

Report ITU-R BT.2267-2 (04/2014)

Integrated broadcast-broadband systems

BT Series
Broadcasting service
(television)

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

Series of ITU-R Reports			
(Also available online at http://www.itu.int/publ/R-REP/en)			
Series	Title		
во	Satellite delivery		
BR	Recording for production, archival and play-out; film for television		
BS	Broadcasting service (sound)		
BT	Broadcasting service (television)		
F	Fixed service		
M	Mobile, radiodetermination, amateur and related satellite services		
P	Radiowave propagation		
RA	Radio astronomy		
RS	Remote sensing systems		
S	Fixed-satellite service		
SA	Space applications and meteorology		
SF	Frequency sharing and coordination between fixed-satellite and fixed service systems		
SM	Spectrum management		

Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.

Electronic Publication Geneva, 2014

REPORT ITU-R BT.2267-2

Integrated broadcast-broadband systems^{1,2}

(05/2013-11/2013-2014)

In a media scenario where convergent TV receivers are able to handle not only the broadcast signal but also applications delivered by broadband IP telecommunication services, there are opportunities to drive user engagement and to maximize the end-user's satisfaction by offering a range of new services. A system which enables to offer such services is called Integrated broadcast-broadband (IBB) system.

These IBB services should be able to extend the traditional broadcasting using any telecommunication mechanism available in order to bring new, high-quality, interactive and complementary content to the end-user. Such systems should be open, customizable and easy to use, while maintaining the traditional TV user experience, copyright and the broadcaster audiovisual integrity. The major point of difference between IBB systems and the web-based services is the capability to combine multi-functional IBB applications with traditional broadcast programmes or services.

This Report is intended to provide the information on IBB systems which enable to offer IBB services. Each Annex describes specific information on each IBB system.

- Annex 1 The Hybrid broadcast broadband television (HbbTV) system
- Annex 2 The Hybridcast system
- Annex 3 Integrated broadcast-broadband system based on enhancement of data broadcasting
- Annex 4 Consideration on use of Integrated broadcast-broadband technologies on mobile devices
- Annex 5 Integrated broadcast-broadband system based on the Ginga middleware

Annex 1

The hybrid broadcast-broadband television (HbbTV) system

1 Introduction

In connected TV, the consumer has access to all IP services via a standard IP interface. In the home, the IP connection is typically accomplished via WLAN or Ethernet (fed over DSL or a specific Cable TV Modem). In case of portable or mobile TV reception, the Internet connection may be provided by a UMTS or LTE modem built into a portable/mobile TV-set. HbbTV as a more

Integrated broadcast-broadband system is a system in which broadcasting operates in parallel with broadband telecommunication systems and provides an integrated experience of broadcasting and interactivity by combining media content, data and applications from sources authorized by the broadcaster.

This Report is related to the family of Recommendations on IBB Systems: Recommendation ITU-R BT.2037 – General requirements for broadcast-oriented applications of integrated broadband-broadband systems and their envisaged utilization.

broadcast-centric type of connected TV allows seamless interlinking of broadcast and IP services making use of the architecture of connected TV.

2 Combining broadcasting and Internet services

A Connected (or Smart) TV set is not necessarily apt for truly interactive viewing experiences. While, in general, all Connected TV sets have two inputs, one for the broadcast signal (TV tuner) and one for the Internet (Ethernet/WLAN) connection, they do not necessarily offer converged services by making use of both distribution paths. Such a device is usually only equipped for access to proprietary portals for content and applications via the Internet. In addition, some include a slimmed-down browser for viewing regular Web pages, however, usually with limited functionality (which commonly leads to odd user experiences). This cannot be considered as converged equipment; it is merely a multi-purpose device that JUST allows the viewing of broadcast television content OR using separated and limited add-on functionalities through the Internet connection on the same screen.

For the true IBB services enabling a seamless user experience, an "engine" is required that links the broadcast content offered via satellite, terrestrial or CATV networks and the Internet content offered via the interaction channel, be it via Ethernet on DSL or via Ethernet on CATV or via mobile broadband networks such as LTE – or via any other IP connection. HbbTV provides such an engine. HbbTV encompasses the necessary signalling and includes a CE-based browser that has combined access to both, the data in the broadcast stream as well as to the services, applications and content provided via the Internet.

