CSA 79 GHz 2nd Workshop Geneva, November 7th, 2012

79 GHz Functions & Technology Jürgen Hildebrandt, Robert Bosch GmbH

BOSCH

Chassis Systems Control

CC/ECR4 Hildebrandt | 09.10.2012 | © Robert Bosch GmbH 2012. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

1

Vehicle motion and safety - Bridging the gap between safety and assistance

Several themes are currently addressed in different disciplines:

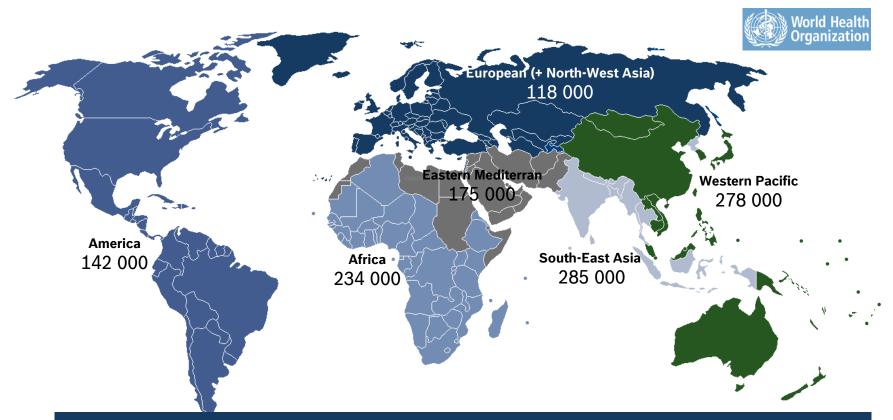
"Vision Zero" "Always connected" "Democratization" "Sustainable mobility"

 \Rightarrow accident-free driving

- \Rightarrow car2x communication
- \Rightarrow safety for everyone
- \Rightarrow keep rolling (CO₂, e-mobility)

Chassis Systems Control

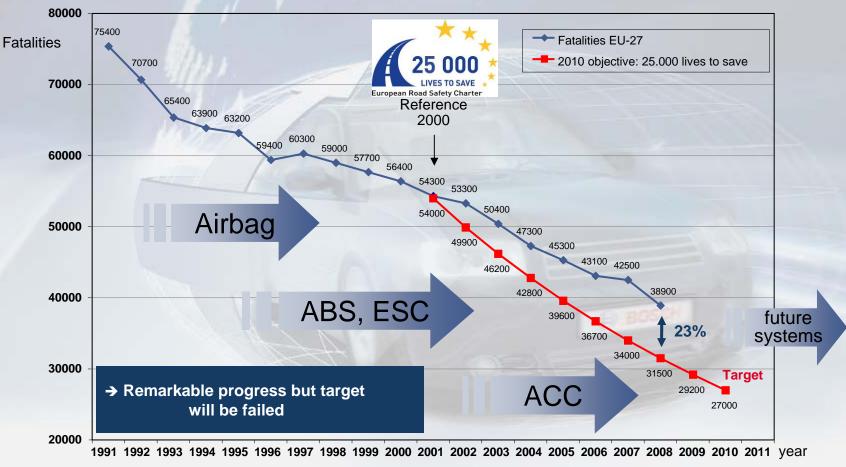
Some daily Traffic Scenarios



Intern | CC/ECR4 Hildebrandt | 13.08.2012 | © Robert Bosch GmbH 2012. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Road traffic deaths by WHO region

Worldwide approximately 1.23 million fatalities per year


source: global status report on road safety, WHO 2009

Chassis Systems Control

Evolution of European Road Fatalities (EU-27)

Source: CARE or national publications; EC Directorate General Energy and Transport December 2007

Chassis Systems Control

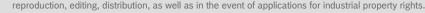
Market Drivers for Advanced Driver Assistance

Legislation & Regulation

- EuroNCAP⁺ plans to include ADAS^{*} in 2014/ 2016
- NA NCAP & JNCAP: showing clear hints to ADAS, e.g. @ safecar.org
- EU: LDW & emergency brake assist mandatory for HDV** (2013)

Availability DA Functions

- Low Speed Active Braking and Collision Warning already standard in some cars
- Active Pedestrian protection
- Democratization of DA functions (availability in compact car segment)


<u>Consumer</u>

- Consumer surveys indicating willingness to buy
- EuroNCAP⁺ advanced and consumer tests (e.g. ADAC) raise endconsumer awareness

<u>Technology</u>

- Radar and video dominating but no dedicated sensor concept yet as standard settled
- Need for sensor data fusion
- Cost/benefit ratio major focus

Chassis Systems Control * New car assessment program **HDV: Heavy Duty Vehicles * Emergency Brake Assist, Lane, Predictive Pedestrian Protection CC/ECR4 Hildebrandt | 09.10.2012 | © Robert Bosch GmbH 2012. All rights reserved, also regarding any disposal, exploitation,

Who is the Euro NCAP?

Euro NCAP was set up by the Transport Research Laboratory, for the UK Department of Transport. Subsequently governments from France, Germany, Sweden, The Netherlands and the Catalonian part of Spain have joined the programme.

