

SDR for Motor Vehicles

Dr. John Chapin

Chief Scientist Vanu, Inc. Chairman The SDR Forum

Geneva, 5-7 March 2008

Software Defined Radio (SDR)

Hardware Radio

The Fully Networked Car

Geneva, 5-7 March 2008

- Separate devices for different functions
- Communications function fixed in hardware

Software Radio

One device for many functions

Modify through software

Market status of SDR

Source: SDR Forum and http://mitpress.mit.edu/books/NORVH/2-3.jpg

The Fully Networked Car Geneva, 5-7 March 2008

SDR Architecture

The Fully Networked Car Geneva, 5-7 March 2008

SDR Architecture

The Fully Networked Car Geneva, 5-7 March 2008

Terms for SDR capabilities

Waveform flexibility Device supports multiple communications standards

Implemented by software in the digital processor

Constrained by: RF head

The Fully Networked Car

Geneva, 5-7 March 2008

Frequency agility Device supports multiple transmission bands

Implemented by tunable components in the RF head

Broadband antenna

Maturity of SDR Capabilties

- Waveform flexibility
 - Mature, in wide commercial use
 - Recent processors are fast enough to run WiMax and 3G LTE at low cost and low power
- o Frequency agility
 - Not mature for commercial use
 - Challenges: tunable filters and amplifiers
 broadband antennas
 - Multiband radios today are actually multiple radios built into one package
 - this is good enough for many applications

Flexible Baseband Processor (SB3011)

o Multiprotocol

- WCDMA
- CDMA-2000
- TD-SCDMA
- o Quad Core DSP
- o ARM926 GPP
- o Hardware Accelerators

Motivations for SDR in Vehicles

- Life cycle mismatch
 - SDR devices are upgradable
- o Global requirements variation
 - SDR devices are specializable
- Many radios in vehicle
 - SDR devices are multimode

Motivation #1 for SDR in Vehicles

- o Life cycle mismatch
 - Wireless standards change ~ 18months
 - Vehicle design cycle ~36 months
 - Vehicle lifetime ~120 months
- SDR devices are upgradable
 - reduce risk over design cycle
 - improve customer satisfaction over lifetime

Commercial status of upgradable SDR

- o Modal SDR
 - Limited to modes planned at design time
 - Widely used in high-end mobile devices
- Reconfigurable SDR
 - Can add unforseen communications standards
 - Commercially deployed in infrastructure

– e.g. Vanu Anywave cellular base stations

• Caveat: limited agility

Reasons that many SDRs are modal

ASIC co-processors to accelerate complex tasks Data path designed for specific processing stages

Recent processors no longer need these specializations

Save cost and power by designing for waveform, eg: Bandwidth Peak-to-average power A/D sync to chip timing

Still important with current technology

The Fully Networked Car Geneva, 5-7 March 2008

Motivation #2 for SDR in Vehicles

- o Global requirements variation
 - Wireless standards vary by region
 - Different hardware per region adds cost
- SDR devices are specializable
 - Single hardware unit
 - Load SDR software at point in supply chain where vehicle's destination is known
 - Even at dealership (based on customer-purchased options)

Commercial status of specializable SDR

- Ready for vehicles
 - Modal SDR is sufficient for this application
 - Must design band plan in advance due to limited frequency agility
 - Can easily achieve most of the potential benefits

The Fully Networked Car Geneva, 5-7 March 2008

Motivation #3 for SDR in Vehicles

- Many radios in vehicle
 - Analog audio, digital audio, satellite, internet, tolls, keys, concierge, tracking, radar, ...
 - Separate components for each adds cost
- SDR benefit: multimode
 - Single baseband processor for many radios
 - Can be sized to run N of M waveforms simultaneously
 - Antenna sharing reduces holes in vehicle

Commercial status of Multimode SDR

- Widely used in line-powered systems
 - Satellite communications, broadcast, cellular infrastructure
- Not widely used yet in mobiles
 - No technical barrier for mobiles or vehicles

Key Recommendation for Automotive SDR ¹⁷

- Select an open standard for "Digital IF"
 - Plug-and-play RF heads
 - Common software across family of radios
 - Evolve digital and analog components independently
 - Enable multimode / distributed architectures

Standards issues in Digital IF

- Existing standards not appropriate
 - OBSAL, CPRL : for large-scale infrastructure
 - DigRF : for tightly integrated handhelds
 - Physical link must meet automotive reqts
- Components of a standard
 - IF data, timing : relatively easy
 - RF head config/control : challenging
- o Opportunity
 - SDR Forum is working on the config/control API
 - Invitation to automotive industry to shape SDRF standards effort to meet your needs

Summary

- SDR is ready today for automotive use
 - High waveform flexibility
 - Limited frequency agility
 - Key benefits: upgradeable, specializable, multimodal
- Recommend selecting an open Digital IF standard for autos
- SDR Forum is exploring ITS and automotive applications – please join us!
- o Thank you for your attention

The Fully Networked Car Geneva, 5-7 March 2008

BACKUP SLIDES

The Fully Networked Car Geneva, 5-7 March 2008

Vanu, Inc.

- Founded in 1998, MIT spin-off
- o Product / Market
 - Anywave[™]: Cellular infrastructure for rural areas and emerging markets
- Recognitions:
 - 2007 IEEE Spectrum Magazine "Wireless Winner"
 - 2005 GSM Association Technology Award for Most Innovative Infrastructure
 - 2005 SDR Forum Industry Achievement Award
 - 2004 World Economic Forum Technology Pioneer

The SDR Forum

Promoting the success of next generation radio technologies

- o Focus
 - SDR and cognitive radio for all applications of wireless systems
- o Membership
 - Industry / government / academic
 - Approximately 100 members, worldwide
- o Activities
 - Advocacy, opportunity development, commercialization, and education

