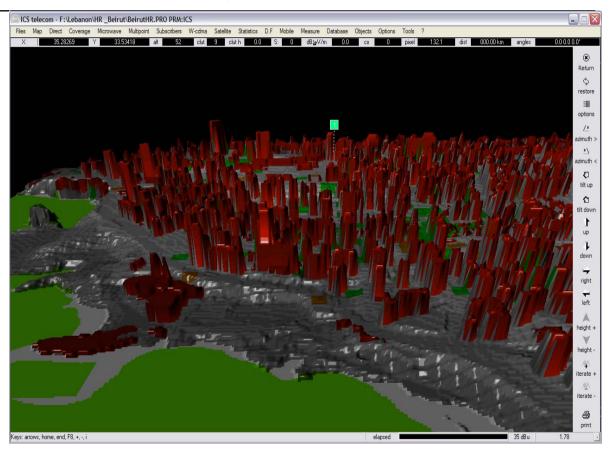

Applied Digital Broadcast Planning and Implementing

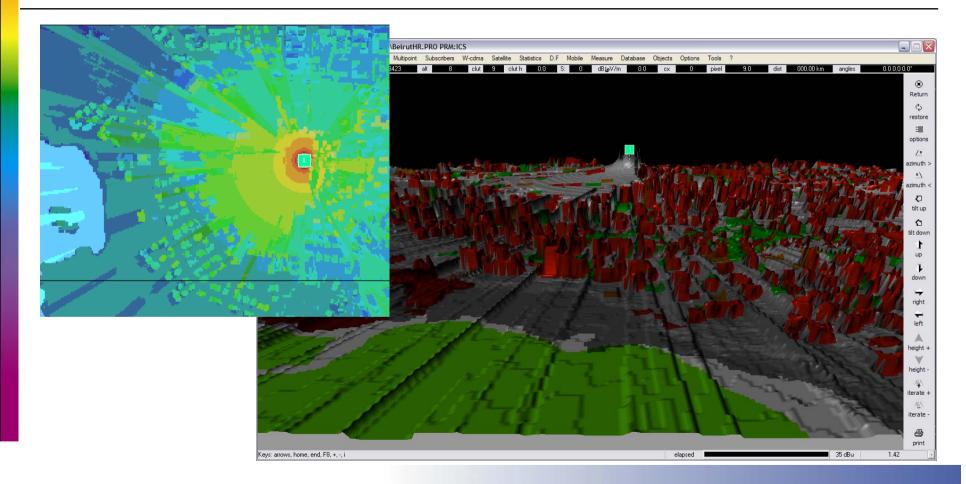
Essential in planning Maps

Aerial View

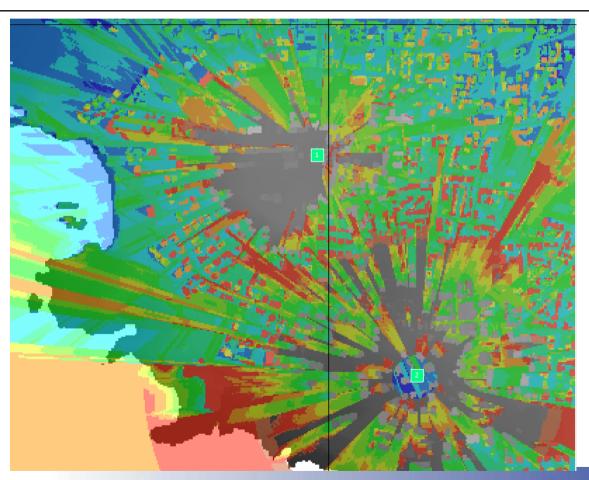

DEM View

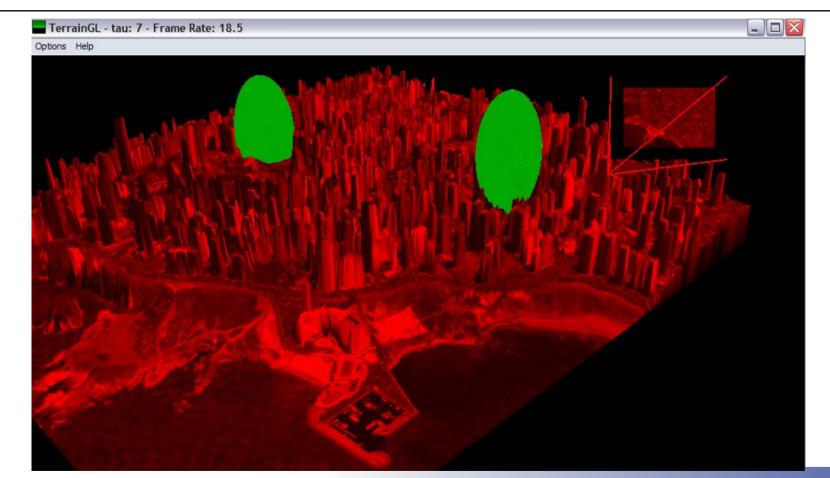
Essential in planning Maps

Clutter View


Clutter definable options

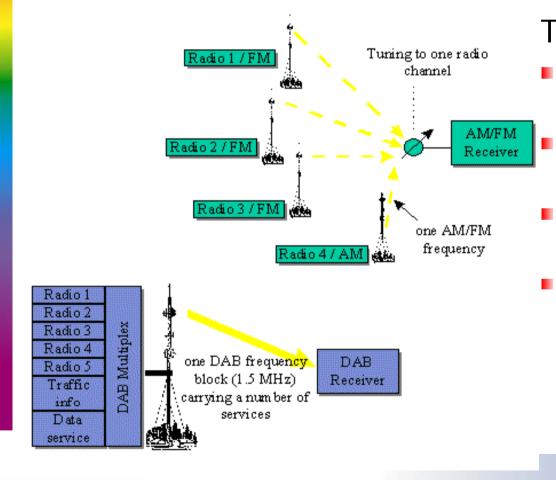
١	lutter parameters Clutter code N	ame Attenuatio	on (dB) Clutter heigh	t Reflection factor	(0-1) Erlang/kmĝi	(1) Surface factor (2) Diffraction fa	ictor Station/km\$	(3) Stddev (dB) (4)	000.00 km angles 0.0 0.0
	0	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	rx ground
	1	0.0	6	0.300	1.0000	1.000	1.00	1.000	1.00	🗆 🗆 rx ground
	2	0.0	8	0.300	1.0000	1.000	1.00	1.000	1.00	T rx ground
	3	0.0	15	0.300	1.0000	1.000	1.00	1.000	1.00	T rx ground
4	4	0.0	30	0.300	1.0000	1.000	1.00	1.000	1.00	🗆 🗆 rx ground
	5	0.0	12	0.300	1.0000	1.000	0.60	1.000	1.00	□ rx ground
	6	0,0	0	0.300	1.0000	1.000	1.00	1.000	1.00	□ rx ground
	7	0,0	50	0.300	1.0000	1.000	1.00	1.000	1.00	rx ground
	8	0,0	4	0.300	1.0000	1.000	0.40	1.000	1.00	☐ rx ground
	9	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	□ rx ground
	10	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	□ rx ground
	11	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	rx ground
	12 **	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	(Ž) if building,
	13 **	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	only the building
