

Achieving Carbon & Cost Accounting Per Service or Task, through Data Collection and Simulation Modelling

Dave Berry, Grid Computing Now! KTN Liam Newcombe, British Computer Society David Wallom, Oxford e-Research Centre

www.gridcomputingnow.org

Overview

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme

Why we need per-service accounting

Why implementing it is hard

How simulation and grid may be a solution

www.gridcomputingnow.org

Knowledge Transfer Network

BCS Oerc

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme

A lot of work has been done on improving the energy efficiency of data centres

- Better cooling strategies
- More efficient, multicore servers
- Virtualisation & grid
- Modular UPS systems
- Energy supply (CHP, Hydro, …)
- More efficient storage (flash / optical)

Just two problems...

www.gridcomputingnow.org

Problem 1: Exponential increase in demand

Knowledge Transfer Network

BCS Oerc

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme

Science, Engineering and Financial Markets now depend on IT

- Platform: customers planning for 50x increase in 3 years (OGF23)
- EU CoC: 56TWh 2007 to 104TWh 2020
- Energy saving technologies (virtualisation, more efficient coolers, etc) win only once.

Energy efficient IT is not enough

- Energy efficient IT is cheaper, unlocking demand
- Rebound effect

"If we build it, they will come"

www.gridcomputingnow.org

Efficiency = Output / Input

Input = energy cost Output = ???

IT values: SPECint, FLOPS, TPS

How do these relate to "useful work"?

Business value: no global definition

Only the business concerned can decide

www.gridcomputingnow.org

Grid Computing Now!

Knowledge Transfer Network

BCS Oerc

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme

"For each Watt my data centre consumes, what output do I get?"

VS.

"For each service I deliver, how much energy do I use?"

www.gridcomputingnow.org

The answer: per-service energy accounting

Knowledge Transfer Networl

BCS Oerc

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme

Macro Scale restriction or targeting of 'IT Energy Use' is not an effective approach

- We need to examine each system on a case by case basis
- In the context of what benefit the system delivers

Instead we should ask;

"What is the marginal environmental or economic benefit of this IT system?"

Knowledge Transfer Network

BCS Oerc

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme

Enables energy optimisation of business processes

– "Do I really need to run that job?"

Supports business planning

"How can I best use my CO² allocation?"

Introduces demand management

– "If we build it, can they afford the CO² to use it?"

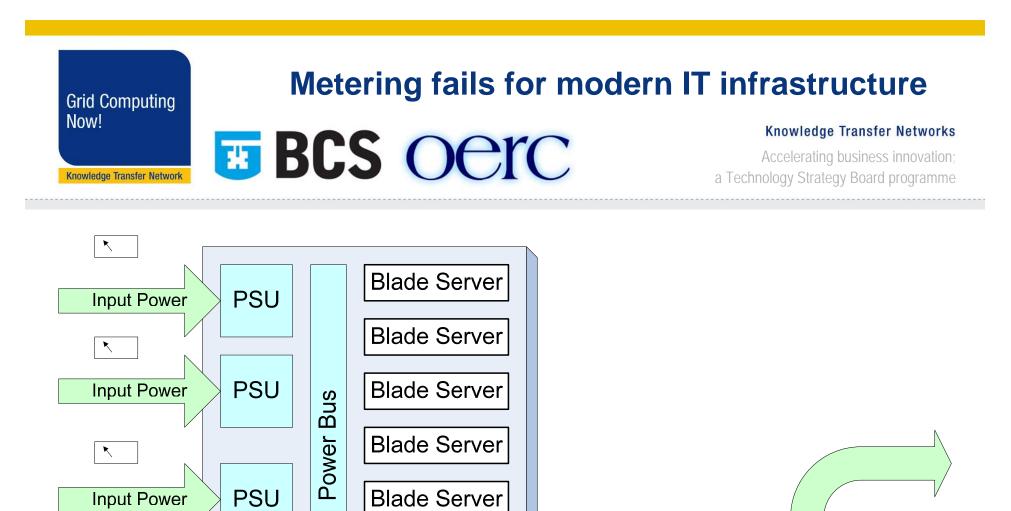
Allows informed allocation of CO² credits to services and companies

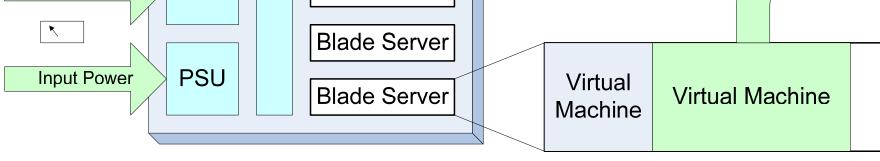
- Many IT services cut energy use elsewhere in the economy
- Per-service accounting is one part of a larger CO² market

www.gridcomputingnow.org

Overview

Knowledge Transfer Networks


Accelerating business innovation; a Technology Strategy Board programme


Why we need per-service accounting

Why implementing it is hard

How simulation and grid may be a solution

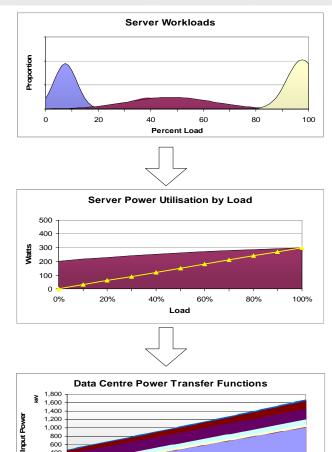
www.gridcomputingnow.org

www.gridcomputingnow.org

Overview

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme


Why we need per-service accounting

Why implementing it is hard

How simulation and grid may be a solution

www.gridcomputingnow.org

	Grid Computing Now! Knowledge Transfer Network	BCS Data Centre Model	
			Knowledge Transfer Networks
		BCS Oerc	Accelerating business innovation; a Technology Strategy Board programme

