ITU/ASBU Workshop on Frequency Planning and Digital Transmission

Damascus

Planning DTT networks 'An Introduction'

Glenn Doel Principal Engineer Spectrum Planning 22nd November 2004

Planning a DVB-T station

- What Frequency Band?
 - Band III, Band IV or Band V
 - Why not even another part of the Spectrum?
- Is it clear spectrum?
 - Does the new service have to share with existing Services such as analogue
 - How much of the spectrum is available
 - Are any of the channels adjacent

General Spectrum Considerations

- In the Spectrum that is available is it?
 - Contiguous (an unbroken chunk with no other services interleaved)
 - Fragmented and all over the band
 - What is the channel Spacing

Regulation and Licensing

- International Co-Ordination
- ERP Limitations
- Acceptable interference to existing services (for example analogue TV).
- DVB-T system to be adopted
 For what purpose (fixed, portable, mobile, datacasting)
- The number of programmes per channel

DVB-T Variants

			BER=2 (quasi ei	Required C/N for BER=2. 10 ⁻⁴ after Viterbi (quasi error-free after Reed- Solomon, *)		I	Net bit ra	te (Mbit/s)
System variant	Modulation	Code Rate	Gaussian channel	Ricean channel (F ₁)	Rayleigh channel (P ₁)	D/T _U =1/4	D/T _U =1/8	D/T _U =1/16	D/T _U =1/32
A1	QPSK	1/2	3.1	3.6	5.4	4.98	5.53	5.85	6.03
A2	QPSK	2/3	4.9	5.7	8.4	6.64	7.37	7.81	8.04
A3	QPSK	3/4	5.9	6.8	10.7	7.46	8.29	8.78	9.05
A5	QPSK	5/6	6.9	8.0	13.1	8.29	9.22	9.76	10.05
A7	QPSK	7/8	7.7	8.7	16.3	8.71	9.68	10.25	10.56
B1	16-QAM (M1 **)	1/2	8.8	9.6	11.2	9.95	11.06	11.71	12.06
В2	16-QAM	2/3	11.1	11.6	14.2	13.27	14.75	15.61	16.09
В3	16-QAM	3/4	12.5	13.0	16.7	14.93	16.59	17.56	18.10
В5	16-QAM	5/6	13.5	14.4	19.3	16.59	18.43	19.52	20.11
B 7	16-QAM	7/8	13.9	15.0	22.8	17.42	19.35	20.49	21.11
C1	64-QAM (M2 **)	1/2	14.4	14.7	16.0	14.93	16.59	17.56	18.10
C2	64-QAM (M3 **)	2/3	16.5	17.1	19.3	19.91	22.12	23.42	24.13
C3	64-QAM	3/4	18.0	18.6	21.7	22.39	24.88	26.35	27.14
C5	64-QAM	5/6	19.3	20.0	25.3	24.88	27.65	29.27	30.16
C7	64-QAM	7/8	20.1	21.0	27.9	26.13	29.03	30.74	31.67

Most Common Choices of Variant

- Fixed Services (HDTV and SDTV)
 - 64QAM rate 2/3 guard interval
 - 16QAM rate 2/3 guard interval (tends to be for portable reception)
- Mobile 2K QPSK, 2K 16QAM 1/2 rate 1/4 guard interval OR 8K QPSK, 2K 16QAM rate 2/3 1/4 guard interval Utilising Diversity receivers
- Datacasting So far not for DVB-T, however DVB-H is promising and is being tested

Minimum Field Strengths required (1)

Minimum median equivalent field strength in Band IV for fixed reception

Frequency	f {MHz}			500		
Minimum C/N required by system	{ dB }	2	8	14	20	26
Min. equivalent receiver input voltage, 75 Ω	U_{smin} {dB μV }	13	19	25	31	37
Feeder loss	$L_f \{dB\}$			3		
Antenna gain rel. to half wave dipole	$G_D \{dB\}$	10				
Effective antenna aperture	$A_a \{dBm^2\}$			-3.3		
Min equivalent field strength at receiving place	$E_{min} \left\{ dB \mu V/m \right\}$	26	32	38	44	50
Allowance for man made noise	$P_{mmn} \{dB\}$			0		

Location probability: 70%

Location correction factor	$C_1 \{dB\}$			2.9		
Minimum median equivalent field strength						
at 10m a.g.l. 50% of time and 50% of locations	$E_{med} \{ dB\mu V/m \}$	29	35	41	47	53

Location probability: 95%

Location correction factor	$C_1 \{dB\}$			9		
Minimum median equivalent field strength						
at 10m a.g.l. 50% of time and 50% of locations	$E_{med} \left\{ dB \mu V/m \right\}$	35	41	47	53	59

Minimum Field Strengths required (2)

Minimum median equivalent field strength in Band IV for Portable Class B Indoor Ground Floor reception