	14 **	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	elevation is taken account
	15 **	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	
	16 **	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	
	17 **	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	
	18 **	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	
	19 *	0.0	0	0.300	1.0000	1.000	1.00	1.000	1.00	
	CCIR attenuations UER attenuations dB/km attenuations User attenuations Model tuning no attenuation	C Buik C 850 C 1.71 C 2:43 save D	Indoor losses ding attenuation: Mhz: 620 dB/km GHz: 570 dB/km 5 GHz: 470 dB/km Vefault name	of subscribers = BHT (Erlang) = [delay (s)] * Calls (2) Used for freq selection. Use 0 calculation (3) Used to dispa Clutter repartion (4) Used to calcu	uency assignment a to n for assignment atch random station option is checked.	affic = 50 E/km ¹ /km ¹ /sion (s) + Average and server t and interference is on terrain when that a field strength	С В» С В» С	over clutter over ground spot over ground relax utter height factor frequency (MHz)	ked 🔽 defined altitud	


Coverage View 3D/2D


Percentage Layer

Full 3D navigation

Case in planning digital Broadcasting


BBC DAB Planning for Mauritius Island Planning France Digital Broadcasting

DAB with FM Broadcasting

The BBC Network

- 4 Radio Channels in Stereo coded with 192kbits/s
- 1 Radio Channel in Mono coded with 96kbits/s
- Speech-based programs at lower rates (typ. <96kbits/s)
- 12.5MHz of Band III allocated to DAB (217.5-230MHz)

