Singapore Whitespace Pilot project

• Overview of the Pilots

• Link budget analysis of the golf club deployment

• M2M network in whitespace ?

The SICC golf broadband deployment

PARTNERS: SICC, Neul, Terrabit Networks and Microsoft

Smarter Radio Smarter World

Point to point links between four sites

Propagation is dominated by terrain

- Using terrain elevation from Shuttle Radar Topography Mission.
- Use extended Hata model
- Use terrain profile to estimate diffraction loss

Profile example

- Assuming single knife edge
- Fresnel parameter v = 1.99
- Diffraction loss = 19 dB $6.9 + 20 \log(\sqrt{(\nu - 0.1)^2 + 1} + \nu - 0.1)$

	PATH Loss		
	Parameters	Contributions	Link budget
Path length	2175m		
Tx mast height	20m		
Rx mast	20m		
Frequency	600MHz		
Hata rural path loss		94.4	
Fresnel parameter	1.992		
Diffraction loss		19.4 dB	
Total path loss			113.8 dB

	Transmit parameters			
	Parameters	Contributions	Link budget	
Tx power		33 dBm		
Tx cable length	30			
Tx cable atten	5.5dB/100M			
Tx cable loss		1.7 dB		
Tx antenna gain		2 dBi		
Tx EIRP			33.3 dBm	

	Receive parameters		
	Parameters	Contributions	Link budget
Rx cable length	30m		
Rx cable attenuation	5.5dB/100m		
Rx cable loss		1.7 dB	
Rx antenna gain		2dBi	
Rx signal bandwidth	5MHz		
Rx thermal noise	-107 dBm		
Rx noise figure	6 dB		
Rx effective noise		-101.3 dBm	
Man made noise		-95 dBm	
Rx sensitivity			-94.3 dBm
Received SNR			+13.8 dB

64 QAM ½ rate coding requires 11dB 10Mbps/s PHY rate

M2M deployment in Singapore TVWS ? Antenna size

- Proposed TVWS frequencies cover from 502-806 MHz
- McLean sets the minimum antenna quality factor (Q) that can be achieved
- Q relates to antenna radiation efficiency
- Not possible to have efficient small antenna covering the whole TVWS band
- Requires to reduce total available bandwidth.
- Subdivide a single channel in multiple channels is viable

Smarter Radio Smarter World

TVWS Cellular M2M deployment border issue.

- Border interference requirements implies low power in the border region.
- Non geo-located devices will even be more affected.
- Very difficult to deploy a cellular infrastructure for indoor meter reading
- Viable for short range device type deployment

Conclusions

- Outdoor Broadband deployments successful in TVWS
 - Good solution for remote backhaul
- Requirement for a viable M2M deployment in TVWS
 - Dedicate 1 channel for M2M application
 - Power spectral density limit not set proportionally to the bandwidth to allow splitting of 1 channel.
 - Border interference need to take into account potential location of TV receiver victims.

