078, Springer, 268-287.

34. Monkewich, O., Sales, I., and Probert, R.L.: OSPF Efficient LSA Refreshment Function in
SDL. Tenth SDL Forum (SDL'01), Copenhagen, Denmark. LNCS 2078, Springer, 300-315,
June 2001.

35. Mussbacher, G.: Evolving Use Case Maps as a Scenario and Workflow Description
Language. 10th Workshop on Requirements Engineering (WER'07), 56-67, Toronto,
Canada, May 2007.

36. Mussbacher, G.: Aspect-Oriented User Requirements Notation: Aspects in Goal and
Scenario Models. Models in Software Engineering: Workshops and Symposia at MoDELS
2007. Giese, H. (Ed.), LNCS 5002, Springer, 305-316, 2008.

37. Mussbacher, G. and Amyot, D.: Assessing the Applicability of Use Case Maps for Business
Process and Workflow Description. 3rd Int. MCeTech Conference on eTechnologies,
Montréal, Canada. IEEE Computer Society, 219-222, January 2008.

38. Mussbacher, G., Amyot, D., Araújo, J., and Moreira, A.: Modeling Software Product Lines
with AoURN. Early Aspects Workshop @ AOSD08, Brussels, Belgium, March 2008.

39. Mussbacher, G., Amyot, D., and Weiss, M.: Visualizing Early Aspects with Use Case
Maps. Transactions on Aspect-Oriented Software Development III, Springer, 105-143,
2007.

40. Mussbacher, G., Amyot, D., and Weiss, M.: Formalizing Patterns with the User
Requirements Notation. T. Taibi (Ed.), Design Pattern Formalization Techniques, IGI
Global, 304-325, March 2007.

41. Mussbacher, G., Amyot, D., Whittle, J., and Weiss M.: Flexible and Expressive
Composition Rules with Aspect-oriented Use Case Maps (AoUCM). 10th International
Workshop on Early Aspects (EA 2007), Vancouver, Canada. LNCS 4765, 19-38, December
2007.

42. Ölvingson, C., Hallberg, N., Timpka, T., and Lindqvist, K.: Requirements Engineering for
Inter-Organizational Health Information Systems with Functions for Spatial Analyses:
Modeling a WHO Safe Community Applying Use Case Maps. Methods of Information in
Medicine, Schattauer Gmb H, 299-304, 4/2002.

43. OMG – Object Management Group: Object Constraint Language Specification, version
2.0, May 2006.

44. OMG – Object Management Group: Unified Modeling Language (OMG UML):
superstructure version 2.1.2, November 2007.

45. Petriu, D.B., Amyot, D., and Woodside, M.: Scenario-Based Performance Engineering with
UCMNav. 11th SDL Forum (SDL'03), Stuttgart, Germany, July 2003. LNCS 2708,
Springer, 18-35.

46. Petriu, D.B., Amyot, D., Woodside, M, and Jiang, B.: Traceability and Evaluation in
Scenario Analysis by Use Case Maps. In: S. Leue and T. Systä (Eds.) Scenarios: Models,
Algorithms and Tools, LNCS 3466, Springer, 134-151, 2005.

47. Petriu, D.B. and Woodside, M.: Software performance models from system scenarios.
Performance Evaluation, 61(1), Elsevier, 65-89, June 2005.

48. Petriu, D.B. and Woodside, M.: An intermediate metamodel with scenarios and resources
for generating performance models from UML designs. Software and Systems Modeling,
6(2), Springer, 163-184, June 2007.

49. Pourshahid, A. Chen, P., Amyot, D., Forster, A.J., Ghanavati, S., Peyton, L., and Weiss,
M.: Toward an integrated User Requirements Notation framework and tool for Business
Process Management. In 3rd Int. MCeTech Conference on eTechnologies. Montréal,
Canada. IEEE Computer Society, 3-15, January 2008.

50. Pourshahid, A., Peyton, L., Ghanavati, S., Amyot, D., Chen, P., and Weiss, M.: Model-
Based Validation of Business Processes. V. Shankararaman, J.L. Zhao and K.K. Lee (Eds)
Business Process Management: Concepts, Technology, and Application. Advances in
Management Information Systems, M. E. Sharpe Inc., 2008 (to appear).

51. Pourshahid, A., and Tran, T.: Toward an Effective Trust Management System for E-
Commerce: Modeling Trust Components and Processes Using URN. Journal of Business
and Technology (JBT), Atlantic Academic Press, 2008 (to appear).

52. Roy, J.-F., Kealey, J., and Amyot, D.: Towards Integrated Tool Support for the User
Requirements Notation. SAM 2006: Language Profiles - Fifth Workshop on System
Analysis and Modelling, Kaiserslautern, Germany. LNCS 4320, Springer, 183-197, May
2006.

53. Shiri, M., Hassine, J., and Rilling, J.: Feature Interaction Analysis: A Maintenance
Perspective. 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), 437-440, Atlanta, USA, November 2007.

54. User Requirements Notation Virtual Library, 2008, http://www.usecasemaps.org/pub/
55. Weiss, M. and Amyot, D.: Business Process Modeling with URN. International Journal of

E-Business Research, Vol. 1(3), 63-90, July-September 2005.
56. Weiss, M., Esfandiari, B., and Luo ,Y.: Towards a Classification of Web Service Feature

Interactions. International Conference on Service-Oriented Computing (ICSOC),
Amsterdam, Netherlands. LNCS 3826, Springer, 101-114, November 2005.

57. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. 3rd IEEE Int. Symp. on Requirements Engineering, Washington, USA. IEEE
CS, 226-235, 1997.

58. Zeng, X.Y.: Transforming Use Case Maps to the Core Scenario Model Representation.
M.C.S. thesis, University of Ottawa, June 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