BBC network availability

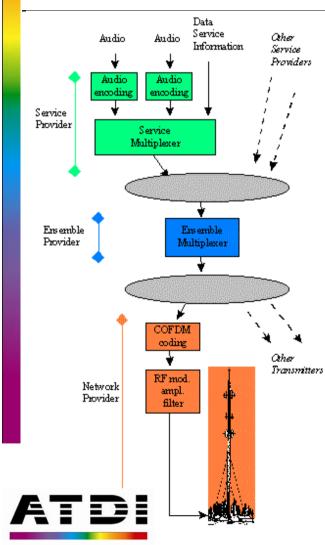
Key Concept

- MUSICAM MPEG Layer 2
- OFDM
- FEC CODING
- GAP FILLERS
- SFN
- FLEXIBILITY

	Time	
0000 - 1059	1100 - 1859	1900 - 2359
	Radio 1 (192 Kbit/s)	
	Radio 2 (192 Kbit/s)	
	Radio 3 (192 Kbit/s)	
	Radio 4 (192 Kbit/s)	
	Radio 5 (96 Kbit/s)	
Unused	5 Live Sport+ (80	Unused
	Kbit/s)	
Parl	iament - currently unava	ilable
	World Service (80 Kbit/s)
BBC Xtra (192 Kbit/s)	BBC Xtra (112 Kbit/s)	BBC Xtra (192 Kbit/s)

BBC Implementation

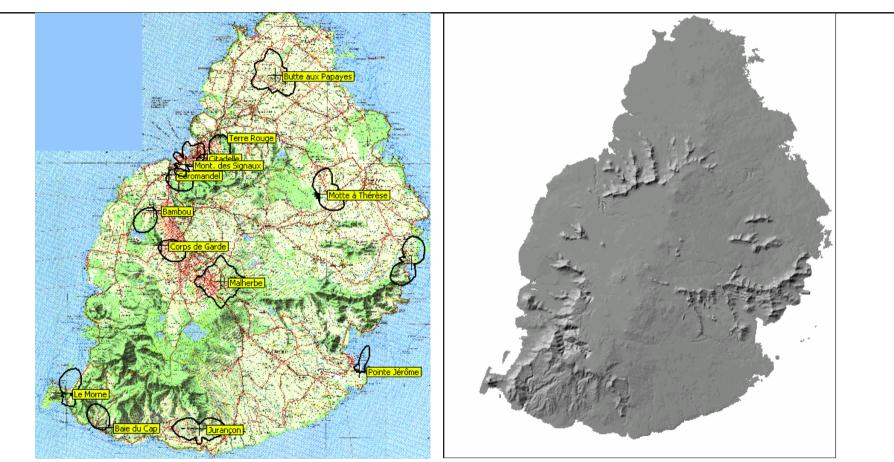
■ 4 MODES OF OPERATION (I TO IV) :


- Mode I : for terrestrial SFN (greater site spacing)
- Mode II : for single-station broadcast and hybrid networks up to 1.5GHz
- Mode III : satellite broadcast and earth dispatch, up to 3GHz
- Mode IV : for optimal SFN in L band

SEVERAL FREQUENCY RANGES (UHF/VHF/L Band) Feasibility of SFN and gap fillers Simple Quasi-Omni RX Antennas

BBC DAB Network

Radio freq properties	Mode I	Mode II	Mode III	Mode IV
Bandwidth		1.536	6MHz	
Number of carriers	1536	384	192	768
Guard Interval	246µs	62µs	31µs	123µs
Distance between TX in SFN	<=60km	<=20km	<=10km	<=30km
Carrier spacing	1kHz	4kHz	8kHz	2kHz