Frequency	f {MHz}			500		
Minimum C/N required by system	{ dB }	2	8	14	20	26
Min. equivalent receiver input voltage, 75 Ω	$U_{s \min} \{ dB \mu V \}$	13	19	25	30	37
Antenna gain rel. to half wave dipole	$G_D \{dB\}$			0		
Effective antenna aperture	$A_a \{dBm^2\}$			-13.3		
Min equivalent field strength at receiving place	$E_{min} \{ dB \mu V/m \}$	33	39	45	51	57
Allowance for man made noise	$P_{mmn} \{dB\}$	I		0		
Height loss	$L_h \{dB\}$	16				
Building penetration loss	$L_b \{dB\}$	8				
Location probability: 70%						
Location correction factor	$C_1 \{dB\}$			4		
Minimum median equivalent field strength						
at 10m a.g.l. 50% of time and 50% of locations	$E_{med} \{ dB\mu V/m \}$	61	67	73	79	85
Location probability: 95%						
Location correction factor	$C_1 \{dB\}$			13		
Minimum median equivalent field strength at 10m a.g.l. 50% of time and 50% of locations	$E_{med} \{ dB \mu V/m \}$	70	76	82	88	94

Mobile DVB-T minimum field Strength requirements (non-diversity receivers)

Frequency	f(MHz)	<i>f</i> (MHz) 500					
Representative minimum C/N ratio	(dB)	2	8	14	20	26	32
Minimum receiver signal input power	$P_{smin}(\mathrm{dBW})$	-126.2	-120.2	-114.2	-108.2	-102.2	-96.2
Minimum equivalent receiver input voltage, 75 Ω	U _{s min} (dBµV)	12.6	18.6	24.6	30.4	36.6	42.6
Antenna gain relative to half wave dipole	$G_D(\mathrm{dB})$			()		
Effective antenna aperture	A_a (dBm ²)	-13.3					
Minimum power flux-density at receiving location	$\phi_{min} \left(dB(W/m^2) \right)$	-112.9	-106.9	-100.9	-94.9	-88.9	-82.9
Minimum field strength at receiving location	$E_{min} \left(dB(\mu V/m) \right)$	33	39	45	51	57	63
Allowance for man-made noise	P_{mmn} (dB)	0					
Height loss	L_h (dB)	16					
Loc	ation probability: 999	%					
Location correction factor	$C_l(dB)$	13					
Minimum median power flux-density at 10 m a.g.l. 50% of time and 50% of locations	$\phi_{med} \left(dB(W/m^2) \right)$	-84	-78	-72	-66	-60	-54
Minimum median field strength at 10 m a.g.l. 50% of time and 50% of locations	$E_{med} \left(\mathrm{dB}(\mu\mathrm{V/m}) \right)$	62	68	74	80	86	92

Location Variation

Location variation of the received signal

- Within a small area, say 100 m by 100 m, there will be a more-or-less random variation of the received signal level with location which is due to terrain irregularities. The statistics of this variation are characterised by a log-normal distribution.
- For calculating the location correction factor C₁ used when other than 50% locations are to be considered, a log-normal distribution of the received signal is assumed.
- The location correction factor can be calculated by the formula:
- **C**_I = μ _{*} σ {**dB**}
- where:
- μ is the distribution factor, being 0.52 for 70% and 1.64 for 95%;
- σ is the standard deviation.

Percentage locations Chart

Reception Definitions

Fixed antenna reception

Fixed antenna reception is defined as 'reception where a directional receiving antenna mounted at roof level is used'.

In calculating the field strength for fixed antenna reception a receiving antenna height of 10 m above ground level is considered to be representative.

Portable antenna reception

Portable antenna reception is defined as:

- Class A (outdoor) being reception where a portable receiver with an attached or built-in antenna is used outdoors at no less than 1.5 m above ground level;
- Class B (ground floor, indoor) being reception where a portable receiver with an attached or built-in antenna is used indoors at no less than 1.5 m above floor level in rooms:
 - on the ground floor;
 - with a window in an external wall.

Coverage Area Definitions

Coverage area

In defining the coverage area for each reception condition a three level approach is taken.

Level 1: Receiving location

The smallest unit is a receiving location. A receiving location is regarded as being covered if the level of the wanted signal is high enough to overcome noise and interference for a given percentage of the time. A value of 99% of time is recommended.

Level 2: Small area coverage

The second level is a "small area" (typically 100 m by 100 m). In this small area the percentage of covered locations is indicated.

The coverage of this small area is classified as:

"Good" if at least 95% of receiving locations within it are covered;

"Acceptable" if at least 70% of locations within it are covered.

Level 3: Coverage area

The coverage area of a transmitter, or a group of transmitters, is made up of the sum of the individual small areas in which a given percentage (70% or 95%) of coverage is achieved.

