THE**FLILY** KED

Martin Wiecker

Research Engineer Ford Research Centre Aachen

Geneva, 5-7 March 2008

Topic

Car-2-Car Communication from the perspective of a global OEM

- o Vision: Safe and Intelligent Mobility
 o Ford Research Test Environment
 o Test Results
 o Summary and Outlook
- o Summary and Outlook

2

The vision can be reached by directly connecting vehicles, driver assistance systems, and the road infrastructure.

Car-2-Car-Communication (C2C)

Example Application: Electronic Emergency Brake Lights (EEBL)

Purpose

Warn about sudden braking vehicles ahead

Concept

- Periodic broadcast of local information (Beacon)
- Receivers compare message with own data
- Receiver decides, if an alert or system preparation is necessary

Challenge

Beacon must immediately reach all followers

Network Beacon

EEBL – Impact of Alert

Vehicle driving 40 mph then suddenly "-0.5g" accelerating

The Fully Networked Car Geneva, 5-7 March 2008

6

Wireless Communication Set-up

DENSO radio modules: o Prototypes of IEEE 802.11p o 10 MHz channels o Up to 33 dBm Communication:

o Compliant with WAVE standard

WAVE - a Global Standard?

 WAVE defines communication protocols for vehicle networks

- However compatibility does not exist, neither between Europe and USA (e.g. frequency) nor within Europe
- Each new project creates proprietary communication modules
- *Challenge:* Protocol layers are not finally defined and agreed

Test and Validation

Results from real-world test drives in the area of Aachen, Germany

- o 2 to 3 vehicles in test scenario
- o Measurement of
 - Communication Range
 - Time delay
 - Channel overload
- Multi-hop communication

Communication Range

Scenario: Non-line-of-sight on highways at 120 Km/h

End-to-end Delay Analysis

Channel Overload?

- Our analysis shows an upper limit of 50 transmitting units per channel
- Mechanisms to avoid channel overload are needed - but not yet finalized
- Approaches to reduce transmissions:
 - Congestion control (on different layers)
 - Dynamic control of transmission power
 - Geocast, i.e. broadcast to all nodes in a geographical area

Multi-hop Communication

Third vehicle with DENSO radio module as forwarder to bypass non-line-of-sight

communication

Improved performance

Multi-hop Delay

Lower average delay for successful communication

Summary and Outlook

- C2C-Communication provides a great benefit for road safety (e.g. EEBL)
- o C2C-C is reliable for more than 500 meters
- Compatibility is an issue as long as network layers are still being developed
- Technology is quite mature but still requires refinement and testing in a large scale environment (Field Operational Test)

Contact

Martin Wiecker

Ford Forschungszentrum Aachen GmbH Süsterfeldstrasse 200 52072 Aachen / Germany mwiecker@ford.com

Thank you for you attention!

16