

The World's First LTE-R for 250km/h High-Speed Railway in Republic of Korea

2018.6.

Deputy General Manager, Electronic communication Division Radio Communication System Department KRNA (Korea Rail Network Authority) Tel : +82-42-607-3576 / Mobile : +82-10-6485-970

Korea Rail Network Authority is a state owned agency established in January 2004 for construction and management of railways including high speed, conventional and urban rail infrastructures.

Business Area

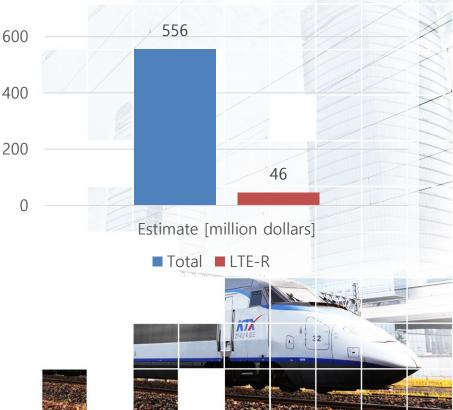
Railway Construction

High speed railways, conventional railways, intercity railways, privately invested railways, trans-Korean railway

Fields of communication, civil, trackbed, electric power, signaling and rolling stock.

Railway Facilities & Standard Management

Maintenance and repair of high speed railways and conventional railways, facilities improvement, standardization


Railway Assets Management

Development of railway station spheres and station complexes, lease of railway assets, public housing projects

Overseas Railway Projects

Project management, design and construction supervision, technical consultation, privately invested projects

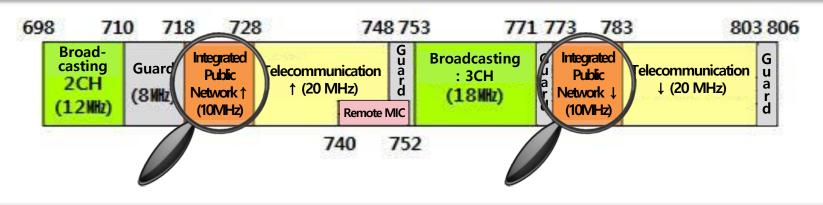
Annual Budget

CONTENTS

- 1. LTE-R for 250km/h High-Speed Railway in Republic of Korea
- 2. LTE-R Project on Wonju-Gangneung HSR
- 3. LTE-R Optimization & Validation Result
- 4. Future Plan

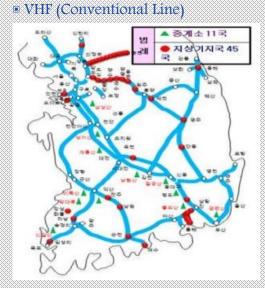
CONTENTS

- 1. LTE-R for 250km/h High-Speed Railway in Republic of Korea
- A. Background
- B. LTE-R Major Performance Factors
- C. Standardization
- D. System Improvement
- 2. LTE-R Project on Wonju-Gangneung HSR
- 3. LTE-R Optimization Test Result
- 4. Future Plan


A. Background

1. LTE–R for 250km/h High–Speed Railway in Republic of Korea

+ Frequency Allocation of 700 MHz Band (UL 718-728 MHz, DL 773-783 MHz)

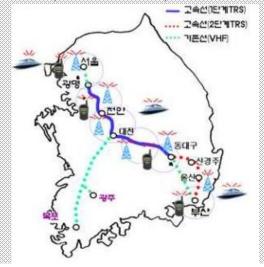


Legacy Kallway wireless	
Communication System	

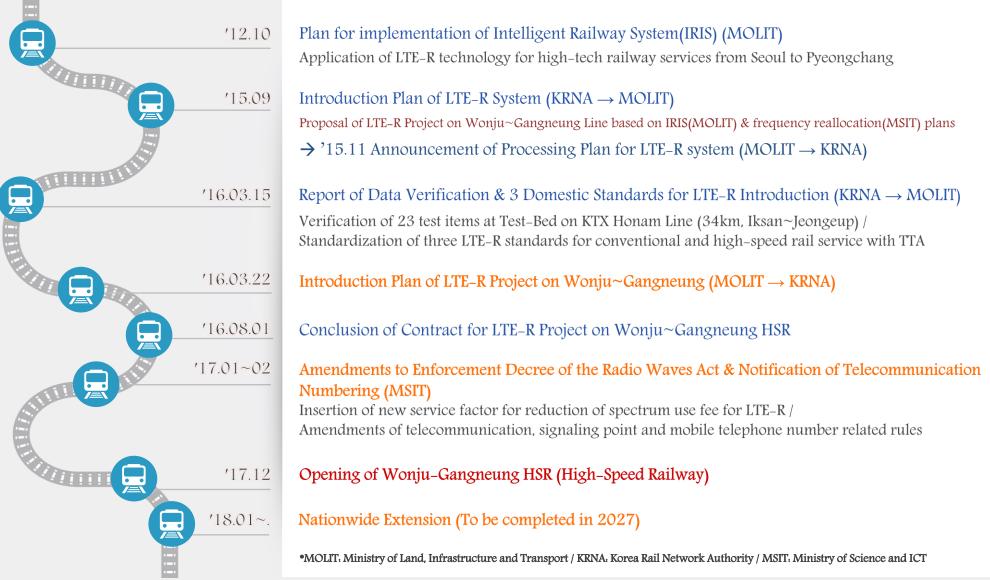
VHF(150MHz band) & TRS(800MHz band)