Euro NCAP itself is an International Association under Belgian law. It is independent of the industry and political control and no individual member can bias Euro NCAP towards their individual interests.

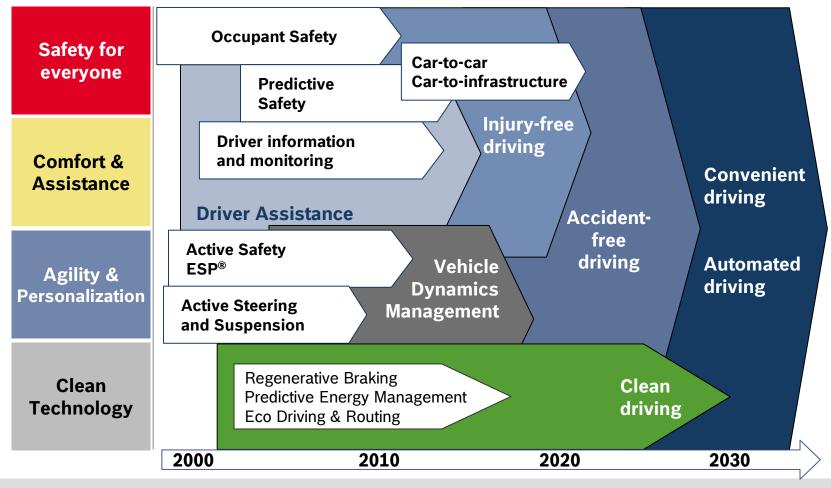
Euro NCAP is totally independent of the automotive industry.

Chassis Systems Control

Board members of Euro NCAP

Ministère de l'Ecologie, de l'Energie, du Développement durable et de l'Aménonement du Territoire

Chassis Systems Control


8

BOSCH

Fields of actions and milestone roadmap

Chassis Systems Control

Radar Based Driver Assistance Systems

Comfort Guidance

- Heading Distance Indicator
- ACCbase (30...160 km/h)
- ACC Stop & Go (0 -200... 250 km/h)
- Green ACC
 - ACC S&G with CO_2 optimized strategy
- Traffic Jam Assist
 (Data fusion with camera)

Integration of longitudinal and lateral guidance

Chassis Systems Control

• Automatic Emergency Braking

automatic partial / full braking for

Predictive Emergency Braking

- reaction time gain
- collision mitigation

Predictive Collision Warning

Emergency Braking Assist

- collision avoidance at low speed
- Evasion Support (Data fusion with camera) Predictive steering support

Potential sensor configuration towards Automonous Driving

LRR

Rear/Side

MPC

LCA, BSD

<u>Front</u>

- Left turn assist
- → Evasive assistance
- → Integrated Cruise Assist / Traffic jam assist
- → Pedestrian protection
- → Automatic Emergency Brake at higher speed

Front/Side

→ Front cross traffic alert

Properties

Chassis Systems Control

- Usage of known technologies
- Data fusion of Radar and Video
- Flexible sensor architecture

Rear cross traffic alert Active brake/steering intervention MRR rear MRR rear

MRR

Function Extension Feasible: Fusion with ultrasonic sensors and rear range camera