Main DVB-T Protection Ratios

• Protection Ratios

- Given in ITU-R Rec BT.1368-2
- Some typical values for 64QAM rate 2/3, Ricean

Wanted	Interfering	Relationship	PR (dB)
system	system		
DVB-T	DVB-T	Co-channel	20
DVB-T	PAL I	Co-channel	3
PAL I	DVB-T	Co-channel	37(tropo)/
			41 (cont)
DVB-T	PAL I	Upper adjacent	-38
DVB-T	PAL I	Lower adjacent	-34

Determining Field strength both interference and wanted

- Recommendation ITU 1546
 - This is a series of graphs and calculations based on statistical data.
 - Will be the standard international agreement method used between countries for co-ordination purposes and for RRC06
 - Curves are calculated for 1kW ERP
- Coverage prediction method
 - Incorporates DTM and clutter data sources
 - Is a computer based algorithm using DTM and clutter
 - Is more accurate over greater range of terrain and clutter types

Land Temperate and subtropical 50% time

600 MHz 50% time Zone 1

Land Temperate and subtropical 1% time

600 MHz 1% time Zone 1

Warm Sea (Mediterranean) 50% time

600 MHz 50% time Zone 4

Warm Sea (Mediterranean) 1% time

600 MHz 1% time Zone 4

Values of maximum interfering field strength (dB(µV/m) for analogue television interfered with by DVB-T used to evaluate coordination distances

	Minimum median field- strength value (dB(μV/m)	Maximum interfering field strength (dB(μV/m) <i>E_{max int}</i>
Band III	55	14
Band IV	65	24
Band V	70	29

.r.p., 300 m effective	tion distances <u>antenna height)</u>	
Calculated coordination distances with Recommendation ITU-R P.1546 (1% of the time) (km)	ST61 limiting distances (km)	GE89 limiting distances (km) ⁽¹⁾
130	220	150 to 180
670	Not given (>1 000 km)	650 to 750
500	980	
	Calculated coordination distances with Recommendation ITU-R P.1546 (1% of the time) (km) 130 670 500	Calculated coordination distances with Recommendation ITU-R P.1546 (1% of the time) (km)distances (km)130220670Not given (>1 000 km)

warm sea) are considered in this document for comparison. No comparison has been drawn for cold sea.

⁽²⁾For this case, the ST61 distances for comparison are taken from the "Mediterranean Sea" case.

⁽³⁾For this case, the ST61 distances for comparison are taken from the "sea in general" case.

1% time interference from Rotterdam [20kW] ~200km <10% land Terrain based prediction

1% time interference from Rotterdam [20kW] ~200km <10% land; Recommendation 1546 based prediction

Co-ordination Countries

Lebanon Turkey Iraq Saudi Arabia Jordan Occupied Palestine Cyprus Egypt

Damascus DTT 50kW ERP; 1546 1% Time ntl:broadcast

Co-ordination:

Lebanon Occupied Palestine Iraq? Jordan

Damascus DTT 50kW ERP; Terrain 1% Timentl:broadcast

Predictions how good are they?

- Important factors when considering predictions
 - Quality of base data
 - DTM (Digital Terrain map)
 - Clutter Database
 - Prediction algorithm
 - 1546
 - Terrain based
 - Presentation of results

 Terrain in metres

 2000 and above

 1000 to 2000

 600 to 1000

 400 to 600

 2000 to 400

 1000 to 200

 50 to 100

 0 to 50

 -300 to 0

DTM used in ntl predictions

Source NASA 3 arc seconds (~100m)

Terrain of Syria/Lebanon viewed from Cyprus

Clutter Database Or Landuse Bangkok region 7 Classes Urban, suburban, rural, open, sea, forest, open in urban

Data supplied by ISTAR

Clutter Database Or Landuse

Bangkok region Urban Package 17 Classes

Includes: Dense Urban, Dense Urban High, Dense Block Build

> Data supplied by ISTAR

Singapore Mobile DTT, Bukit Batok; Main Station 40kW ERP

Prediction using Urban package 50m resolution (clutter 20m resolution)

JURONG (On Channel Gapfiller) 250W ERP

Types of DTT Networks (1)

- MFN (Multi-frequency Networks)
 - Each transmitter in the network operates on a different frequency
 - Overlaps between transmitters possible
 - Region programming (down to individual stations possible)
 - Ideal for conversion of existing analogue services
 - If transmitter is a conversion of an existing analogue it is already compatible existing services

Types of DTT Networks (2)

- SFN (Single Frequency Network)
 - All transmitters use the same frequency
 - Can be used as a regional network (dependant on geographic size)
 - Low power assignments (transmitters can added)
 - Mobile DVB-T / DVB-H networks
 - Interference potential to neighbouring countries could be potentially much higher

Network Coverage West Malaysia

Using a mixture of SFNs and MFNs

Colours Represent Different UHF channels

Sarawak Multiplex Coverage MFN/SFN ntl:broadcast

Dense SFN Mobile DVB-T 2K 16QAM ¹/₂ rate ¹/₄ Guard Interval

Margin in dB's

