

ITU-R 2020 Vision Workshop 12th February 2014 Vietnam

Mobile and Wireless Communications system for 2020 and beyond (5G)

Dr. Afif Osseiran, Ericsson METIS Project Coordinator

Content

> Introduction

- > 5G Challenges & Scenarios
- > 5G Selected Technology Components

Introduction

- > METIS (Nov. 2012)

 - The first stage of the 5G EU "missile"
 - Contributed to the IMT.VISION Doc.

- Lay the foundation for
- Build an early global consensus for

5G mobile & wireless communications

- > Several global initiatives started in 2013
 - China, Japan & Korea
 - An incredible amount of Workshops & Events

Introduction

- > METIS (Nov. 2012)

 - The first stage of the 5G EU "missile"
 - Contributed to the IMT.VISION Doc.

- Lay the foundation for
- Build an early global consensus for

5G mobile & wireless communications

5G Challenges & Scenarios

5G Challenges

Avalanche of **Traffic Volume**

Further expansion of mobile broadband

Additional traffic due to communicating machines

"1000x in ten years"

Large diversity of
Use cases
&
Requirements

Device-to-Device Communications

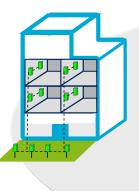
Car-to-Car Comm.

New requirements and characteristics due to communicating machines

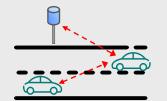
5G Challenges

METIS 5G Scenarios

Great Service in a crowd Amazingly


Best
experience
follows you

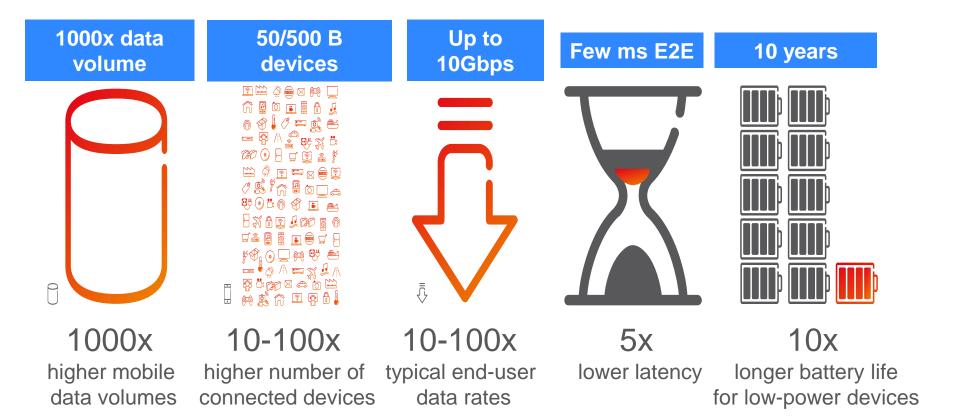
Super real-time and reliable connections


Ubiquitous things communicating



fast

bit-rate, delay


Accessibility, dense crowds

Accessibility, mobility

delay, reliability

METIS Technical Objectives

METIS 5G Requirements

Data rates 1-10Gbps (resp.100s of Mbps)

Capacity 36TB/month/user (resp. 500 GB)

Spectrum Higher frequencies & flexibility

Energy ~10% of today's consumption

Latency reduction ~ 1ms (e.g. tactile internet)

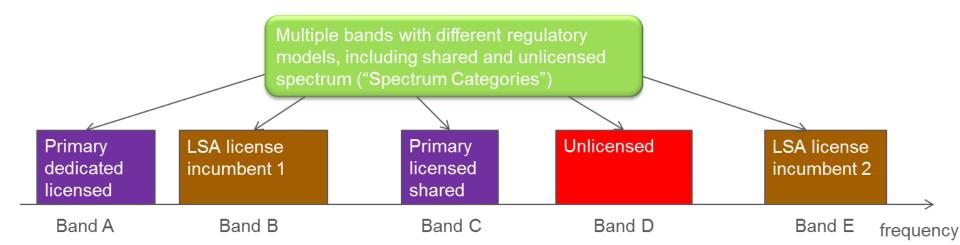
D2D capabilities NSPS, ITS, resilience, ...

Reliability 99.999% within time budget

Coverage >20 dB of LTE (e.g. sensors)

Battery ~10 years

Devices per area 300.000 per access node


Ultra-dense networks

Ultra Reliable Comm.

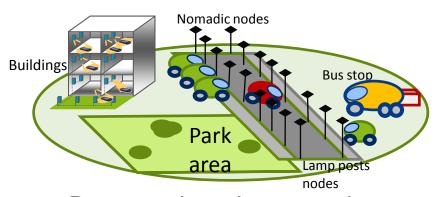
Massive Machines

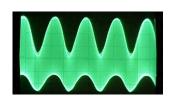
Spectrum Scenario: Future Landscape

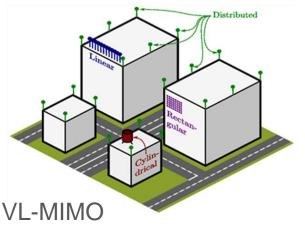
Dedicated licensed spectrum complemented with various forms of shared spectrum

"Toolbox" of different sharing enablers required In order for 5G system to work under such scenarios

5G Technology Components


Examples


Some 5G Technology Components


New spectrum bands and access methods

Dense and moving networks Multi-hop wireless backhaul

Air interfaces for new applications and reduced signaling

Massive multi-antenna systems

Conclusion: Next Step

5G Future

Integration

of access technologies into one seamless experience

Revolution

Evolution

Complementary new technologies

- Massive MIMO
- Ultra-Dense Networks
- Moving Networks
- Higher Frequencies

Respond to traffic explosion Extend to novel applications

10 - 100 x higher typical user rate

1000 x higher mobile data volume per area

10 x longer battery life for low power M2M

10 -100 x higher number of connected devices

5 x reduced E2E latency

- D2D Communications
 - Ultra-Reliable Communications
 - Massive Machine Communications

Existing technologies in 2012

3G

4G

Wifi

Useful Links

- A. Osseiran et al, Scenarios for the 5G Mobile and Wireless Communications: the Vision of the METIS Project, IEEE Comm. Mag., May, 2014 -- To appear on https://www.metis2020.com/documents/publications/
- Deliverable D1.1, "Scenarios, requirements and KPIs for 5G mobile and wireless system", June 2013
- Deliverable D2.1, "Requirement analysis and design approaches for 5G air interface", Sept. 2013
- Deliverable D3.1, "Positioning of multi-node/multi-antenna transmission technologies", Aug. 2013
- Deliverable D5.1, "Intermediate description of the spectrum needs and usage principles", Sep. 2013
- Deliverable D4.1, "Summary on preliminary trade-off investigations and first set of potential network-level solutions", Nov. 2013
- > **Deliverable D6.1**, "Simulation guidelines", Nov. 2013

All deliverables can be downloaded from https://www.metis2020.com/documents/deliverables/

Thank You Cám ơn