For a Connected TV set that is equipped with the HbbTV function, the consumer just has to push the red button on the TV's remote control to make the HbbTV launch page of the corresponding broadcaster visible. Subsequently, the end-user can select all services (incl. video-on-demand and search functions) that are offered by or via this broadcast service specific portal. Example: A user would like to have more information on, say "Napoleon". The result of the search will be a list of all Napoleon-related video clips that are stored and offered by the collaborating broadcasters. Potentially, sound radio programmes and adapted Web-pages (incl. pictures and text files) could also be included in the result list. Viewing of the retrieved content is currently accomplished on the TV set but may in future also happen on a second screen, e.g. on a tablet computer (ref. also text on HbbTV 2.0 in § 3 below).

The usage of HbbTV by network operators as well as portals and platforms of a diversity of stakeholders

HbbTV is a business-model neutral technology platform. Thus HbbTV can be used also to operate and provide service portals by a network operator. Some smaller cable TV operators in Switzerland have deployed HbbTV-based portals offering a broad variety of services on any HbbTV-equipped device. The service channel may be used to signal an application which, by the HbbTV auto-launch functionality, is immediately kicked-off when the device tunes to the service channel. An example is Eutelsat's "Kabelkiosk choice", an HbbTV-based service portal that is pre-configured for cable network operators.

Generally, HbbTV is being used to build a platform for the variety of small and local TV broadcasters. Some of them may not have the financial resources to pay for a 24/7 broadcast link, but share it with others or even offer Internet-streaming only. The HbbTV-based portal allows for providing a harmonized view to all offered services and automatically redirects the consumer to the selected service regardless whether it is delivered via broadcast or via the Internet.

Finally, HbbTV is not limited to broadcast centric services. It can likewise be used to build application portals and platforms which provide Internet-only services. Stakeholders are manufacturers but also independent application portals. Currently, the great majority of HbbTV services are broadcast-centric and thus link a given TV programme with the portal of the programme provider.

4 Some outlook on the standardization of HbbTV and its actual market position

HbbTV was developed in 2009 and first standardized by ETSI in 2010. Version 1.5 of the HbbTV specification has been published by the HbbTV Consortium in April 2012. Standardization of HbbTV 1.5 as ETSI TS 102796 v1.2.1 took place by ETSI in November 2012. Amongst other new features, adaptive streaming (in line with MPEG-DASH) is supported (see § 4 of Appendix to Annex 1 for more details).

Currently, work is underway towards Version 2.0. Amongst others, the European project HBB-NEXT (which is co-funded by the European Commission, ref. www.hbb-next.eu) is working towards the technical specifications of "HbbTV 2.0". The HBB-NEXT work includes links to social networks like *facebook* and provides for enhanced multimodal user interfaces (e.g. speaker identification, voice control, etc.). HBB-NEXT also looks at new recommendation features, both for groups and individuals. Especially, the efforts in the area of synchronization of broadcast und Internet-delivered content will be helpful to all but will be decisive for people with disabilities. Synchronization will allow for the time-correct display of additional services such as the video representation of a sign language interpreter³. Synchronization will also help to overcome the problem of delayed subtitles (as occurring today when subtitles create life captions, e.g. by "re-speaking"). Improved accessibility for people with disabilities is also reached through yet another strand of HBB-NEXT which looks at 2nd screen services and usage (log-in of the handset is via the main TV set).

Here, for example, a user might listen to a synchronized audio description with a second device (via earphones) while the other users in the room listen to the original sound on the TV set (or vice versa). The technical solution of connecting the 2nd screen was predominantly developed within the EU project FI-CONTENT (co-funded by the European Commission, ref. http://www.fi-content.eu/).

³ Of course, synchronization can only make sense when it comes in line with a video buffer in the TV set that can delay the broadcast signal by some seconds. Also, a second video player should be available in the TV set that reproduces the IP-delivered video signal and superimpose it on the screen.

FIGURE 1.1

The second screen solution allows the usage of an HbbTV application on the main screen, on the second screen, e.g. a tablet PC or smartphone, or on both screens (as it is the case in this photograph).