MUSICAM Audio Coding (8 to 384kbits/s), sampling @48 or 24kHz

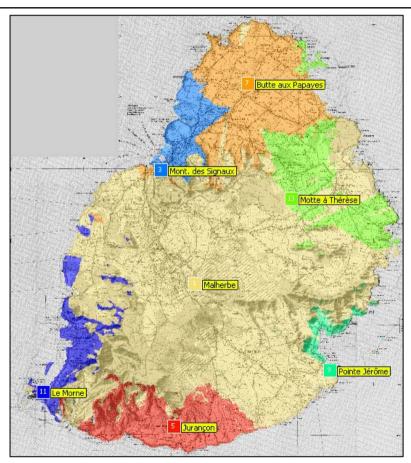
Scrambling

FEC + Time & Frequency interleaving

COFDM up to 1536 carriers, spaced 1kHz

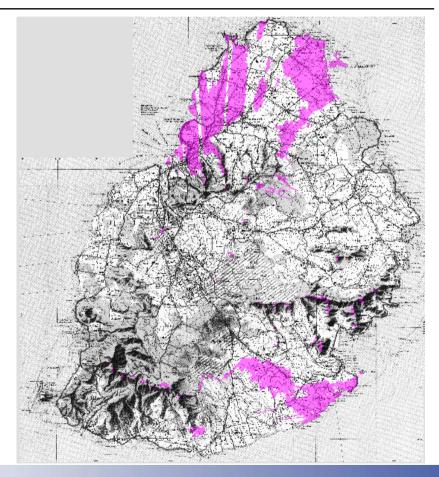
Example of DVB-T network planning Mauritius island (Indian ocean)

Planning a new digital broadcast (Step 1/4)


- One of the existing analog network is « duplicated »:
- Same sites :
 - 14 sites for the analog program
 - Only 7 for the digital multiplex
- Same transmitting antennas
- Same powers
- Same frequencies

Planning a new digital broadcast (Step 2/4)

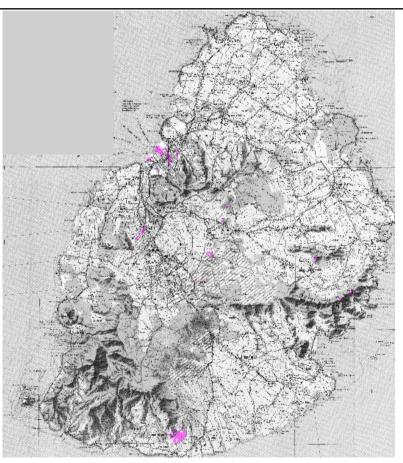
- The coverage of the digital transmitters are computed
- The powers of the digital transmitters are adjusted to ensure the coverage of the whole island
- A lower power is required :
 - Typically 1000 W for the analog program
 - Only 100 W for the digital multiplex (lower thresholds)



Solutions in Radiocommunications

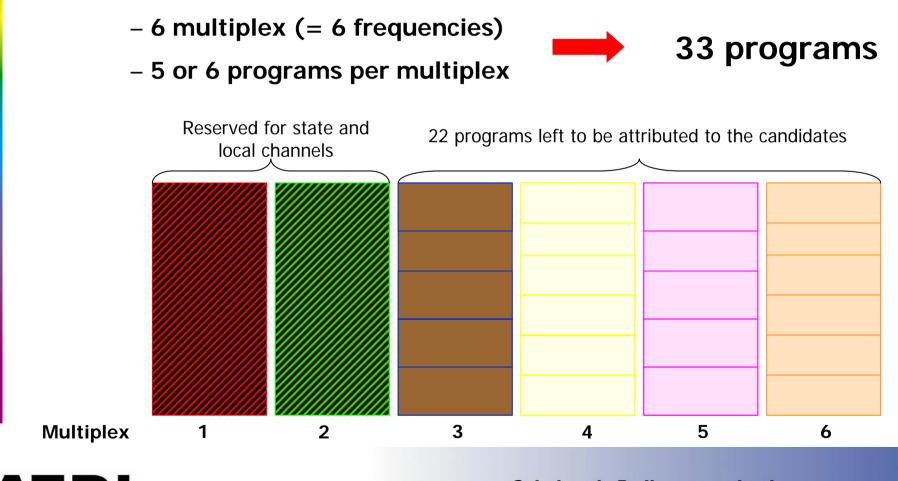
Planning a new digital broadcast (Step 3/4)

- A channel N-1 or N+1 is randomly attributed per site.
- Analog program:
 - channel 27 of the analog frequency plan
- Digital Multiplex :
 - channel 26 or channel 28 of the digital frequency plan
- Digital signals are extremely robust
- Hence interferences caused by digital signals on analog signals