Do	:1		Wireless Communication System			
Kd	ilway Li	ne	VHF	TRS-ASTRO	TRS-TETRA	
Conventional Rail	Entire route		O			
Gyeongbu	Phase1	Seoul~Dongdaegu	Ø			
High-speed Rail	Phase2	Dongdaegu~Busan			Δ	
Honam High-speed Rail	0:	song~Gwangju			\bigtriangleup	
Seoul Metropolitan High-speed Rail	Suseo~Pyeongtaek					

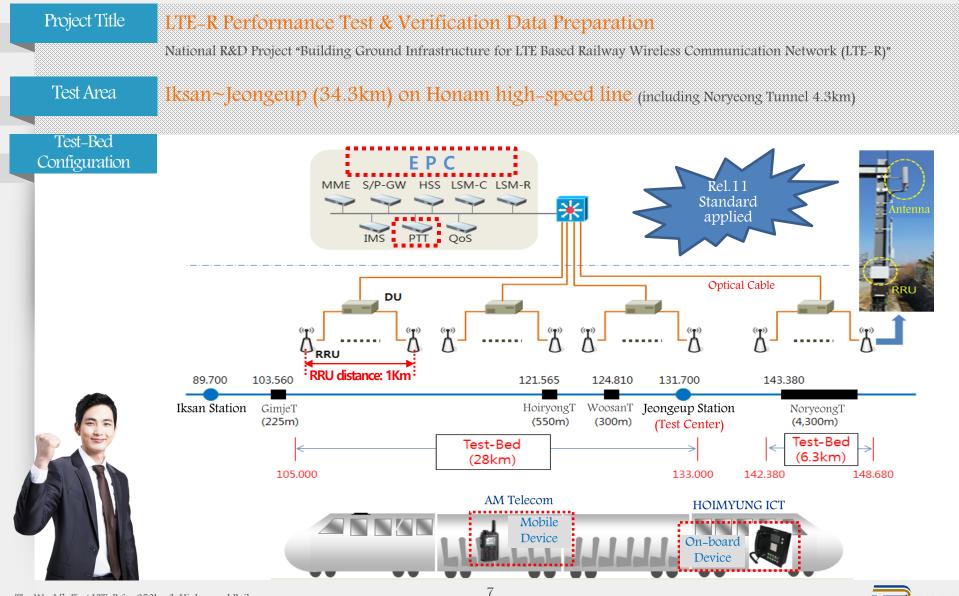
st Gyeongbu line train has an on-board equipment and each train crew carries three different mobile devices.


Evolution of Wireless Communication System

LTE-R(700MHz band)


- A railway wireless communication system for train operation and maintenance
- Supports railway specific wireless services(voice, video, large data) between trains and stations based on 4G technology LTE
- The first LTE-R for high-speed railway is implemented on Wonju~Gangneung Line

TRS (High-speed Line)


A. Background

B. LTE-R Major Performance Factors

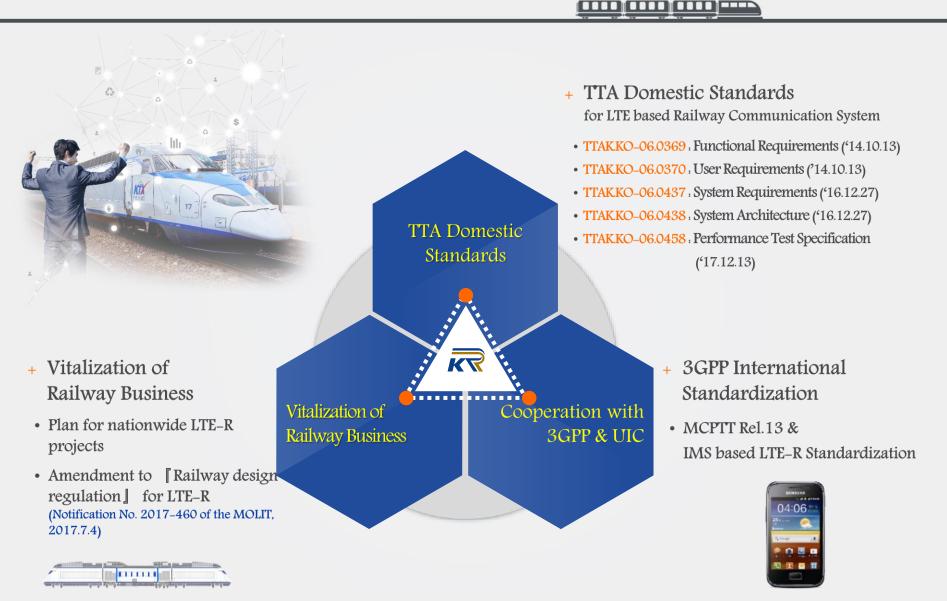
1. LTE-R for 250km/h High-Speed Railway in Republic of Korea

The World's First LTE-R for 250km/h High-speed Railway

KOREA RAIL NETWORK AUTHORITY

B. LTE-R Major Performance Factors

1. LTE–R for 250km/h High–Speed Railway in Republic of Korea



Result Verification Data & Test Result (23 items)

