Interoperability Testing in ETSI

Steve Randall
PQM Consultants, UK

Vice-Chair, ETSI TC-MTS

2nd ITU-T Informal Workshop on Conformance and Interoperability Testing
Structure of this Presentation

- Background
- ETSI’s Interoperability Methodology:
 - Interoperability and Conformance
 - Basic concepts
 - Developing Interoperability Tests
Background

- Telecommunications standards bodies have traditionally specified only conformance tests for their protocols and services;
- Interoperability testing has been considered to be a purely commercial issue;
- ISO 9646 is still a relevant methodology for conformance testing purpose;
- Pressure from committees within ETSI has resulted in TC-MTS developing an “ISO 9646 for Interoperability”
ETSI’s Interoperability Testing Methodology

- Originally published as a project-specific methodology (TS 102 237-1)
- Draft generic methodology currently out for committee approval with publication expected March 2007
- Methodology covers two main segments:
 - Interoperability test development;
 - Interoperability testing.
- The testing methodology is only one small part of ETSI’s overall approach to interoperability
Interoperability and Conformance - 1

- **Conformance**
 - Establishes whether or not the implementation of a standard meets the requirements specified in the standard.

- **Interoperability**
 - Assesses the ability of an implementation to support the required functionality between itself and another implementation.
Interoperability and Conformance – 2

- Interoperability testing is not a substitute for conformance testing
- Conformance testing does not assure interoperability
- Conformance testing together with interoperability testing is a very powerful combination
Basic Interoperability Concepts
1 – General Test Arrangement
Basic Interoperability Concepts
2 –Principal Components

- **Equipment Under Test (EUT)**
 - Only one in any SUT
 - Hardware, Software or a Combination
 - Not previously tested successfully

- **Qualified Equipment**
 - Any number in an SUT
 - Hardware, Software or a Combination
 - Previously tested successfully

- **Test Driver**
 - Human or machine controller of EUT and QE(s)

- **Test Coordinator**
 - Human or machine controller and synchronizer of tests
 - May also be one of the Test Drivers
Interoperability Test Specification

- Specification process steps
 - Specify abstract architecture
 - Write draft Interoperable Features Statement (IFS)
 - Specify Test Suite Structure (TSS)
 - Write Test Purposes (TP)
 - Write Test Cases (TC)
 - Validate Test Cases
Specify Abstract Architectures

- General framework(s) within which concrete test arrangements must fit
- Can be graphical, tabular or textual
- Should identify:
 - EUT
 - QE(s)
 - Paths between EUT and QE(s) (MoC)
 - Valid equipment types for EUT and QE(s)
 - Expected protocols to be used
Write Draft Interoperable Functions Statement

- An IFS Identifies:
 - Functions that an EUT must support
 - Functions that are optional
 - Functions which are conditional

- The IFS provides structure to the test specification

- It can also be used like a PICS as a proforma for a manufacturer to declare which functions are supported in an EUT
Specify Test Suite Structure

Identify test groups based upon, e.g.:

- Abstract Architecture
- Functionality
- Behaviour:
 - Normal
 - Exceptional

Define test coverage for each group

- What range of tests is to be included in each test group
Write Test Purposes

- For each possible test case, describe WHAT is to be tested
- Use the most appropriate means of expressing Test Purposes:
 - Plain language
 - Tables
 - MSCs
 - A specialist notation such as TPLan which offers:
 - Consistency in TP descriptions
 - Clear identification of preconditions, test actions and verdict criteria
 - Checkable syntax
Write Test Cases

- **Test cases should include:**
 - **Preconditions**
 - Configuration
 - Initial status
 - **Test steps**
 - Detailed instructions to Test Driver
 - Clear
 - Precise
 - No unnecessary restrictions
 - **Verdicts**
 - “Pass” means “EUT Pass”!
 - “Fail” may not mean “EUT Failure”
 - QE failure
 - MoC failure
 - Requires investigation
Test Case Specification

- Tabulated free text
 - Ideal for implementation by human Test Drivers
 - Individual test steps and their relation to each other is easy to understand
 - Only supports simple, serial test path, i.e., very difficult to describe alternate paths following an unsuccessful intermediate verdict