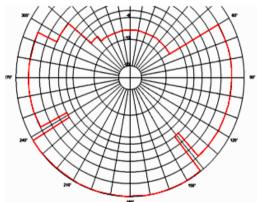


Planning a new digital broadcast (Step 3/4)

- The digital transmitters causing interferences are isolated
- They are transferred from channel N-1 to channel N+1 or vice versa
- It is then possible to avoid almost any harmful interference
- The new network is now being tested



CSA's requirement in France



CSA's requirement in France

- 29 sites located around the main cities in France
- On each site, 6 transmitters (1 per multiplex)
- For each one of the 174 transmitters, the main technical characteristics :

LISTE DES FREQUENCES IDENTIFIEES DANS LA PREMIERE PHASE DE LA PLANIFICATION

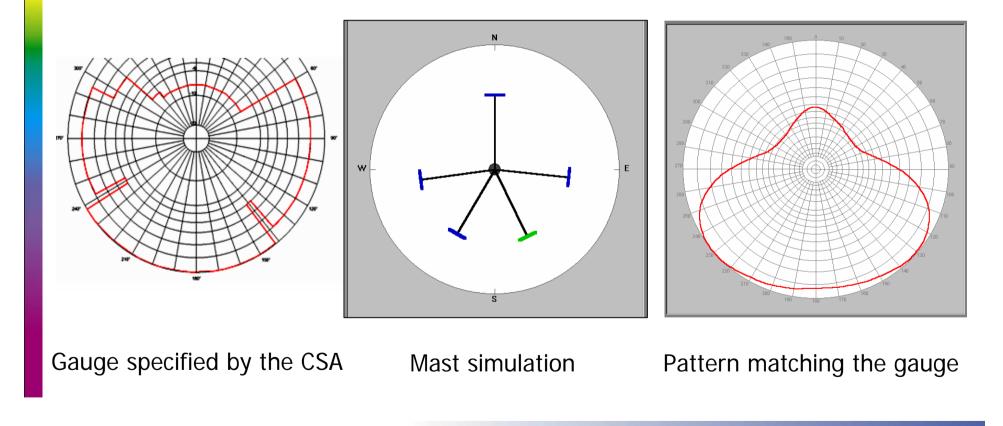
	Principale ville desservie	Zone du site	Altitude maximale de l'antenne (m)	P.A.R. maximale (kW) (1)	Canal / fréquence	Observations	Réseau
	Ajaccio	Baie d'Ajaccio	715	16	26		R2
	Ajaccio	Baie d'Ajaccio	715	16	29		R1
I	Alassia	Deie d'Alessie	745	40	20		D4

For each one of the 174 transmitters, an antenna pattern

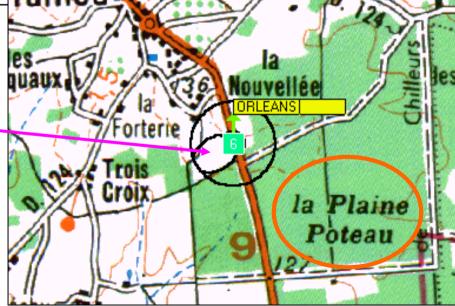
CSA's requirement in France

- 28 sites + 1 in Corsica
- 6 transmitters on each site
- Sites located around the main cities
- The East and North parts of France have few transmitters
- Problems of coordination with neighboring countries

Present Analogue Network


- The existing analog network
 - 1.000 mains transmitters
 - 11.000 sub or retransmitters

