Implications of Cloud Computing to Our Environment

Monique Jeanne Morrow

Distinguished Consulting Engineer ITU Symposium on ICTs, the Environment, and Climate Change May 30 2012 Montreal, Canada

Enabling Reductions

Industry

Smart motors

- Industrial process automation
- Dematerialisation* (reduce production of DVDs, paper)

Transport

Smart logistics Private transport optimisation Dematerialisation (e-commerce, videoconferencing, teleworking) Efficient vehicles (plug-ins and smart cars) Traffic flow monitoring, planning and simulation

Buildings

Smart logistics† Smart buildings Dematerialisation (teleworking) Smart grid‡

Power

Smart grid Efficient generation of power, combined heat and power (CHP)

Approach to Sustainability

Operations

- EPA Climate Leader: 25% Reduction Goal
- EPA Green Power Partner
- Global IP-Based Data Tool

Products

- EnergyWise
- Adaptive Power Management
- Reduced packaging, hazardous substance use

Solutions

- Smart Grid, Converged Buildings Systems
- •Cloud Computing and Virtualization
- •TelePresence
- Planetary Skin

Internal & External Engagement

- Employee Collaboration (X-PRIZE, Earth Day)
- Industry Consortia (standards, policy, best practices)
- Government Partnership (UN, WEF)

Cloud Computing Implications

Cloud computing can avoid millions of metric tons of CO₂

• "A typical food&beverage firm

transitioning its human resources (HR) application from dedicated IT to a public cloud can reduce CO **emissions by 30,000 metric tons over five** years. These reductions are equivalent to the annual emissions from 5,900 passenger vehicles.

• The same food & beverage firm transitioning its HR application from dedicated IT to a private internal cloud can reduce CO emissions by **25,000 metric tons** over five years. These reductions are equivalent to the annual emissions from 4,900 passenger vehicles.

• From an economy-wide standpoint, US businesses with annual revenues of more than \$1 billion can cut CO **emissions by 85.7 million metric tons annually** by 2020 as a result of spending 69% of infrastructure, platform and software budgets on cloud services. "

• *Acknowledgement is given to Carbon Disclosure Project and Verdantix.

© 2010 [Our Company] and/or its affiliates. All rights reserved

Data Center Solar Power

"I love solar power, but in reflecting carefully on a couple of high profile datacenter deployments of solar power, I'm really developing serious reservations that this is the path to reducing data center environmental impact.

I just can't make the math work and find myself wondering if these large solar farms are really somewhere between a bad idea and pure marketing, where the environmental impact is purely optical."

James Hamilton, Amazon

http://perspectives.mvdirona.com/

ITU-T Some Call Outs

ITU-T SG13, WP-6 Cloud Computing

http://www.itu.int/ITU-T/studygroups/com13/index.asp

SG5, ICTs and Climate Change

http://www.itu.int/ITU-T/studygroups/com05/index.asp

JCA Cloud Computing

http://www.itu.int/en/ITU-T/jca/Cloud/Pages/default.aspx

ICT as Part of the Solution Global e-Sustainability Initiative

- ICT could reduce global greenhouse gas (GHG) emissions up to 15% by 2020
 Five times its own footprint in 2020
- **Cisco Vision**: Make every Internet connection a greener connection

Source: <u>SMART 2020</u>: Enabling the Low Carbon Economy in the Information Age, Report, June 2008

Network as the Platform

"By deploying innovative information technology and using the network as the platform for 21st century energy management, we believe we can significantly alter our greenhouse gas footprint and help our customers meet their sustainability goals."

John T. Chambers Chairman and CEO Cisco

Thank you.

BACK-UP

World GHG Emissions Flow Chart

What is the Smart Grid?

A digital infrastructure which uses networking technology to embed processing and communications into the analog power grid, enabling it to become more:

Observable	Controllable	Automated	Integrated
Full awareness of	Driving the grid to any desired state	Rapidly adapt to	Connecting siloed
grid state -		changing	utility systems and
transporting		conditions without	processes – full
sensor data and		human	realization of
control commands		intervention	business benefits

Enables Utilities to:

- Substantially increase grid efficiency and reliability
- Meet regulatory compliance
- Lower operational costs
- Create new, innovative energy service delivery

Smart Grid Enables

- Consumer Participation: Control over home energy management, reduction in energy use
- Efficiency: Improved operation of the entire power delivery chain, reducing losses
- Renewables: Integration of renewables like wind and solar
- Distributed Generation: Consumers can generate energy and put the excess back on to the power grid
- Demand Response: Automated, real-time distribution of energy leveling out spikes in demand
- Grey-to-Green Transformation: Changing the fuel mix to shift away from fossil fuels

Connected Workplace

- 40% increase in space utilization
- 40% reduction in electricity demand
- 54% reduction in IT cabling
- Significant reduction in construction materials
- Increased telecommuting
- Reduced greenhouse gas emissions

Planetary Skin: Global Collaborative Imperative

- Launched March 3rd 2009
- Partnership with NASA
- Millions of Sensors, Satellites Collect Data Everyday
- Captures, Analyzes & Interprets Global Environmental Data
- Real-time & Reliable Information
- To be used by Government, Non-Profits & Business