	Verification Data	Test Result	Criteria		Verification Data	Test Result	Criteria
1	Propriety of LTE-R		TE standards, design effective minimum equipment		Data transmission delay	PASS (28ms)	≤ 600ms
1	network architecture	※ Ref. : 3GPP TS23.	228 "IP multimedia subsystem(IMS)", 3.401 "GPRS for E-UTRAN Access"	14	Continuous packet loss rate	PASS (0s)	≤ 5s
2	Redundancy of major equipment	EPC/DU/RRU co network stability	verage redundancy for LTE-R	15	On-board device requirements		lity, private/group/emergency e calls, ambience listening , etc.
3	RRU distance (Tunnel, Open area)	Tunnel: 1km Open area: 1km	Coverage redundancy	16	On-board device prototype	Prototype manufact	ture completed
4	DU handover	PASS (100%)	≥ 99% (※ 2T8R)	17	On-board device call quality	PASS (DAQ 4.0)	≥DAQ 4.0
5	RRU handover	PASS (100%)	≥ 99% (※ 2T8R)		Mobile device requirements		nection success rate, long call up/emergency calls, device
6	Field strength (RRU output)	PASS (46.62dBm)	46dBm			location, call quality, video	
	(nino output)	(10.0202)		19	Mobile device Prototype	Prototype manufact	ture completed
7	Coverage	PASS (98.8%)	≥ 98% (≥ RSRP –110dBm)		Mobile device call quality	PASS (DAQ 4.0)	≥DAQ 4.0
8	Call setup time	PASS (100%) PASS (100%)	Emergency : ≤ 2sec 100% Group : ≤ 2.5sec 100% Others ¹⁾ : ≤ 5sec 100% ※ Others : Voice/Video calls except		QoS control requirements	Common standards : 3GPP Gx interface standard : 3G Rx interface standard : 3G	
		PASS (100%)	emergency/group calls, external PSTN is not considered	22	QoS control prototype	Prototype manufact (% LTE-R : PCRF and eNB	
9	Handover success rate	PASS (100%) PASS (100%)	Open area: \geq 99% Tunnel: \geq 99%	23	LTE-R Network attach time	PASS (414ms)	≤ 500ms
10	Call connection success rate	PASS (100%)	≥ 99%	: Crite	aria Source 4, 5, 8, 9, 10, 11, 12, 20 : TTAK.KO-06.	, ,	
11	Long call drop rate	PASS (none)	≤ 0.01 times/hour	- No.		0370 "User requirements for pment (UE) radio transmissio	LTE based railway communication" n and reception"
12	Data transmission success rate	PASS (100%)	≥ 99%	 No.7 : 3GPP TS36.304 "E-UTRA; User Equipment procedures in idle mode" No.13, 14, 20, 23 : LTE-R national R&D project, Stage 1			

C. Standardization

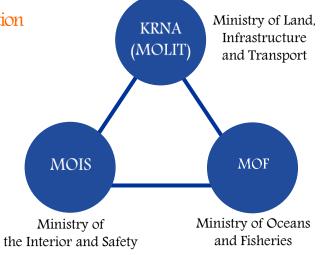
D. System Improvement

1. LTE-R for 250km/h High-Speed Railway in Republic of Korea

+ Solution for Frequency Interference

Co-use of 700MHz frequency band for Integrated Public Network (LTE-R, PS-LTE, LTE-M)

Problem


Frequency Interference between LTE-R, PS-LTE and LTE-M

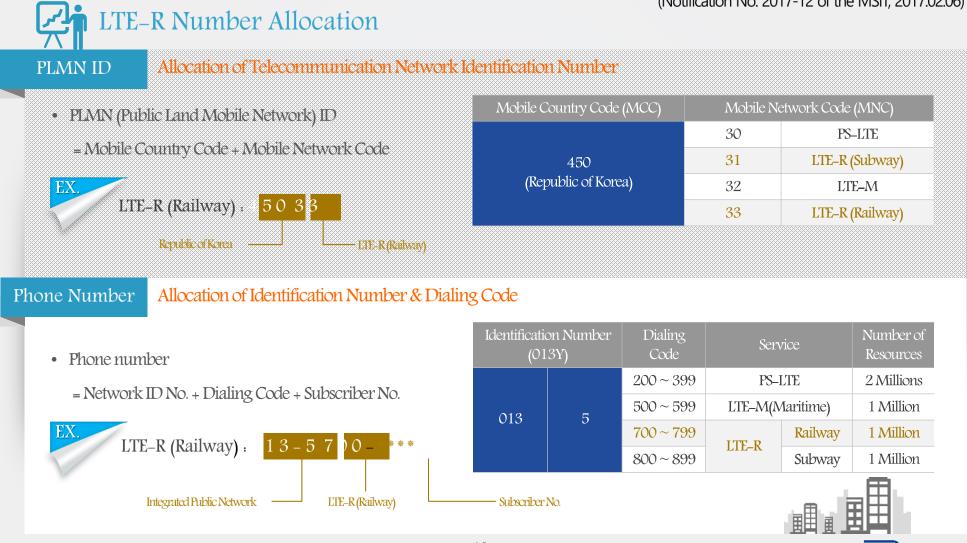
• Frequency Interference between Integrated Public Networks using 700 MHz bandwidth.