800

1,000

200

400

IT Electrical Load (kW)

600

IT Workload

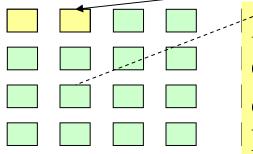
Server Load to Power **Function**

Data Centre Power Transfer Function

www.gridcomputingnow.org

Grid Computing Now!

Knowledge Transfer Network

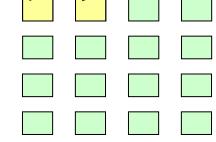


Assume a modular In each sub-grid, install detailed metering for a small set of server nodes.

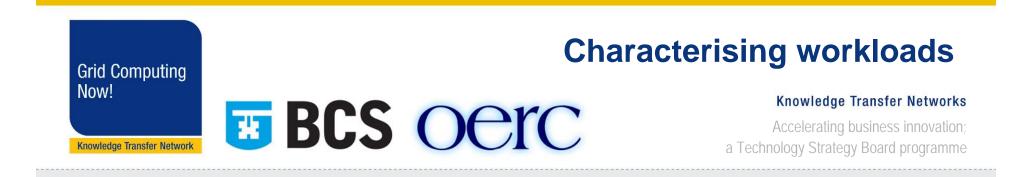
Proposal: Grid infrastructure and data centre simulation

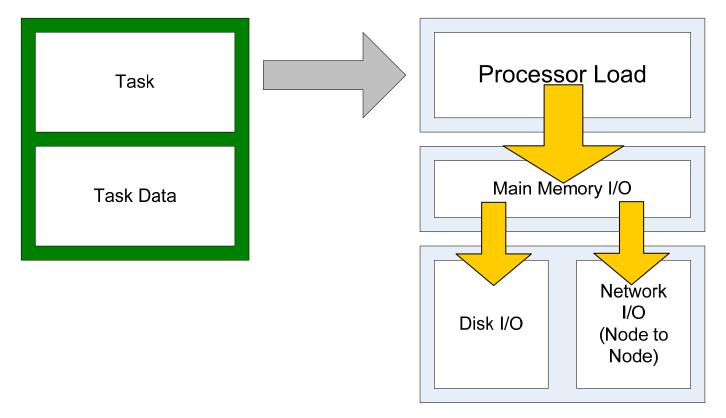
Knowledge Transfer Networks

Accelerating business innovation; Technology Strategy Board programme



Define a detailed simulation of energy usage in the data centre, using the BCS model. For each application, characterise its energy usage on the metered nodes.


Charge the user based on a function of the characteristics of the running applications and the overall power drawn.



www.gridcomputingnow.org

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme

The scheduler is key

Grid Computing

Knowledge Transfer Network

Now!

- Grid schedulers actively allocate workload to nodes
- Therefore can collect data of which tasks execute where

Workload characterisations are approximations

 Hypothesis: Accurate enough to predict usage for purposes of cost allocation

Production accounting & calibration system

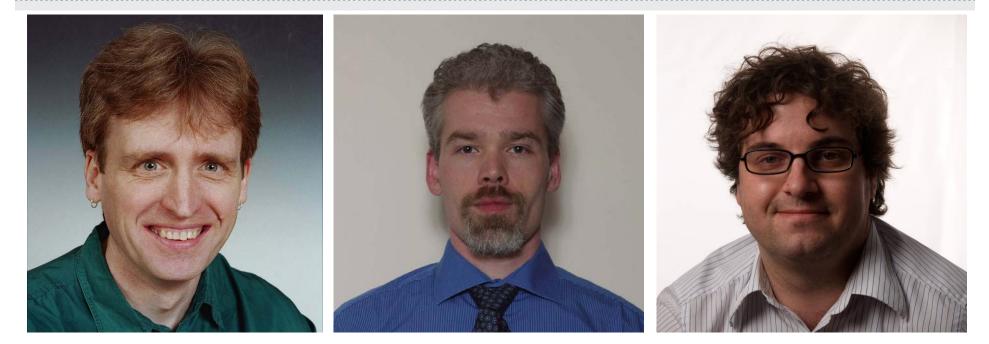
BCS Oerc

- Divides cost of actual power among workloads
- Warns if predicted and actual power diverge significantly

www.gridcomputingnow.org

Per-service accounting is essential to enable informed business decisions

Implementation is hard


Grid and simulation may be a solution

www.gridcomputingnow.org

Thank you

Knowledge Transfer Networks

Accelerating business innovation; a Technology Strategy Board programme

BCS Oerc

http://www.gridcomputingnow.org

Grid Computing

Knowledge Transfer Network

Now!

http://dcsg.bcs.org

http://projects.oucs.ox.ac.uk/lowcarbonict

www.gridcomputingnow.org