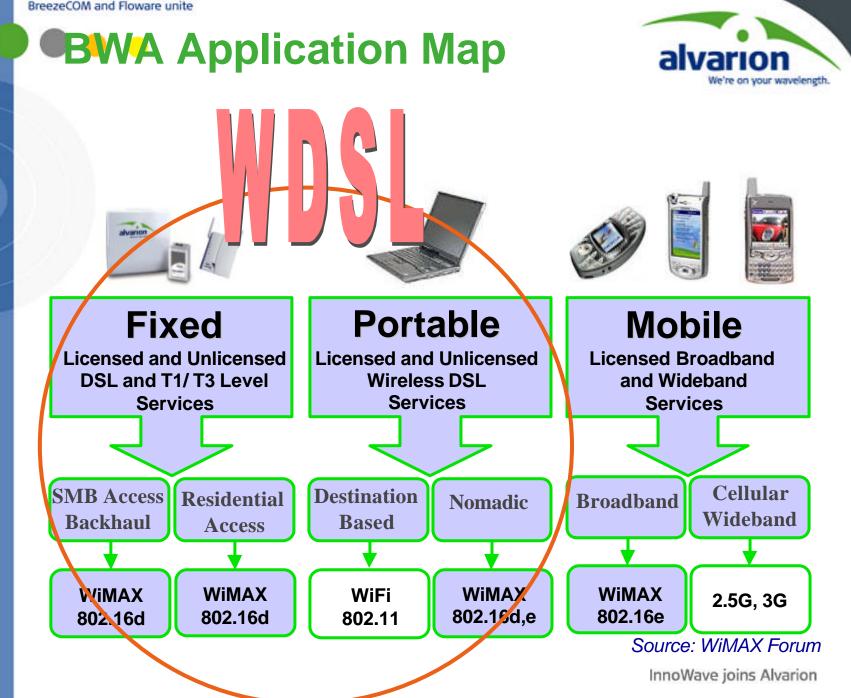
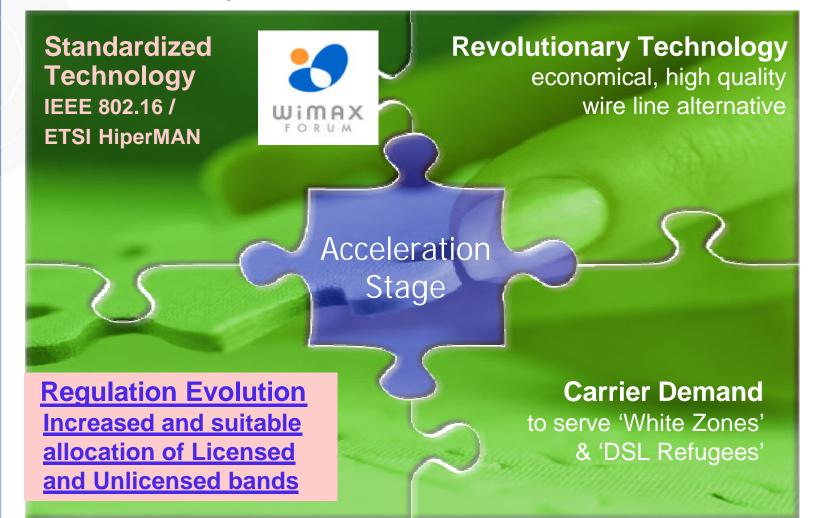


Regulations and Advanced Wireless Broadband



Disclaimer


This presentation is based on a personal view and does not reflect ETSI BRAN, ETSI HiperMAN or IEEE 802.16 position.