Solution

SOP (Standard Operating Procedure) for interference optimization

- Related institutes (MOLIT, MOIS, MOF) established SOP
- Applying **RAN Sharing** between Integrated Public Networks
- Setting up resource allocation rules and standard interworking procedure

Amendment Technical Regulation of Radio Equipment for Integrated Public Network Frequency


Equipment	Class	Condition
	Communication mode – mobile station direction	OFDMA
Common Condition	Communication mode – base station direction	SC-FDMA
	Occupied bandwidth	$\leq 10 \; \mathrm{MHz}$
	Radio wave type	one out of G7D, D7D, D7W, G7W, W7W (※ LTE-R : G7W, D7W)
	Antenna power	below 80W
	Frequency tolerance	\pm (designated frequency $\times 5 \times 10-8+12$ Hz)
Base Station Transmitting	Unwanted emission	mean power of resolution bandwidth depends on frequency difference
	Adjacent channel leakage power	\leq 44.2 dB than the average power of the fundamental frequency
	Spurious emission	\leq -57 dBm
Base Station Receiving	Adjacent channel selectivity	$\geq 76~\text{dB}$ from 698 MHz to 710 MHz
	Antenna power	\leq 2W (\leq 200mW for mobile device)
	Frequency tolerance	±(designated frequencyX10-7+15Hz)
Mobile Station Transmitting	Unwanted emission	mean power of resolution bandwidth depends on frequency difference
	Adjacent channel leakage power	\leq 29.2dB than the average power of the fundamental frequency
	Spurious emission	\leq -57 dBm
Mobile Station Receiving	Adjacent channel selectivity	$\geq 53~\text{dB}$ from 753 MHz to 771 MHz

+ Amendment to Detailed Rules on Management of Telecommunication Number

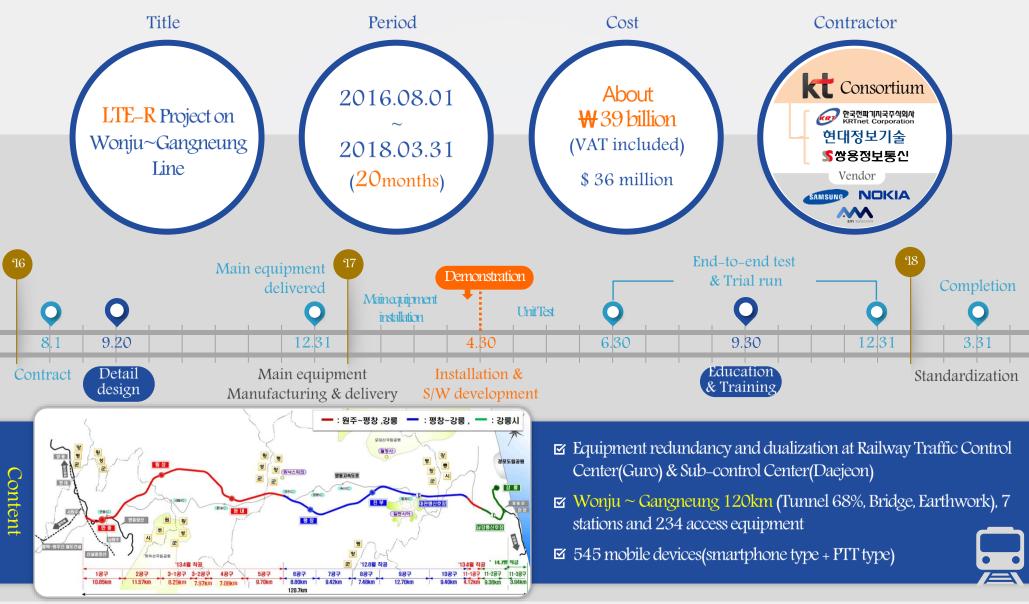
(Notification No. 2017-12 of the MSIT, 2017.02.06)

KOREA RAIL

The World's First LTE-R for 250km/h High-speed Railway

CONTENTS

1. LTE-R for 250km/h High-Speed Railway in Republic of Korea

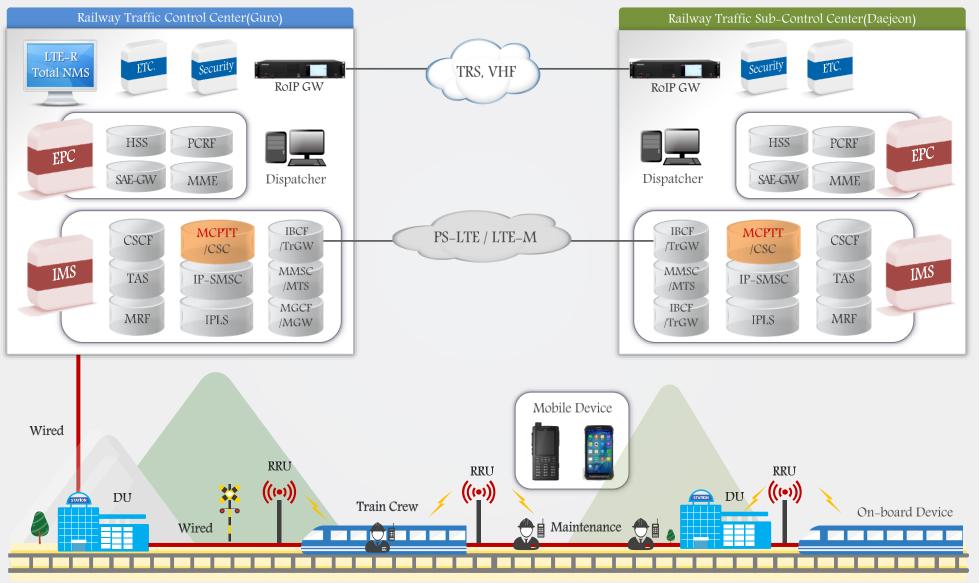

2. LTE-R Project on Wonju-Gangneung HSR

- A. Project Overview
- B. System Diagram
- C. System Requirements
- 3. LTE-R Optimization & Validation Result
- 4. Future Plan