Menu to select size, appearance and position of HbbTV delivered subtitles (Source: HBB-NEXT)

In principle, HbbTV can be used to provide any access service required: signer video, audio description, spoken subtitles, multi-lingual text subtitles, multi-language sound tracks or additional sound tracks with clear(er) audio dialogues, etc. Today, HbbTV is already of help to people with viewing difficulties as the new text-services provided by HbbTV are much better to read than the conventional videotext service and, in some instances, already offer personalization options for further improving readability through extended font sizes and various colour options (adapting colour contrast to individual needs). Further access services like, for example, an application which allows for individual configuring of subtitles in terms of their size, position or background are in experimental or pre-operational stage.

FIGURE 1.2

The inscription says: Via Internet, a signer video is available for this programme – switch it on now?

Example of a signer video (delivered via the Internet) superimposed with the main broadcast video

But foremost, HbbTV is used for information, education and entertainment (e.g. catch-up TV). It is also used for commercial applications (music download, online shopping, (targeted) advertisement etc.).

It was also demonstrated that HbbTV represents a prime means to alert the general public in case of a crisis. The EU project Alert4All (http://www.alert4all.eu/) has developed an according protocol for a web-service available to broadcasters. The alert information can be introduced in the data carousel (DSM-CC) within the transport stream of the digital TV signal and triggers an HbbTV auto-launch function.

No Internet connection is required. The messages can be provided in various languages selectable by the end-user. If an Internet connection is available, supporting information such as detailed maps or additional instructions, which are not mandatory to handling the crisis, is offered to the viewers for retrieval via the IP path [7]. The colour fields indicated correspond to the colour buttons on the remote control. Figure 1.3 depicts a test example of automatic popup of an HbbTV alert message (HbbTV test application of the Alert4All project).

FIGURE 1.3

A test alert displayed on a common TV set that is capable of HbbTV

The alert information remains in the DSM-CC as long as necessary. The application is thus running automatically once a TV service is chosen by a consumer. It is only if an alert is sent with a "stream event" that the HbbTV application will automatically be displayed on the TV screen. By default, the alert is displayed in the same language as the ongoing TV service. Other languages (as provided the broadcaster) are accessed via (in this example green) button.

The data composing the essential information from the basic Alert4All HbbTV application has been purposely kept small – in the order of 100 KB per alert. The data required for disseminating such alerts in less than six seconds is in the order of only 100 kbit/s. This is a small overhead for an HDTV channel that is typically transmitted on average at 8 Mbit/s.

Up to now, a high number of applications have been developed for HbbTV (from pre-views and catch-up TV to additional access services and commercial applications). For example, more than 50 applications are known in Germany. A detailed description of HbbTV is provided in the Appendix.

Currently, consumer equipment manufacturers offer a large number of models of HbbTV-enabled TV sets and set-top boxes.

HbbTV has gained a large momentum in European markets. Broadcasters in fourteen European countries have already started to offer HbbTV applications on a regular basis or have announced to start soon. Worldwide interest is growing as HbbTV can easily be adapted to any digital television system. Interest ranges include those from China, Asia/Pacific including Japan and Australia to USA and South America.

Attachment: Technical description of HbbTV

Attachment to Annex 1

HbbTV – Technical information

1 Conceptual considerations and requirements

For a broadcast service provider entering the IBB era three main problems occurred with first generation types of so-called "hybrid TV" sets (that allowed for some kind of Internet access):

- each manufacturer used its own browser profile and its own set of other technical features like streaming protocols or remote control key sets. This means that the services had to be re-authored for each set manufacturer individually, and this requires not only an operational effort but also a conceptual one if, for example, graphic options or key sets differ. This kind of technical fragmentation was a considerable obstacle for a dynamic development on the content side;
- 2) the entry portal to the Internet applications is typically controlled by the manufacturer and no one but the manufacturer was able to add or replace applications on that portal. Consumers were locked in a kind of a walled garden;
- although using the same screen, both worlds the broadcasting and the Internet world remained separated in the end. Either there is a hard switching between both modes when watching TV the connection to the Internet is lost and when the browser is active the TV signal is lost or the TV picture is overlaid by unrelated Web content. A combination of service components from both networks was not foreseen thus losing the potential for true IBB services.