WDSL - Key Success Drivers

Regulatory BWA Enablers

- Enough capacity for broadband
 - Allocation spectrum amount
- High coverage for positive business case
 - Operating frequency (lowest-the best)
 - High allowed power and antenna gain
 - Spectrum quality (interference level)
- Spectrum cost
 - At ARPU=\$30 /month, the spectrum has to be for free to achieve a positive Business Case
- Service bundling
 - Fixed Service
 - Nomadic Service
 - Video on Demand (VoD)

Allocation Size Requirements – Example

- Services
 - Data DL
 - 2Mb/s peak, 100kb/s average residential only
 - High range, low density area
- Active data users/sector: 100
- Average spectral efficiency: 1.5b/s/Hz
- Band/sector:
 - Data only: 100*0.100/1.5 = 7MHz DL
 - 2*7MHz FDD or 14MHz TDD
- Band / allocation (4 sector deployment)
 - Data only: 28MHz*2 FDD or 56MHz TDD; add supplementary guard bands

Downlink Power – Example - 802.16/HiperMAN

- Starting point: Subscriber Terminal
 - Tx=23dBm (electrical power)
 - Up-link OFDMA, gain 12dB.
- Base Station
 - Double traffic, compared with the up-link: 5.5dB higher power
 - See FDD/TDD slide
 - Compensate the OFDMA gain: 12dB
 - Compensate the Noise figure: (delta_NF): 2dB
 - Control losses: 2dB margin.
- The Base Station electrical power should be:
- Tx_bs=Tx_st + OFDMA_st + delta_NF + delta_rate + margin
- Tx_bs = 23.5+12+2+5.5+2 = **45dBm**
 - 10dB higher than allowed by EN301021
- The total transmitted power, for 17dB antenna: will be:
 - Tx_bs = 45+17 = 62dBm e.i.r.p / antenna
- Beam forming:
 - Add 12dB for 4 antennae!

TDD and FDD

- FDD
 - Better coexistence, eliminates BS-BS and SS-SS interference
 - In spite of marketing stories, allows for asymmetric data rates
 - By increasing the modulation order
 - QPSKrate1/2 to QPSKrate3/4
 - 50% increased data rate
 - 2.5dB higher transmitted power
 - QPSKrate1/2 to QAM16rate1/2
 - 100% increased data rate
 - 5.5dB higher transmitted power
- TDD
 - Better for beam-forming and MIMO
- FDD/TDD use in the same area:
 - 2 Guard Channels, each side of the allocation, with the channel width according to the highest
 - Guard-bands outside the allocated band
 - Without suitable spectrum engineering (guard bands) the systems will kill each-other!

8

Coexistence in Licensed Bands

- The problem
 - BS-BS and ST-ST interference in TDD
 - BS-ST interference in both FDD and TDD
 - 50% waste of spectrum due to guard bands, for the "technology neutral" approach (2 spare channels)
- The solution
 - Controlled sharing of the guard bands
 - Coexistence protocol
 - Systems to talk to each others
 - Resource reservation

Spectrum "Competitiveness" and Operator Budgetary Figures

- Site Installation Costs: ~\$100K
- Base Station Equipment Costs Including Backhaul: \$60K \$120K
- Maintenance and OPEX: variable
- License Costs: \$400K and up...
- Number of CPE's reachable by a base station in rural areas: 50-100.
- → Operator's price per line exceeds \$500 which may not be worth to deploy
- Reduce costs via:
 - Lower/ NO license costs.
 - More spectrum in low frequencies to increase coverage and reduce the price per line
 - High power allowance and low interference to increase coverage

Does 3.5GHz respond to requirements ?

- European Licenses are allocated only for FWA
 - Nomadic Services are considered "mobile"
 - Low Base Station power allowance
- Most of licensed blocks are 14MHz
 - Not really enough for broadband Internet access
 - Absolutely not enough for VoD
- Latin America
 - 25*2 MHz blocks
 - Mobile data allowed?
- Asia
 - China, etc.: not enough spectrum in 3.5GHz
 - Other Asian countries: inexistent 3.5GHz band for FWA

Portable Data Cost Structure

Mobile Data – 2003

- GPRS
 - Effective rate: ~20Kbps
 - Cost: €€€
- Wi-Fi
 - Broadband
 - Cost: €40/mo; € 10/2hrs
- Fragmented services

Mobile Data – 2005

- Single mobile service
 - Bearer independent
- Transparent roaming
- Single sign-on
- Auto link selection
- VPN support