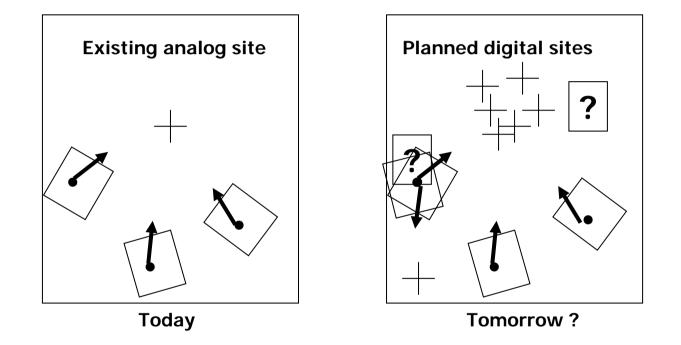
Response to technical specifications



Site Locations

Niort	Canton de Melle	490	25	59	(2)	R2	
Niort	Canton de Melle	490	25	62		R3	
Orléans	La Plaine Poteau	321	2	38	(3)	R2	
Orléans	La Plaine Poteau	321	2	40	(2)	R4	
Orléans	La Plaine Poteau	321	2	46	(2)	R6	
Orléans	La Plaine Poteau	321	2	48		R5	
Orléans	La Plaine Poteau	321	2	51	(3)	R1	
Orléans	La Plaine Poteau	321	2	63		TO DO	
Paris	I our Eiffel	358	20	21	(3)		U 🥆
Paris	Tour Eiffel	358	20	24	(3)		

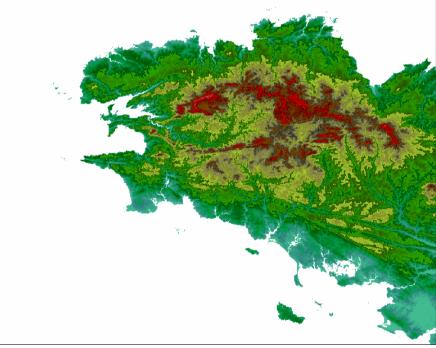
Site found in the european coordination file


All areas specified by the CSA already contain an existing site

Why were the existing sites privileged ?

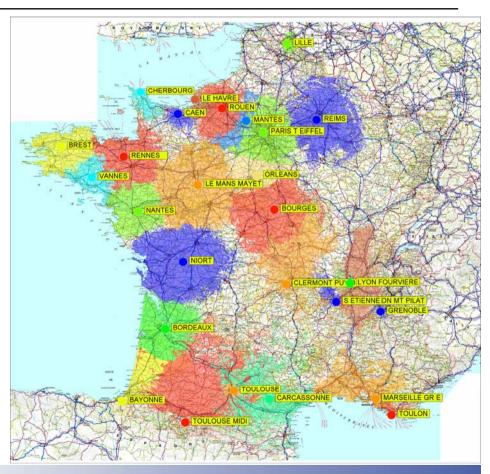
Expected Problem

- Digital broadcasters will probably be obliged to rent the existing analog sites to TDF, sole owner of all existing analog sites
- Problem of fair competition :
 - the new broadcasters will be clients & competitors of TDF



The Maps

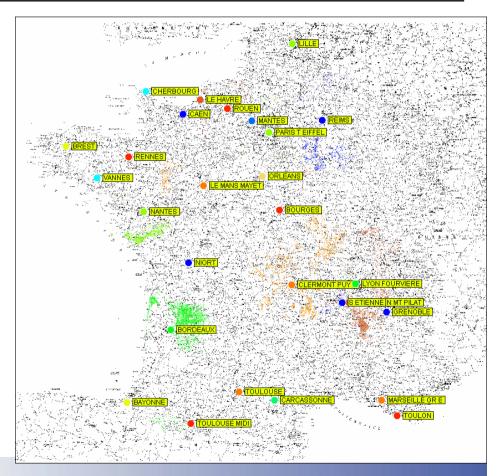
2D map sample (image)


Corresponding 3D map (MNT)

Resulting coverage

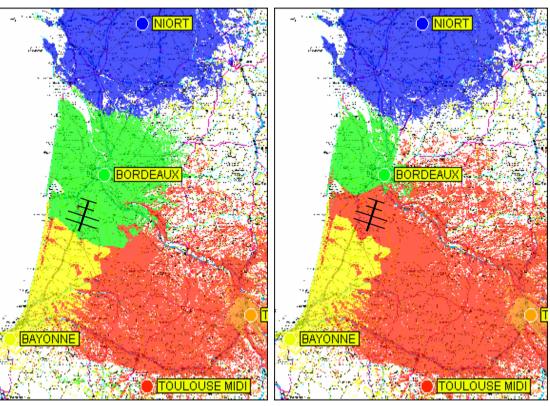
- Coverage of 1 out of the 6 multiplex
 - Partial coverage of the country, smaller than the analog coverage
 - Global analysis of the covered surfaces
 - Global analysis of the covered populations
 - Detailed analysis, city per city

Economic model


- The new programs are supposed to be financed by advertisement only
- It requires to cover a large population
- It is necessary to simulate and to compare the performances of the multiplex