2. LTE-R Project on Wonju-Gangneung HSR

A. Project Overview

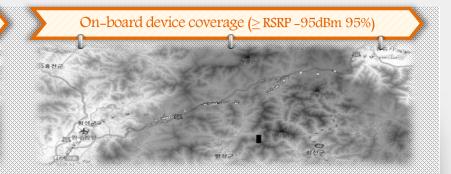
A. Project Overview


+ Major Manufacturers

B. System Diagram

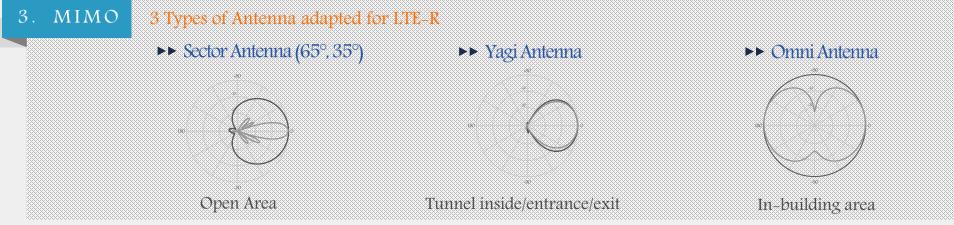
The World's First LTE-R for 250km/h High-speed Railway

C. System Requirements



2. Throughput LTE-R Capacity Requirements

Downlink Traffic	4,132 kbps				
Uplink Traffic	10,142 kbps				
►► Data transmission delay					
: less than or equal to 300ms					



Final Report on Radio-based Train Control System Standardization and Performance Test (2014, KAIA) *KAIA: Korea Agency for Infrastructure Technology Advancement

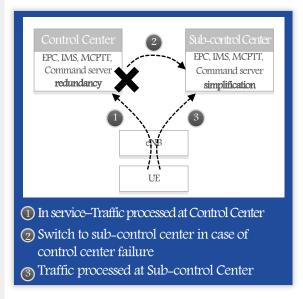
Considering data service demand of LTE-R,

capacity on the left should be satisfied

►► Data transmission success rate : greater than or equal to <u>99%</u>

The World's First LTE-R for 250km/h High-speed Railway

17



C. System Requirements

4. Redundancy Core & eNB Redundancy

+ Location Dualization

+ Equipment Redundancy

- Node dualization switch condition : Redundancy failure of core equipment
- Switch procedure by Fault Level

Fault Level	Equipment (Redundancy Failure)	Service Impact	Switch Procedure (Node Dualization)
Critical	MME, HSS, MCPTT, CSCF, SAE–GW	VoLTE, MCPTT available	Immediate switch
Major	AS, MRF, PCRF	VoLTE, MCPTT available Supplementary service not available (Call forwarding, etc.)	Idle hour switch (after service decision)
Minor	IBCF/TrGW, MGCF, MGW	VoLTE, MCPTT available PS–LTE & internal calls not uvailable	No switching (Equipment recovery)

Switch Plan : When critical fault occurs, follow switch procedure after monitoring LTE-R NMS

 Control center-Sub-control Center runs in Active-Standby mode(Hot Site), control center is operating in service

Equ	iipment	Redundancy	Switch Test Result	Note		Equipment	Redundancy	Switch Test Result	Note		Equipment	Redundancy	Switch Test Result									
	MME					CSCF/BGCF	Same as EPC		Integration		DU #1											
	S-GW	Server/Port/Po				AS	Same as Li C		server		Shelf #1	Active_Standby DU 1:1	Auto switch									
EPC		wer/SW	Auto switch	Integration	IMS	MRF	Autoswitch	Auto switch	DU	DU	Redundancy (Samsung, 3Osecs	(Samsung, 3Osecs										
EPC	P-GW	Redundancy (Active/	(in seconds)	server	IIVIS	MGCF	Server	(in seconds)	Single		DU #2 Redundancy	 Active-Standby DU are managed as one eNB 	/Nokia: 7~13mins)									
	HSS	Standby)				IBCF/TrGW	Redundancy	Redundancy	dundancy serv		server	server	ncy	Redundancy	server	server	server	_				,
	PCRF					MGW				Shelf #2												

