

Dr.-Ing. Rainer Makowitz

Automotive Systems Engineering Manager Freescale Semiconductor

Geneva, 5-7 March 2008

"The best car safety device is a rear-view mirror with a cop in it ."

Dudley Moore (1935-2002) English Actor

Overview

- Introduction: On the road to traffic safety how far have we got today?
- More safety for the driver: active safety and driver assistance
- More safety around the car: environmental awareness, cognitive cars
- Inherent (functional) safety of automotive electronics
- o Summary

Are we on track to meet the 2020 EU Goal?

1990: 70900 fatilities 2000: 52200 fatalities 2007: 40200 fatalities, increasing ! 2010: 25000 fatilities (goal)

Road fatalities are costing the European society 2% of GDP

Large difference in death rate per 100k inhabitants across Europe

4.9 🔪	
5.6	
7.1	3x
9.2	more
9.6 /	risk
13.5 /	
15 🎽	
	4.9 5.6 7.1 9.2 9.6 13.5 15

Source: EU CARE, EuroNCAP, EuroRAP

The Fully Networked Car

Geneva, 5-7 March 2008

4

ADAS & Active Safety: Cooperation of Systems

- Surround sensing
- Infrastructure information
- Vehicle-2-vehicle collaboration

- Cross vehicle function collaboration
- Functional safety requirement

6

Environmental Awareness

- o Car2car
 - Collaborative Safety
- o Car2Infrastructure
 - Ecall
 - Toll collect, City Toll
 - Requirements: Global legislation, infrastructure investment
- Example Use Cases:
 - Road Feature Notification:
 - broad/unicast, range: 300m
 - Roadside Signage:
 - broadcast, range: 300m
 - Cooperative collision warning:
 - broadcast, range: 300m; safety relevant
 - Pre Crash Sensing:
 - unicast, range: 50m, safety critical

- Cameras can cover most of the applications and have the potential to become the preferred sensor for cost efficient systems
- Drawbacks of the camera sensor can be handled by sophisticated algorithms
- Several sensors will be used in the mid-term for redundancy reasons until the camera vision algorithms get robust and mature

ADAS & Active Safety: Enabling Technologies

o Active Safety

- ESC: safety critical, inertial sensors (gyroscope), 200 Mips
- Electronic Braking: safety critical, pressure sensors, 200 Mips
- Integrated Chassis Management: safety critical, 300-500 Mips
- Adaptive Suspension: safety critical, FlexRay, 200 Mips
- Adaptive Steering: safety critcal, 50-100 Mips

o ADAS

- Radar sensor: 77-79 GHz, 24-26GHz, SiGe:C technology
- Radar signal processing: safety critical, 150 Mips
- Camera signal processing:
 - Warning: safety relevant, 100-500 Mips
 - Intervention: safety critical, stereo vision, 1000-5000 Mips

Functional Safety: Role of Standards

- Standards are emerging as a framework to establish metrics
 - IEC61508 (existing)
 - Safety lifecycle defined
 - Top down
 - Recommended & mandatory practices
 - ISO26262 (emerging)
 - Decomposition of safety from system to component level

Safety in the Context of Dependability

Definitions according to IFIP WG10.4

Single Core Processor Safety Concept

- o Typical System Architecture
 - Discrete master/checker architecture
 - Main MCU for sensor/application processing and actuator control
 - Safety MCU for plausibility check and 2nd level actuator control
 - System basis chip integrating power supply, advanced watchdog and network physical layers
 - Application-specific actuator drivers
 - Self-test software package running on main MCU
- o Advantages
 - Medium complexity
 - Early detection of permanent faults

Safety Features – Single Core & Asymmetric Dual Core¹³ Processors

Safety Feature	Use case
System Integration: Power Management Unit	Supply voltage monitoring
System Integration: Clock Monitor Unit	Clock quality monitoring, self clocking
Core: Core Self Test	Detection of ,sleeping' faults
Error Detection: ECC on Flash and/or RAM	Double error detection, single error correction
Error Detection: Fault Collection and Control Unit	Fault management
Error Detection: Temperature sensor	Die temperature indicator
Architecture: Memory Management Unit	Core based memory management
Architecture: Memory Protection Unit	Control of bus masters
Redundancy: Second independent core	Checker algorithms, code diversity
Redundancy: Dual ADC	Redundant measurements
Redundancy: Dual timers	Redundant measurements
Communications: FlexRay	Application backbone network, high-speed P2P
Communications: Safety Port	Clock-less protocol

The Fully Networked Car Geneva, 5-7 March 2008

IE(

Symmetric Dual Core Processor Safety Concept

- o Typical System Architecture
 - Main MCU with sphere of replication supporting:
 - Lockstep / non-lockstep dual core configuration
 - Redundancy of key elements such as cross-bar, DMA, interrupt controller & I/O bridge
 - System basis chip integrating power supply, advanced watchdog and network physical layers
 - Application-specific actuator drivers
 - Selftest software package running on main MCU
- o Advantages
 - Low complexity
 - Early detection of transient faults
 - Early detection of permanent faults (Self test)
 - Availability

Safety Features – New Symmetric Dual Core Processor¹⁵

Safety Feature	Use case
System Integration: Power Management Unit (PMU)	Supply voltage monitoring (CMF)
System Integration: Clock Monitor Unit (CMU)	Clock quality monitoring, self clocking (CMF)
Core: Core Self Test	Detection of ,sleeping' faults
Error Detection: ECC on Flash and RAM	Double error detection, single error correction
Error Detection: Fault Collection and Control Unit (FCCU)	Fault collection and management
Error Detection: CRC Unit	Protection of application data
Redundancy: Dual ADC	Redundant measurements & selftest
Redundancy: Dual timers	Redundant measurements
Redundancy: Dual e200Core lockstep / non-lockstep	Detection of transient faults
Redundancy: Dual MMU, VLE, Cache	Detection of transient faults
Redundancy: Dual SWT, MCM, STM, INTC, eDMA	Detection of transient faults
Redundancy: RC Units at Gates to non redundant sphere	Lockstep fault detection & signalling
Redundancy: XBAR + Memory Protection Unit	Detection of transient faults
Redundancy: Dual Temp Sensor	Die temperature measurement
Communications: FlexRay	Backbone application network, high- speed Point-to-Point

The Fully Networked Car Geneva, 5-7 March 2008

International Telecommunication Union

Semiconductor: Making The Car Safer

Active safety systems will drive automotive electronics growth over the next decade

Sensor technology will enable cognition, making vehicles aware of their environment

Real-time Networks will enable the collaboration of electronic systems and enhance the overall functionality

The number of microcontrollers and performance demands will increase as systems integrate and add intelligence

- Open system industry standards and collaboration will be critical to managing increasing vehicle complexity
- Functional Safety capability will be required for intervening electronic systems

Responsibility of autonomous safety systems demand zero defect design methodologies

Thank you for your attention.

Can I answer any Questions?

Geneva, 5-7 March 2008

