

ITU/EBU workshop on Digital Broadcasting Sofia 8-10 June 2004

Planning of Single Frequency Networks

J. Doeven

Subjects

Single Frequency Network

"A network of synchronised transmitting stations radiating identical signals in the same RF channel"

- General aspects
- Network gain
- Internal network interference
- Practical cases
- References

Pros and Cons of SFNs

Pro

- Spectrum efficient due to power distribution
- Network gain due to simultaneous reception of multiple useful signals
- No need to retune when travelling through area (mobile reception)

Con

- No option for local windows in programming
- Reduced bitrate due to long guard interval
- Relay transmitters more complicated
- More complicated frequency planning

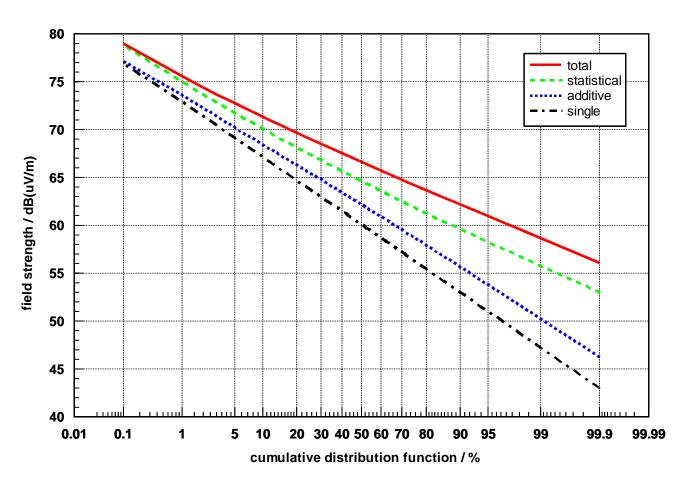
MFNs and SFNs are based in principle on the same network topology (main transmitters with auxiliary gap fillers if necessary)

Example **DVB-T** 64QAM

D/T_u	Mbit/s	
1/4	19.9	
1/8	22.1	
1/16	23.4	
1/32	24.1	

Application of SFNs

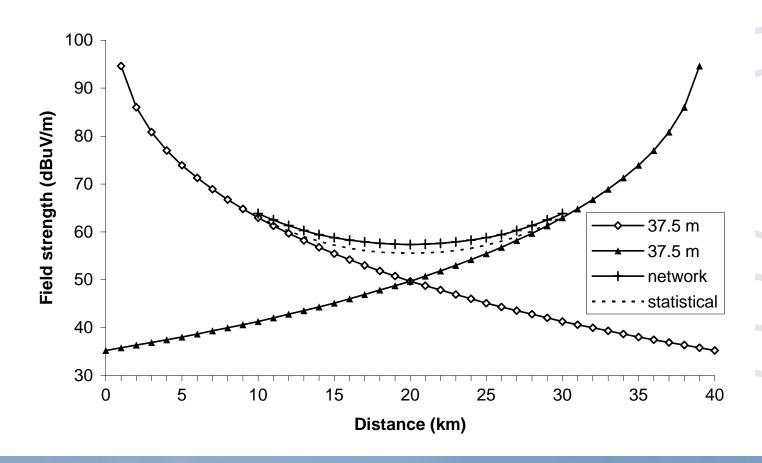
- SFNs can be used in small and large areas
 - Extent of area is limited by internal network interference
- SFNs can be used with all reception modes
 - Most applications are in relation to indoor and mobile reception
- SFNs can be used in a mixed configuration with MFNs, e.g.
 - Main transmitters in MFN and additional fill-in transmitters in SFN mode
 - Main transmitter supplemented by lower power transmitters in towns to improve indoor reception


Network gain

- Network gain consists of two components
 - Statistical gain due to higher change to receive a signal. Location variation of the field strength is the dominating factor
 - Additive gain due to the increase in field strength because of the incidence of two or more signal at the receiving antenna
- Network gain varies:
 - From point to point depending on the relative field strength values
 - Location variation for which the coverage is calculated