- Programming script or language (e.g., PERL, TTCN-3)
 - Ideal for machine implementation of Test Drivers
 - Highly repeatable
 - Allows comprehensive handling of unexpected behaviour
 - Difficult for the human user to read and follow
 - Establishing a testing environment is complex
Sample Test Case
Tabular

<table>
<thead>
<tr>
<th>Identifier</th>
<th>TC_SS_0001_01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary:</td>
<td>Supervised call transfer from User B to User A</td>
</tr>
</tbody>
</table>
| Test Purpose: | \texttt{ensure that \{ \begin{align*} &\text{when } \{ \text{A call is established between User C and User B} \}\text{ then } \{ \text{User B can transfer the call from User B to User A} \\
&\quad \text{after User B and User A communicate} \} \end{align*} \}} |

<table>
<thead>
<tr>
<th>TP Identifier</th>
<th>TP_SS_0001</th>
<th>Configuration:</th>
<th>Test Architecture 2</th>
</tr>
</thead>
</table>
| Pre-test conditions : | • User A, User B and User C configured with Bearer Capability set to "Speech, 64 kbit/s"
• User A configured to support the Call Transfer service |

<table>
<thead>
<tr>
<th>Step</th>
<th>Test sequence</th>
<th>Verdict</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initiate new call at User C to the address of User B</td>
<td>Pass</td>
</tr>
<tr>
<td>2</td>
<td>Accept call at User B</td>
<td>Pass</td>
</tr>
<tr>
<td>3</td>
<td>Activate the "recall" button (or equivalent) at User B’s terminal</td>
<td>Pass</td>
</tr>
<tr>
<td>4</td>
<td>\texttt{Is dial tone (or an equivalent indication) present at User B’s terminal?}</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Initiate a new call from User B to the address of User A</td>
<td>Pass</td>
</tr>
<tr>
<td>6</td>
<td>\texttt{Is User A’s terminal alerting (visual or audible indication)?}</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Accept call at User A</td>
<td>Pass</td>
</tr>
<tr>
<td>8</td>
<td>Apply speech at User A</td>
<td>Pass</td>
</tr>
<tr>
<td>9</td>
<td>\texttt{Can} speech from User A \texttt{be heard and understood at User B?}</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>\texttt{Can} speech from User A \texttt{be heard and understood at User C?}</td>
<td>No</td>
</tr>
</tbody>
</table>
Sample Test Case
TTCN-3 (Core)

// Define Supervised Transfer test case
testcase SupervisedTransfer() runs on userTerminalType
{ timer ResponseTimer := 100E-3;

 // Preamble: Establish call between Users B & C
 m3s.send (CallEstablish_1);
m2s.receive (CallEstablish_1);
m2s.send (CallAccept_1);
m3s.receive (CallAccept_1);
 // Register recall test
 m2s.send (Recall);
 ResponseTimer.start;
 alt
 { [] ResponseTimer.timeout
 { setverdict(fail);
 stop
 }
 [] m2d.receive (DialTone)
 { setverdict(pass);
 ResponseTimer.stop
 // Hold call test

 }
Sample Test Case
TTCN-3 (GFT)
Validate Test Cases

- Ideally, test cases should be validated in a lab
- Structured Walkthrough/Peer Review is the minimum level of validation acceptable
- Validation ensures that:
 - Pre-conditions make the SUT ready for testing
 - No unnecessary pre-conditions are specified
 - Abstract architecture can be realized in an appropriate concrete configuration
 - Test steps are unambiguous and easy to follow
 - Each test case realizes objective of its test purpose
 - Combined verdicts give true assessment of Test Purpose
And finally . .

- **ETSI’s initial Interoperability Test Methodology:**
 - Published in 2003 (TS 102 237-1)
 - Project specific
 - ISO 9646 principals
 - Used in a number interoperability testing projects

- **Revised Interoperability Test Methodology:**
 - To be published in 2007
 - Generic to any project
 - Only minor changes on the basis of experience

- Interoperability testing is important, BUT
- “Design for Interoperability” is more important!
Thank You!

Interoperability Testing in ETSI