

The Future of Commercial Aviation and Its Spectrum Requirements

A look into the Future Joe Cramer

COPYRIGHT © 2018 The Boeing Company Unpublished Work All Rights Reserved

The Future of Aviation

- The future of aviation is being developed today for automobiles.
 - Concept of not driving yourself will gain acceptance.
 - Your children/grandchildren already accept this.
 - As people age and cannot drive, a driverless car provides freedom.
 - As people release "control" to a car, they will also be comfortable with not having a pilot in the aircraft.
- No Pilot on or in the aircraft.
 - How much does this <u>actually</u> change the way people fly and how the air transportation system is managed?

The Future of Aviation – Spectrum Requirements

- What will be the Requirements for an Air Transportation System dominated by unmanned aircraft?
 - But first, what do we need to do?
 - Keep aircraft and passengers safe These are the 1st, 2nd and 3rd ... Priorities!
 - Keep traffic moving (safely and efficiently)
 - How do we accomplish this?
 - Aircraft must be able to continue to perform these essential functions:
 - Know and provide its location, direction and speed to others (3 dimensions Latitude/Longitude/Altitude)
 - Sense and Avoid other aircraft (respond safely and effectively) quickly.
 - Receive commands/instructions from "pilot"/air traffic control in case of unexpected issues
 - Operate in high density traffic environments both on the ground and in the air
 - Operate safely when the "unexpected" occurs

The Future of Aviation – Spectrum Requirements

What will be the Radio Frequency Spectrum Requirements?

- Spectrum is critical:
 - Aircraft must be able to continue to perform their essential functions:
 - Know its location: Currently exists. Use same systems/spectrum (GLONASS/GPS, etc.)
 - Altitude: Radio Altimeter (4200-4400 MHz)
 - Direction/speed: calculated and from measurements
 - Sense and Avoid other aircraft quickly: (960-1164 MHz for ADS-B, TCAS, DME, ACAS; 1250-1390 MHz for ARSR; 8750-8850 Doppler radar, etc.)
 - Provide to others location/direction/speed: (1030/1090 MHz for ADS-B)
 - Receive commands/instructions from "pilot"/air traffic control: (5030-5091 MHz; FSS)
 - Operate in high density traffic environments both on the ground and in the air (autonomy?)
 - Operate safely when the "unexpected" occurs (autonomy?)

- It will not be easy!
 - It is easier to build a new house, than renovate an old house.
- What might need to change from the radio frequency spectrum standpoint:
 - Systems designed 30+ years ago could be more efficient and more resistant to harmful interference. Do we need all of them?
- What additional Communication (Command/Control), Navigation, Surveillance Systems are needed?
 - Many interests in the "old" house!
 - The landscape is changing around us, we must move faster.
 - Remember! -- Safety must still be the #1 priority.

Thank You