Therefore, at the beginning of 2009 a number of market partners joined forces within a pan-European project to develop a technical scenario that allows to address these issues and to provide a standardized and functional framework for hybrid television. The targets for this development were:

- to provide an open and standardized HTML-based system in order to allow efficient content development by leveraging existing on-line services independent from specific manufacturers or platform operators;
- to use, as much as possible, existing standardized components in order to gain acceptance and time-to-market benefits;
- to specify only a minimum set of features required for all basic needs, which allows an easy integration in existing hardware platforms and acceptance throughout the entire value chain;
- to allow the combination of all broadcast distribution networks with all Internet access technologies;
- to allow the creation of IBB services using broadcast services and additional resources from the Internet at the same time;
- to provide the potential to the successor of the Teletext system;
- to avoid the "conquering" of TV signals by unauthorized third party Web services;
- to be also applicable to radio services.

With a system like this, "red button" services linked to TV programmes can be implemented. Teletext-type services can be enhanced graphically in a form more adequate to the HD era. Additional services like news tickers can be provided in a much more functional and flexible way. HTML-overlays over full screen TV pictures are possible as well as the integration of a scaled TV image into a full screen application.

This work resulted in the definition of the HbbTV specification and in the creation of the HbbTV Consortium (ref. www.hbbtv.org).

2 Technical concept of HbbTV

The concept of the HbbTV specification, the first version of which was published by ETSI as TS 102 796 in June 2010 [1], is shown in Fig. 1.4. The specification introduces only few new technical components, but is mainly based on existing standards. In this respect, it represents more a specific profile of available technologies than a completely new technical development. Such approach is extremely valuable in terms of development cost and specifically for a short time-to-market period.

HbbTV OIPF DVB CEA TS 102 809 CEA-2014 (CE-HTML) Vol 5 Media Formats Content & Service DAE Protection DVB W3C ISO/IEC MPEG-XHTML DOM2 CSS2 File Format ISO

FIGURE 1.4
Standards involved in the HbbTV concept

In detail, HbbTV is based on the following three standards:

CE-HTML [2] defines the core browser functionality for HbbTV. CE-HTML is based on the common W3C Web standards and it specifies a HTML profile for CE devices. It uses XHTML 1.0, DOM 2, CSS TV profile 1.0 as well as ECMAScript-262 ("JavaScript") and is optimized for rendering HTML/JavaScript Web pages on CE devices, specifically on TV screens.

As the XMLhttpRequest object is supported, application developers are able to design HTML applications which are very similar to up-to-date Web 2.0 services. Compatibility in this respect allows to apply existing know-how, technology and experience used for standard Web development today also to HbbTV in a seamless way. So the effort for TV integration can be kept on the level of necessary minimum of optimization for the different viewing situations.

CE-HTML also contains elements like the definition of the key codes for the usual TV remote control. On the contrary, CE-HTML does not convey any interfaces to the "DVB world". These are

provided by the browser specification of the Open IPTV Forum [3] which was published in January 2009. This specification has been developed for DVB based IPTV systems, but the APIs it provides can be applied to any IBB DVB system. These APIs convey functions to combine the TV picture with HTML pages, to tune to other DVB TV or radio services, to add events to the timer list, to read DVB metadata and other DVB-related things.

The selected components from CE-HTML and the Open IPTV browser define the main functions of the HbbTV browser component.

Beyond the browser functionality, more DVB related integration capability is required. This is granted by including reference to the DVB standard "Signalling and carriage of interactive applications and services in hybrid broadcast/broadband environments", which was completed by DVB in March 2009 and subsequently published by ETSI [4]. As said by its title, this DVB standard defines the signalling of applications which shall be run in the context of specific TV or radio services in the corresponding DVB multiplexes. In a very similar way to the Multimedia Home Platform (MHP) standard this is done via an "Application Information Table" ("AIT") of the relevant DVB services which is pointed to from its "Program Map Table" ("PMT"). The AIT carries the signalling of all applications which are supposed to run in the context of this programme. Other applications are allowed to tune to this programme but they are stopped unless they are referenced in its AIT. Thus it can be avoided, for example, that TV programmes are conquered by third-party applications which could do advertising or other overlays – thus misusing both the business model of the broadcaster and the confidence of the viewers in the integrity of what they see on the screen.

One of the applications signalled in the AIT can be marked as "autostart", which means that this application is automatically launched after tuning to the corresponding service. In order not to annoy the viewer by undesired overlays and to allow a uniform experience for application start, it has been agreed as a guideline that the application should draw a small icon including a red button first and then disappear after a few seconds. The application is then active from a technical perspective but does not draw anything on the screen until the user presses the red button.

