THEFULLY REPORTED

Roberto Brignolo

The SAFESPOT Integrated Project: Overview of the architecture, technologies and applications

Geneva, 5-7 March 2008

Project type: Integrated Project (IP)

Co-funded by: the European Commission Information Society and Media in the 6th Framework Programme

Promoted by: EUCAR

IP coordinator : Roberto Brignolo Centro Ricerche FIAT (IT)

Consortium : 51 partners (from 12 European countries):

OEMs (cars, trucks, motorcycles) ROAD OPERATORS SUPPLIERS RESEARCH INSTITUTES UNIVERSITIES Timeframe: Feb. 2006, Jan. 2010

Overall Cost Budget : 38 M€ (European Commission funding 20,5 M€)

The SAFESPOT concept 1/3

SAFESPOT is working to design cooperative systems for road safety based on vehicle to vehicle and vehicle to infrastructure communication. SAFESPOT will prevent road accidents developing a:

"SAFETY MARGIN ASSISTANT"

to detect in advance potentially dangerous situations and extend, in space and time, drivers' awareness of the surroundings.

The SAFESPOT Concept 2/3

... from autonomous intelligent vehicles to cooperative systems...

The SAFESPOT concept 3/3

The SAFESPOT Planning

Reliable, fast, secure, potentially low cost protocols for local V2V and V2I communication

A reliable, very accurate, real-time **relative positioning**

A real time updateable Local Dynamic Map

The SAFESPOT Enabling technologies: ad hoc communication network

8

The SAFESPOT Enabling technologies: ad hoc communication network

SAFESPOT, C2C-CC Layer Diagram

The C2C-CC and CALM harmonization is under discussion by the two working groups

The SAFESPOT Enabling technologies: relative positioning

Reliable, very accurate, real-time relative positioning

- o GNSS-based Positioning (GPS, Galileo)
- Communication-based Positioning (UWB, WLAN)
- Image-based Positioning (Landmarks recognition)

The SAFESPOT Enabling technologies: Local Dynamic Maps

The SAFESPOT Architecture

The Fully Networked Car Geneva, 5-7 March 2008

12

The SAFESPOT Applications

Vehicle based

Lateral Collision

Longitudinal Collision

Road Departure

Vulnerable Users Protection

Infrastructure Based Warning Road Side Equipment (local or remote)

Lane Suppor

Collaborative V

Infrastructure based

Speed Alert

Road Departure Prevention

Safety Margin for Assistance and Emergency Vehicles

Co-operative Intersection Collision Prevention System

Hazard and Incident Warning

Lane Change Assistant The Fully Networked Car Geneva, 5-7 March 2008

Collision Mitigation

and Speed

Lateral Collision Prevention

Road Intersection

Safe Overtaking

Test Sites Activities

- Test sites are a set of activities aimed to demonstrate the applications and use cases developed in the different subprojects and to proof interoperability among different countries.
- Test sites will use existing infrastructures equipped with new SAFESPOT systems and equipped vehicles.
- As far as possible general public will be involved in the test activities in order to have a direct feedback.
- Five Test sites spread in six European countries were defined
 - IT Italy
 - DE Germany
 - WE Western Europe (France & Spain)
 - NE The Netherlands
 - SW Sweden

Demonstration Timeframe : 2009

• Four Test sites are shared with the CVIS IP

THANK YOU

Roberto Brignolo roberto.brignolo@crf.it www.safespot-eu.org