The World's First LTE-R for 250km/h High-speed Railway

CONTENTS

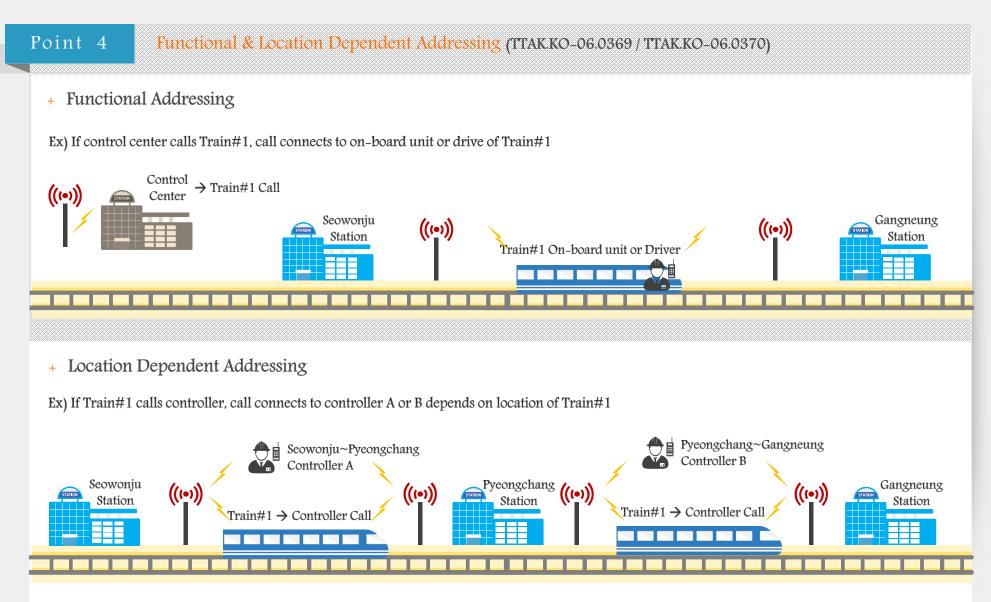
- 1. LTE-R for 250km/h High-speed Railway in Republic of Korea
- 2. LTE-R Project on Wonju-Gangneung HSR

3. LTE-R Optimization & Validation Result

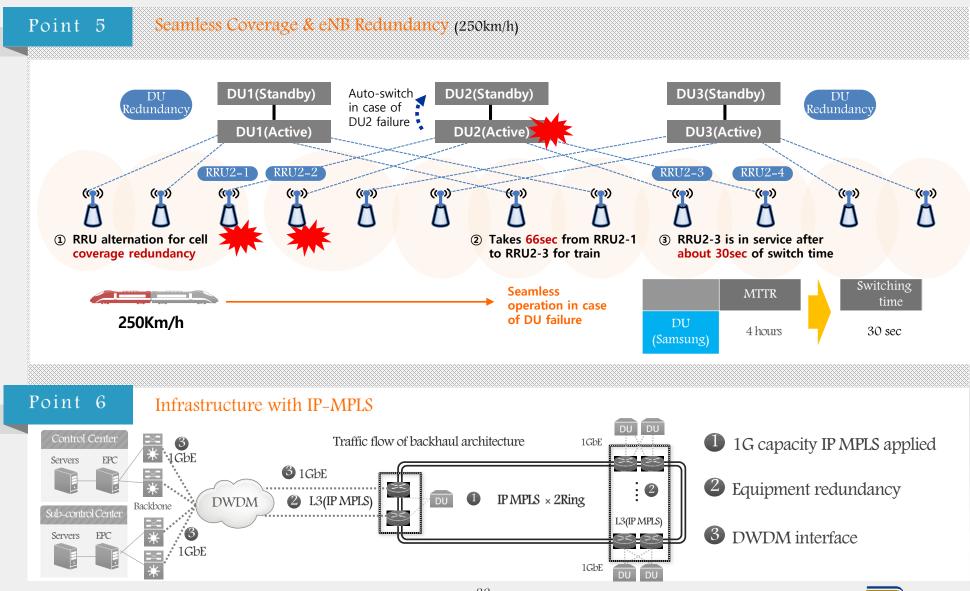
- A. LTE-R Specific Functions & Performances
- B. LTE-R Cell Configuration Test