Traffic Scenarios with High Resolution Requirements

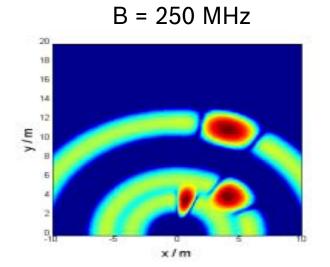
Evasion Maneuver

Source: Daimler AG

Chassis Systems Control

Narrow Pass Assistant

Pedestrian Protection

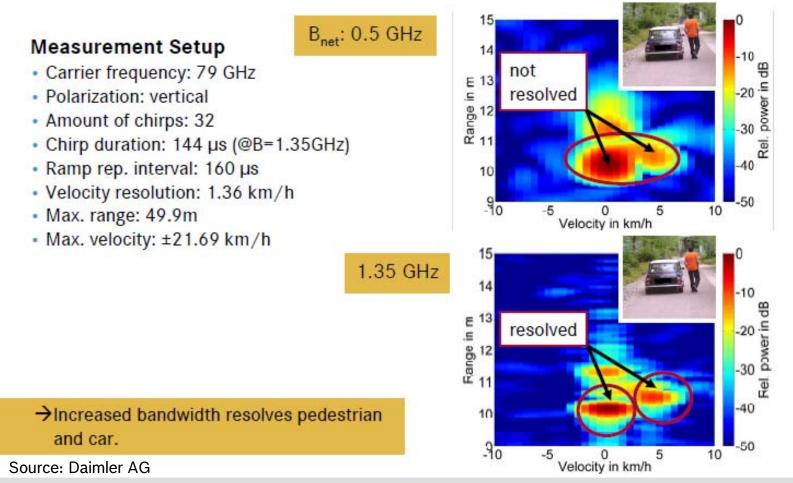

Proximity Warning

Target separation capability

Typ. Long Range Radar Bandwidth

B = 1500 MHz

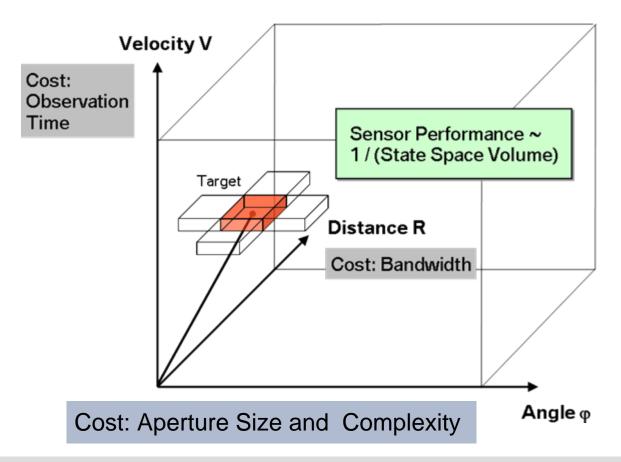
Typ. High Resolution Radar Bandwidth



Chassis Systems Control

13

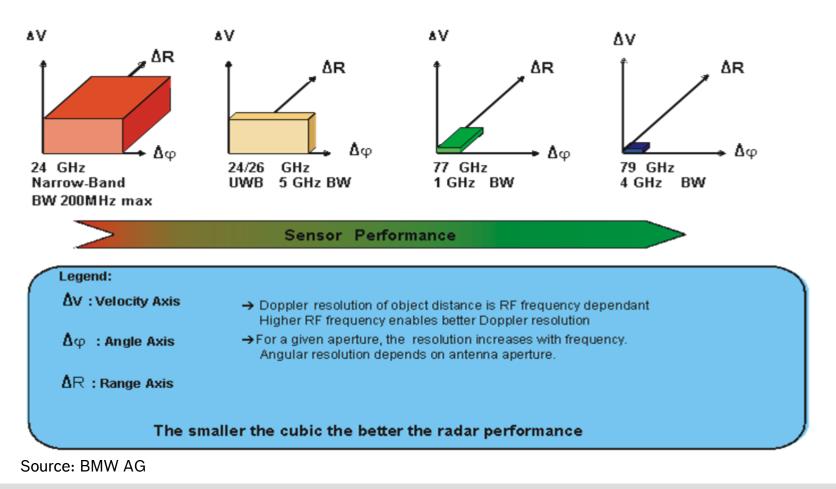
Bandwidth Influence on Range-Velocity Processing



14

Chassis Systems Control

Automotive Radar Sensor Performance

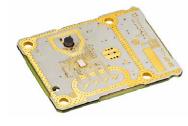

Chassis Systems Control

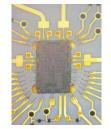
15

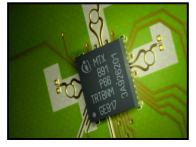
Comparison of Automotive Sensor Performance

Chassis Systems Control

16

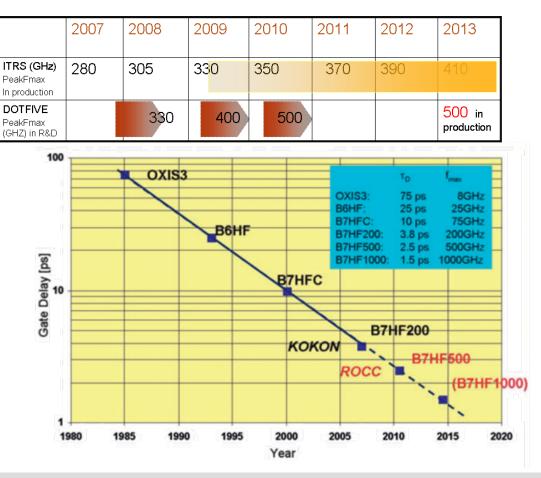

freescale[™]


 76 GHz SiGe - Technology is in series production and radars have been installed worldwide since 2009


 76 GHz and 79 GHz technology is identical; some differences in broadband antenna design and antenna technology

 Released components (MMICs, substrates, plastics) for 79 GHz available Infineon

- Pre-series high resolution sensors are available for evaluation
- Cost situation today: 79 GHz is cost comparable with 24 GHz and will gain at the same time higher performance


Chassis Systems Control

SiGe Technology Roadmap

Generic

IFX

Chassis Systems Control

Summary

- The main drivers for high resolution 79 GHz automotive radar sensors have been identified by challenging safety related functions and road scenarios
- Industry stakeholders have invested a lot of effort and money in this field
- 79 GHz national and european funded projects are on track (e.g. CSA 79 GHz, RASSUR 79; France)

Chassis Systems Control

For long-term proliferation of vehicular radar systems there are further challenges to overcome besides the classical topics like improved performance, lower cost, smaller size, better (multi)-functionality, etc.

Essential is the allocation of harmonized, globally available frequency ranges for future success

Without a valid equipment authorization not a single sensor can be sold in any country of the world

More people need to get aware of this !

Chassis Systems Control