Another signalling option for the AIT is designed to support the establishment of HbbTV as a successor of the Teletext standard. An application can be signalled as "digital Teletext application" which allows the CE manufacturer to start this specific HTML application when the familiar Teletext key is pressed on the remote control.

Figure 1.5 illustrates how HbbTV allows implementing applications which are independent of broadcasting services and how applications can be tied to broadcasting services:

Portal TV-Progr. 1 Info TV-Progr. 2 Quiz YouTube TV-Progr. 3 Ť TV-Progr. 4 **Portal** TV4 VoD TV-Progr. 5 Weather Teletext TV-Progr. 6 Broadcast related Broadcast independent

FIGURE 1.5 HbbTV applications can be tied to broadcasting services or can be independent of broadcasting services

But HbbTV does of course not only support applications which are tied to a broadcast service ("broadcast-related applications") but also applications with no relation to any broadcast service ("broadcast-independent applications"). Such broadcast-independent applications can "TV editions" of existing Web services like *flickr*, YouTube and very many more as they may be provided by the big brands as well as by regional service providers or even by individuals. HbbTV does not define detailed access mechanisms for broadcast-independent applications. It is left to the CE manufacturers to implement flexible portals allowing the end-users to find and access all the services they could be interested in. HbbTV portals and search functions for interesting HbbTV applications could also be provided by third-party operators. It is left open to the market development in an open retail market to find access strategies serving best the end customer's need. In vertically integrated market segments (with subsidized devices) more closed portal services may be provided.

applications

applications

TV Services

Furthermore, ETSI TS 102 809 specifies the carriage of HbbTV applications via the DVB broadcast channel. This option is specifically interesting for HbbTV devices which are not connected to the Internet. In the market this may be the case for quite a considerable number of devices as some manufacturers plan to integrate HbbTV as a standard feature like Teletext today. So this feature may be found in devices which are not explicitly purchased for IBB use. Similar to MHP, the digital storage media command and control (DSM-CC) object carousel is used to transmit the applications. Certainly the whole amount of data which can be distributed via broadcast channel is rather limited compared to the Internet capabilities, but may be sufficient for relatively lightweight information applications like graphically and functionally advanced Teletext services.

As a part of the DSM-CC system, "stream events" are available in HbbTV which consist of small data packets that can be transmitted synchronously to the programme signal. They allow conveying time-accurate data as, for example, questions or answers for an interactive quiz show. Timing precision of an Internet connection would be more limited for this purpose and, in addition, would put very high performance requirements on the Web servers to serve potentially millions of real time connections at the same time. Using the broadcast channel is by far more efficient for applications like this.

As a whole, the overall technical concept of HbbTV represents a pragmatic compromise which provides a flexible and universal infrastructure for a variety of broadcast-related and broadcast-independent services, but allows relatively fast integration in CE hardware which is less powerful than that of standard multimedia PCs.

The HbbTV system is designed as a full interactive system on its own. But middleware vendors can decide to integrate HbbTV into their own products which may provide more functionality like scanning routines, PVR management, EPGs and others.

The screenshots below show some examples of applications in regular operation.

France: France 24

Spain: Telecinco

Germany: ARD

The Netherlands: NPO

3 Developing and testing HbbTV

HbbTV's unique proposition in the market offers easiest application development and porting as it is based on the common set of Internet technology that is used by Internet services. Know-how related to HTML and JavaScript is widely and readily available and can easily be employed for the development of HbbTV applications. Thus, existing online services can be adapted straight-forward to the TV screen; and service providers can more or less instantaneously provide services also for the TV screen. This allows leveraging maximal synergy and effectiveness at the level of conceptual design and application development as well as at the level of integration and operation.

Technically, data delivery in an individually optimized way to PC and TV screens uses existing XML data feeds and Web servers. The uniqueness of HbbTV is to seamlessly band together linear and non-linear service elements, even personal communication means, unleashing the development of completely new hybrid services; HbbTV supports the integration of both worlds via simple API extensions as described above.

Obviously, the development of HbbTV applications does not require specific tools for all the standard application functionality. For testing the more TV-related features specifically modified PC browsers are available.