C. LTE-R Performance Validation in Wonju-Gangneung

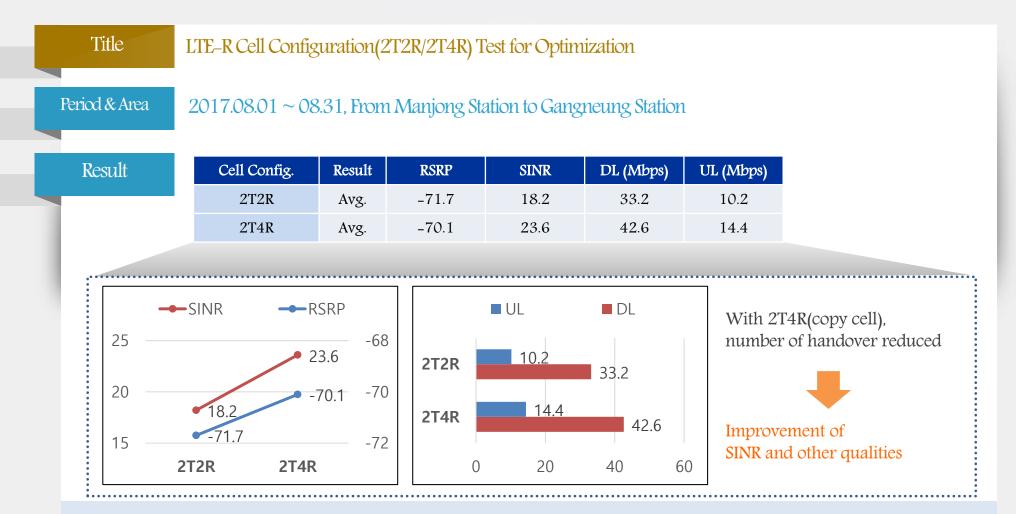
4. Future Plan


A. LTE-R Specific Functions & Performances

	 LTE-R for Wonju-Gangneung High-Speed Railway (Max. speed : 250km/h) → Assurance of 98% service coverage, Average data throughput DL 40Mbps, UL 20Mbps Supports wireless services for IoT, unmanned technology, etc. (following 3GPP international standards) 						
Point 2	Compariso	n of GSM-R and LTE-R					
	Category	GSM-R	LTE-R				
	Range	• Global (Europe, China, etc.)	• Republic of Korea (World's first LTE-R for high-speed railway on Wonju~Gangneung line)				
	Throughput	• Max. 172Kbps(DL), 172Kbps(UL)	• Avg. DL 40Mbps, UL 20Mbps 💥 10MHz bandwidth				
	Service	• Voice & Low-rate data (ETCS/ERTMS Level]] Voice PTT, Nonstandard)	 Voice, Video, High-rate data (Video+Voice PTT, MCPTT Standard, MCPTT QCI69/Signaling, 65/Voice, 70/File applied) Functional & Location dependent addressing 				
Point 3	Openno • 3GPP satisf • DU receive	ecific Advantages of LTE-R System ess & Availability ied equipment s 12 RRUs Max. ops of data throughput Participation in -30 Optimal handover at hespeed(250km/h)	 Improved maintenance with LTE-R NMS O°C (DU, RRU) Supports remote antenna tilting 				


A. LTE-R Specific Functions & Performances

KOREA RAIL NETWORK AUTHORITY


A. LTE-R Specific Functions & Performances

The World's First LTE-R for 250km/h High-speed Railway

B. LTE-R Cell Configuration Test

According to characteristics of each site, different cell configuration is applied

✓ Open Area : 2T2R

✓ Station and Tunnel Area : 2T4R

C. LTE–R Performance Validation in Wonju–Gangneung

Test Goals Validation of Coverage and Quality of Wonju–Gangneung LTE–R

- Measurement of coverage for mobile devices with RSRP -110 dBm or more
- · Measurement of handover success rate at speed of 250 km/h
- Validation of LTE-R quality such as call success rate, data throughput and data transmission success rate

Result

Coverage (Total 120 km)

	Mobile Device	Criteria
Coverage	99.717%	-110dBm, over 98%

Data Throughput

Avg. Data Throughput	Railroad	Station	Major Facilities (Control station, Depot)
DL (Mbps)	35.950	53.154	61.125
UL (Mbps)	15.304	19.755	20.419

Handover Success Rate

Handover success rate	Mobile Device	Criteria
DU	99.880%	Over 98%
RRU	99.895%	Over 98%

Voice Call Success Rate

	Railroad	Station	Major Facilities (Control station, Depot)
Call success ra te	99.10%	99.63%	99.51%

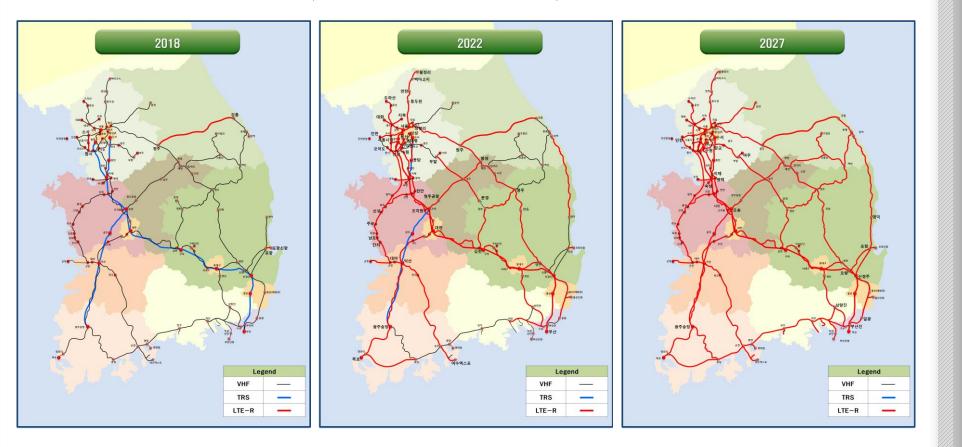
Data Transmission Success Rate

Transmission success rate	Railroad	Station	Major Facilities (Control station, Depot)
DL	99.27%	99.98%	100.0%
UL	99.15%	99.96%	100.0%

CONTENTS

- 1. LTE-R for 250km/h High-speed Railway in Republic of Korea
- 2. LTE-R Project on Wonju-Gangneung HSR
- 3. LTE-R Optimization & Validation Result