Example 1

3 equal signals



Network gain

Example 2

Network gain as function of distance between two equal transmitters

Splitting of one transmitter into two with same total power to improve coverage

Aspects regarding internal network interference (1) Example

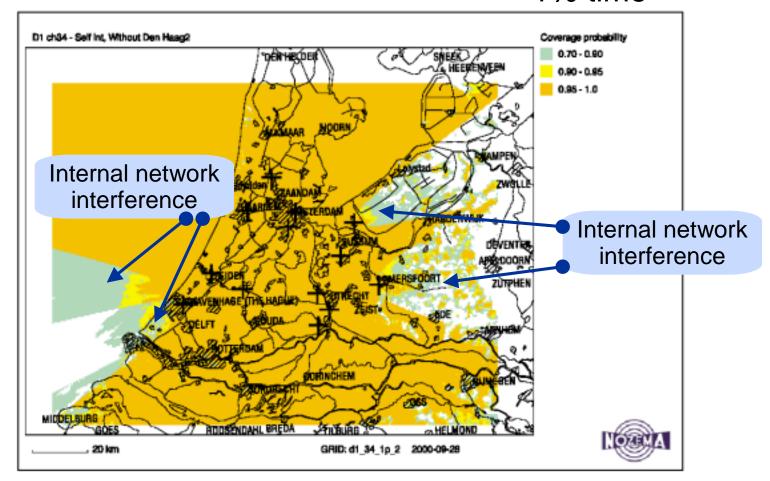
- Length of guard interval
- Delay between signals
 - Transmitter separation distance
 - Artificial delays
 - Delays in distribution links
- Nuissance field of interfering signal
 - Propagation path
 - ERP
 - C/N (system variant)

T-DAB 246 µsec

Example DVB-T 8k

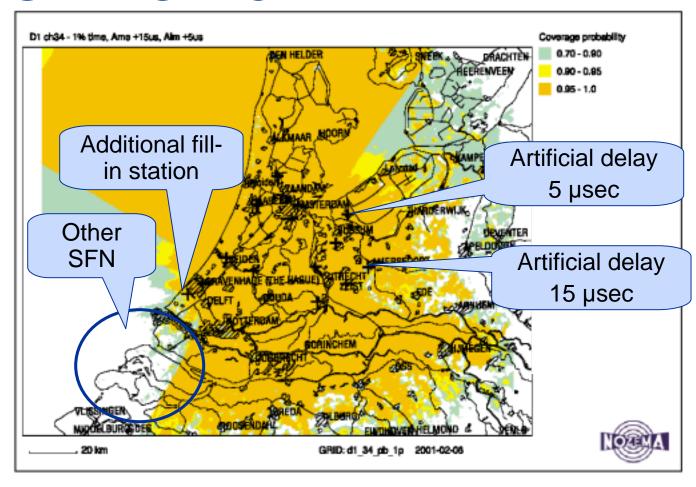
D/T _u	µsec	km
1/4	224	67
1/8	112	34
1/16	56	17
1/32	28	8

Solving internal network interference


- In most cases in frequency planning the following measures are possible:
 - Increase guard interval (one of the 4 options)
 - Adding artificial delay at one of tx
 - Reducing power
 - Add fill-in transmitter
 - Remove tx from SFN (that is: use different frequency)
- Some times it is possible:
 - Chose alternative site (with delay inside guard interval)
 - Use obstructions in propagation path

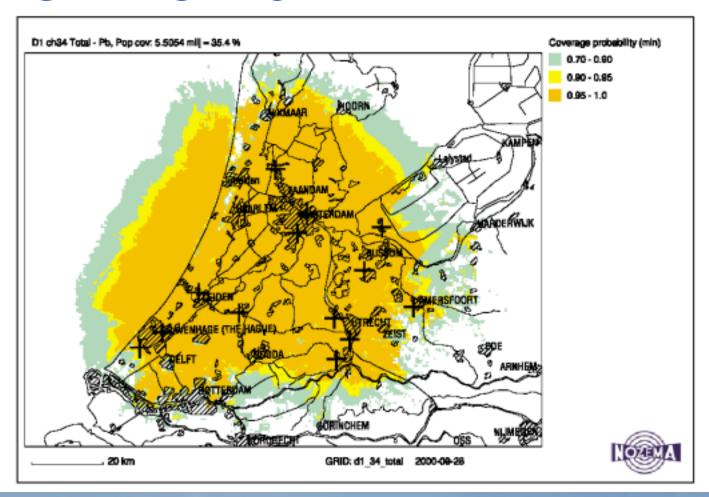
In general internal network interference is not a major problem with DAB

SFN CH 34


■1% time

SFN CH 34

■1% time



SFN CH 34

Useful signals: 50% time

■All interferers: 1% time

References

- EBU report BPN 003. Technical bases for T-DAB services network planning and compatibility with existing broadcasting services - third issue. February 2003
- EBU report BPN 005. Terrestrial digital television planning and implementation considerations - edition 3. August 2003
- EBU report BPN 018. ERC/EBU report on planning and introduction of terrestrial digital television (DVB-T) in Europe. February 1999
- EBU report BPN 059. Impact on coverage of inter-symbol interference and FFT window positioning in OFDM receivers. August 2003