Differences between the multiplex

- Some multiplex are slightly better than others
- All in all, they are fairly equivalent
- Technical parameters have been adjusted so that no multiplex is privileged


Solutions in Radiocommunications

User's advantages

- Already pointing towards an analogue transmitter
- Re-orientation should be avoided as far as possible
- This orientation allow to receive with a single antenna all the digital multiplex and all the analogue programs

Multiplex R1

Multiplex R2

Conclusion of the migration

Advantages

- Availability of these sites
- Limitation of the problem of initialization for the receiving antennas
- Easier to determine an adequate frequency plan of the network

Disadvantages

- Problem of fair competition between existing and new broadcasters
- Sometimes, for historical reasons, the sites locations are not optimized

Market issue

Key issue to ensure the success of the new programs

- to concentrate around the main cities
- To adjust the technical parameters so that all multiplex cover a sufficient and equivalent population
- to perform intensive calculations considering
 - The coverage's of the transmitters
 - The population figures

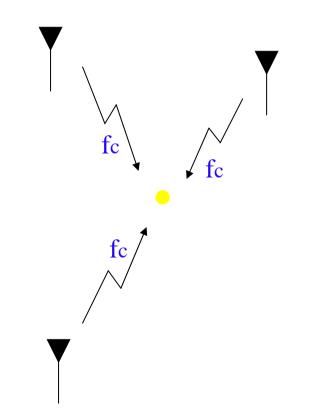
Recording a station parameter

- Spectrum allocation
- Channel assignment
- Video system used
- Signal input

Spectrum		Position Test p	oints Signai	Radiation Custor	n Inspections 4	Attachments		
Channel	Vision carrier	Medium freq.		Freq. plan	Edit Se	lect Detach	OK	
30	546 MHz	546 MHz	R.R		Code= 16 Name= UHF bai	od IV	*	
Necessary Frequency	v bandwidth v Offset	8 MHz		Plan channel	30 N .			
Signal input —	, C · Cable	<u> </u>		Offset Video	- 2 system type offset (1/12) - kHz	1	▼ RMAL▼ [10.42	<u>C</u>
Rx offset (1/1 Rx channel	30			P. Sou	ınd offset - kHz	Video	Sound 1	Sound 2
Rx offset (1/1 Rx channel IV Input	30 Edit		Detach	P. Sou Power			Sound 1	Sound 2
Rx offset (1/1 Rx channel	30 Edit	ODTVB4FTVF FTV	Detach	Power		Video		Sound 2

Single Frequency Networks Overview

What are they? Terminology Simple technologies Complex modulation SFN ATDI Modelling tools



SFN Principle

- Multiple transmitters
- Shared channel
- Same information
- Common modulation
- Simultaneous launch

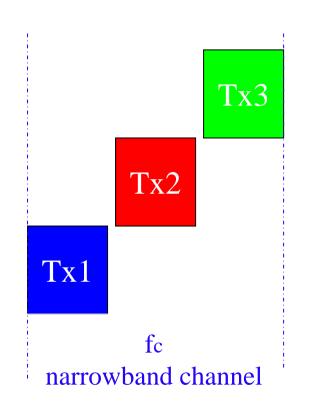
Advantages

- Increased availability
- Can be spectrally efficient
- Single channel receivers (e.g. paging)

Disadvantages

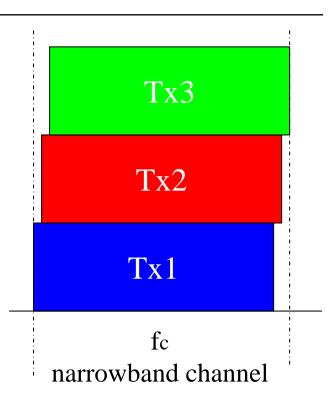
- Symbol rate / audio band must be less than DS
- Destructive interference if DS or flight times are too great
- Synchronised emission
- Frequency stability
- Generally limited to broadcast or low capacity traffic delivery systems

Technologies


- AM spaced carrier
- FM offset carrier
- Complex modulation (Broadcast OFDM)