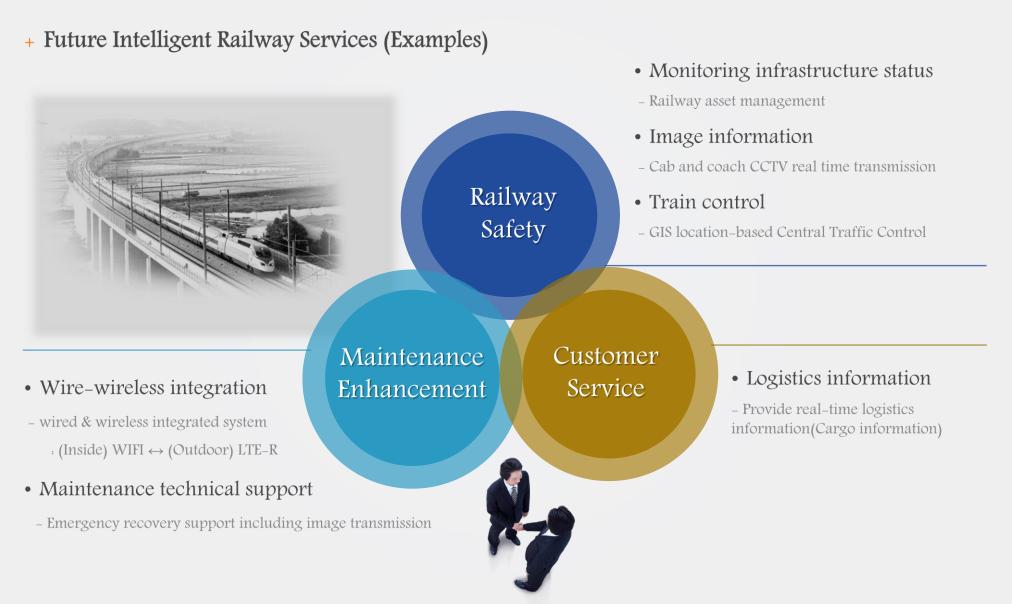
4. Future Plan


- A. Plan for LTE-R Extension
- B. Study on Railway Specific Services using LTE-R
- C. Interoperability Test with KRTCS

(Korean Radio-based Train Control System)

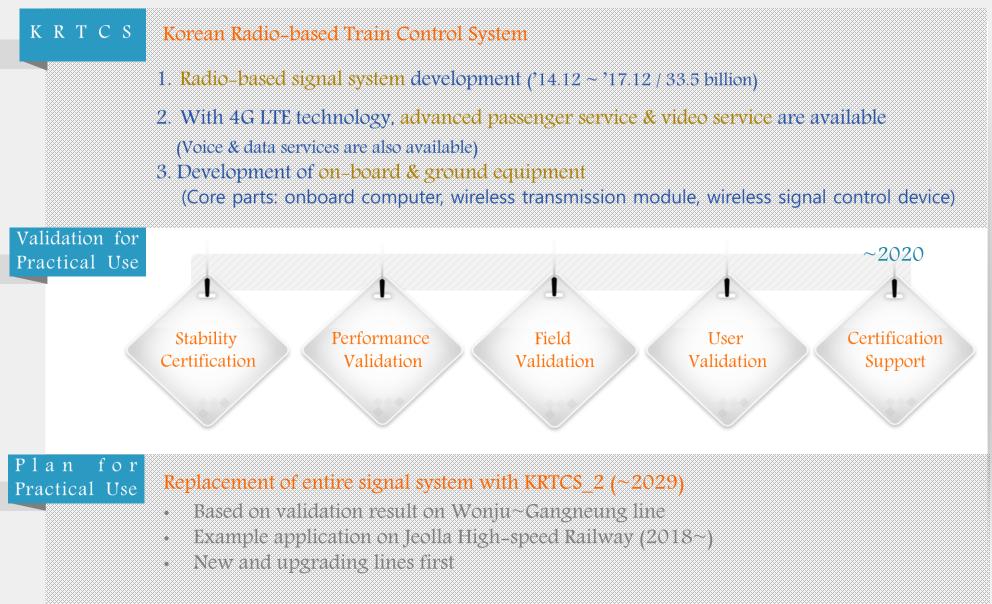
Phased Replacement of VHF/TRS with LTE-R until 2027

LTE-R replacement plan on existing lines (Conventional/High-Speed Railway)



Status Data Service Acceptance of LTE-R • Traffic capacity of LTE-R on Wonju ~ Gangneung : Average UL 20Mbps, DL 40Mbps (VoLTE Voice 45Kbps, Video 1Mbps / MCPTT Voice 60Kbps, Video 1Mbps) Data Path Traffic capacity (avg.) Capacity used (Estimate^{*}) Free capacity 20Mbps 10.6Mbps UL 47% DL 40Mbps 4.8Mbps 88% * Final report on standard system implementation and performance test of radio-based train control system (2014, KAIA) Applications • Earthquake early response system, • ICT-based smart service system, • Railway structures & ground monitoring Station Track system, • AI-based air conditioning management system, facility facility • Track condition monitoring system, • Integrated energy management system, etc. • Accident site video transmission system, etc. Future Plan D [Research on Linking Plan for Industry 4.0 Using LTE-R] $(2017.8 \sim 2018.7)$ eMBMS (evolved Multimedia Broadcast Multicast Service) based application services

The World's First LTE-R for 250km/h High-speed Railway



KOREA RAIL

The world's first LTE–R opens a new chapter of railway wireless communication!

Thank you