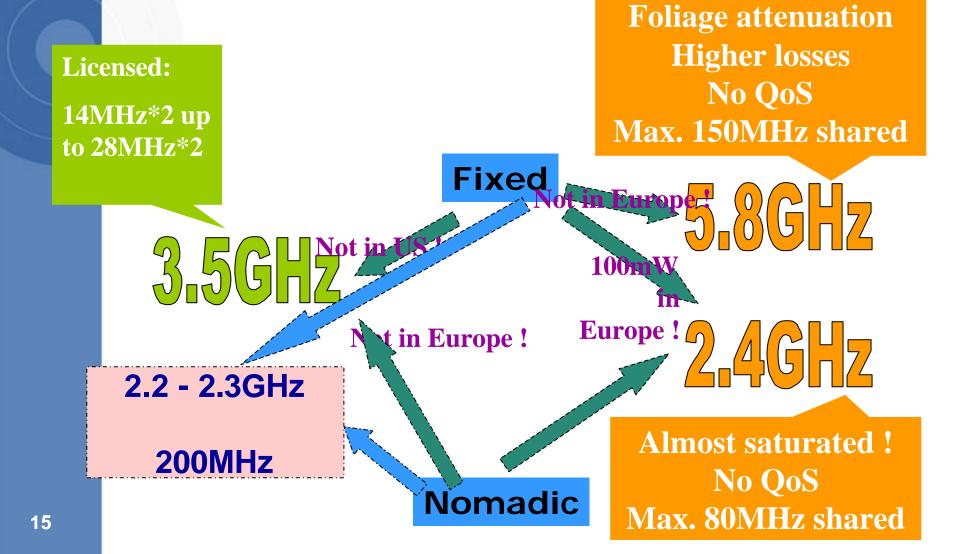
• Total Cost: High

• Total Cost: €40/mo?

Target: Single Broadband Mobile Data Service

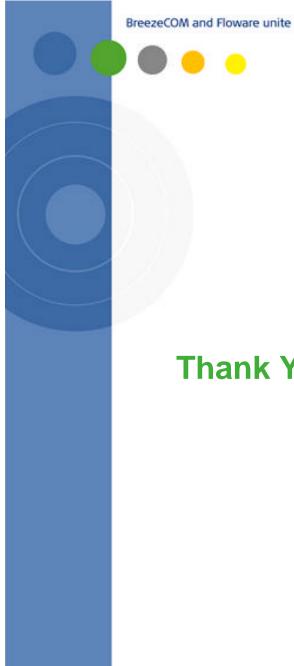
Will Mobile Operators Use Their Bands for "Mobile Data" ?

- Generally extremely high license cost
 - No Return of Investment, if one user is given 1Mb/s for \$40/month
- "Hot Spot" solution
 - LE bands use
 - Very limited coverage
 - No QoS
- Portable Internet allocation needed
 - 2.3GHz in Korea example to be followed!



Fix / Nomadic BWA - License Exempt Spectrum

- Bands:
 - 2.4GHz (80MHz) and 5.8GHz (up to 150MHz)
 - Asia-Pacific around 5GHz
- Importance
 - May be used by Wireless ISPs (US experience) to cover large areas
 - May be used in Nomadic Access
 - May supplement the lack of Licensed Spectrum
- Open problems
 - 2.4GHz is crowded in many areas;
 - 2.4GHz, 5.8GHz is low power not usable in NLOS
 - 4.9GHz, 5.xGHz attenuated propagation in foliage
- Operators avoid to use LE spectrum
 - QoS problem
 - Lack of a Spectrum Sharing protocol, to allow some QoS in BWA


Spectrum for Converged Last Mile Fixed+Nomadic Services

Conclusion: Regulatory Wish-List

- Licensed spectrum
 - More spectrum in lower frequencies
 - Higher allowance for Base Station power
 - Allow "Portable Internet" and VoD services together with FWA
 - Suitable guard bands for lower interference
- More LE spectrum in lower frequencies
 - Higher power
 - Regulatory imposed coexistence protocol
- Allocate the 90% not used spectrum
 - Cognitive Radio / Light licensing
 - Data bases to register the licensed users
 - Receivers to indicate their presence
 - Cognitive approach
- Harmonized Spectrum
 - Cost reduction by "factor of scale" effect

Thank You!