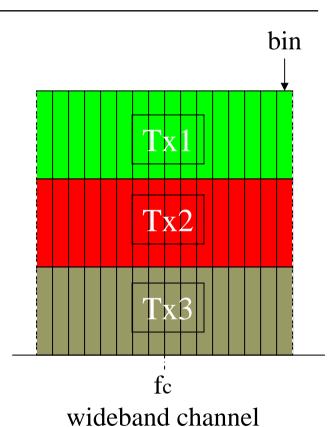
AM Spaced Carrier

- Carriers spaced within channel.
- Heterodyne outside audio passband
- Not as efficient due to large offset of carriers
- Limited number of tx possible
- Used in Airband



FM Offset Carrier

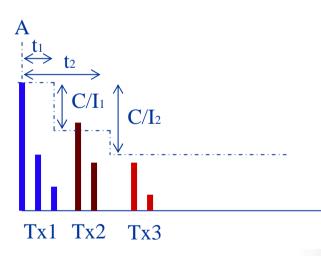
- Carriers slightly offset to avoid static nulls
- Heterodyne below audio passband
- Receiver captures strongest signal
- Large number of tx possible
- Used in Paging (data), PMR (voice)

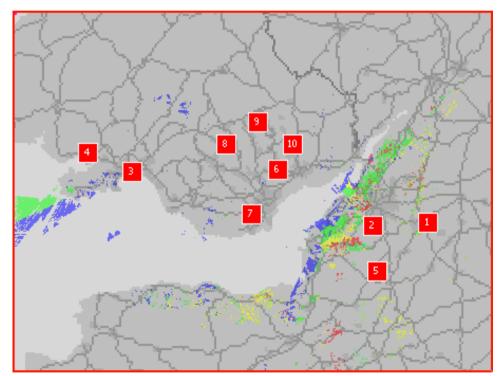


Complex Modulation (OFDM)

- Channel split into narrowband bins
- Information rate high overall but slow symbol rate in each bin
- DSP equalises delay spreads over channel.
- Guard interval approx 1/4 tsymbol to prevent ISI
- Tolerant to selective fading & multi-path if DS less than tguard
- SFN's are a case of multi-path
- Network possible gain due to decorrelated paths
- Used in DVB, DAB.

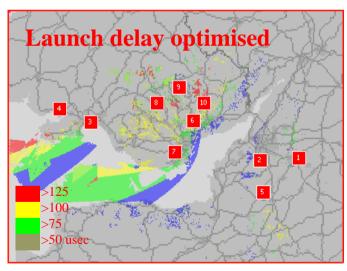
ATDI Modelling Tools


- Composite coverage plans
- Frequency offset plans
- SDS interference assessment
- Launch delay optimisation
- Network gain areas
- Network gain calculation



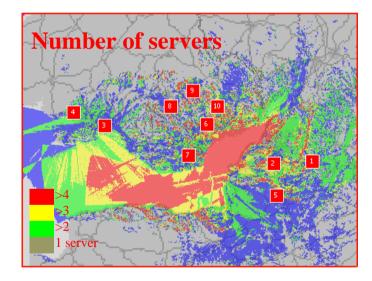
SDS Interference Assessment

- Power delay protection mask
- Quantify interference over populated zones

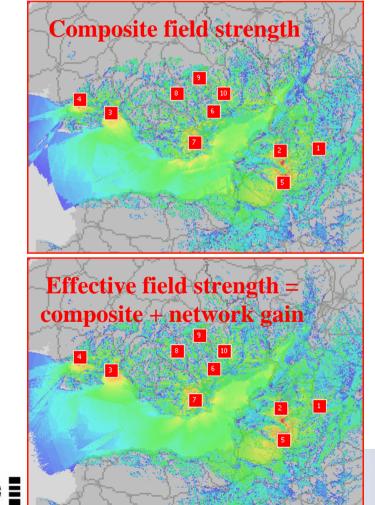


Launch Delay Optimisation

- Interference optimised by shifting into unimportant regions using launch delay
- Areas specified with % importance
- Other optimisations
 - Power reduction
 - Antenna height drop
 - Antenna pattern change (e.g.downtilt)



Network Gain Areas


- Simple tool to analyse no of servers
- Maximum gain can added to server areas

Network Gain Calculation

- SFN gain up to 14dB for 99% locations
- Depends on relative levels and delays and number of servers
- T-DAB model

Conclusion

- Overall aim increase network availability
- 2 simple examples and an example of a complex scheme.
- Suite of planning tools to help for examples above