Tests allow identifying potential interoperability problems. Early-on tests accelerate the application and the device development alike. Due to the limited hardware resources of CE devices, checking application performance on consumer hardware is advisable as well. Since the first implementation phase of the HbbTV standard end of 2009, the IRT⁴ has organized quarterly HbbTV interoperability workshops. Representatives from numerous companies from across the value chain – including broadcasters, software providers and CE device manufacturers – have since then attended these events to evaluate current HbbTV applications and implementations.

Compliance of all components to the specification will be crucial for a broad market success of the whole system. To allow a more standardized testing of HbbTV implementations, an HbbTV working group currently has developed a test suite which conveys a large set of test applications for HbbTV implementations (see http://www.hbbtv.org/pages/about_hbbtv/hbbtv_test_suite.php). This will help manufacturers to verify the compliance of their products and give confidence that a proper interoperability level can be achieved.

4 Extended features in Version 1.5 of the HbbTV specification ("HbbTV 1.5")

Version 1.5 of the HbbTV specification [5] was recently adopted by the HbbTV Consortium. "HbbTV 1.5" introduces support for HTTP adaptive streaming (based on MPEG-DASH), improving the perceived quality of video presentation on busy or slow Internet connections. It also enables content providers to protect DASH delivered content with potentially multiple DRM technologies based on the MPEG CENC specification, improving efficiency in markets where more than one DRM technology will be used. Version 1.5 significantly enhances access to broadcast TV schedule information, enabling operators to produce full 7-day electronic programme guides as HbbTV applications that can be deployed across all HbbTV receivers to provide a consistent user experience. "HbbTV 1.5" was submitted to ETSI for European standardization. Consequently, ETSI published version 1.2.1 of the HbbTV specification in November 2012 [6].

5 Applying HbbTV to non-DVB broadcasting systems

HbbTV, as it is today, explicitly specifies integration with DVB broadcasting systems. But the whole concept of HbbTV including the browser specification and the application handling can be applied also to other broadcasting systems. This allows for adopting HbbTV on a global basis and using it as technical basis for huge markets for applications and devices.

References

- [1] ETSI TS 102 796 V1.1.1 (2010-06), Hybrid Broadcast Broadband TV.
- [2] CEA-2014 revision A, "Web-based Protocol and Framework for Remote User Interface on UPnPTM Networks and the Internet (Web4CE)".
- [3] Open IPTV Forum Release 1 specification, volume 5 "Declarative Application Environment" v1.1 Available from http://www.oipf.tv/downloads.html.

⁴ Institut für Rundfunktechnik GmbH (R&D Establishment of the public service broadcasters in Germany, Austria and Switzerland)

- [4] ETSI TS 102 809, "Digital Video Broadcasting (DVB); Signalling and carriage of interactive applications and services in hybrid broadcast / broadband environments"; V 1.1.1.
- [5] Description of HbbTV 1.5 from www.hbbtv.org. The HbbTV Specification V1.5 (updated version 1st August 2012) can be downloaded as http://www.hbbtv.org/pages/about_hbbtv/HbbTV-specification-1-5 Aug2012.pdf.
- [6] ETSI TS 102 796 V1.2.1 (2012-11), Hybrid Broadcast Broadband TV. This ETSI specification can be downloaded as http://www.etsi.org/deliver/etsi_ts/102700_102799/102796/01.02.01_60/ts_102796v010201p.pdf
- [7] Ralf Pfeffer, Sebastian Siepe, Benedikt Vogel, Roberta Campo, Cristina Párraga Niebla, "HbbTV: a powerful asset for alerting the population during a crisis", in Proceedings of the 2013 NEM Summit, October 28-30, 2013 Nantes, France.

Annex 2

The Hybridcast System

1 Introduction

Hybridcast, the Integrated Broadcast-Broadband system using HTML5, version 1.0 has been standardized in Japan. The system enables to offer a variety of services by combination of broadcast and broadband telecommunication resources and features. The version 1.0 specifications considered broadcast centric scenario in Recommendation ITU-T J.205. To achieve the required functionalities, the specifications define system model, application model, application control signals, receiver behaviours, additional APIs etc. The specifications also define a mechanism for companion device collaboration functions to involve companion devices such as tablet computers.

2 Specification structure

Hybridcast system is defined by two specifications:

- IPTVFJ STD-0010 "Integrated broadcast-broadband system specification";
- IPTVFJ STD-0011 "HTML5 Browser specification".

IPTVFJ STD-0010 defines system model, application model, application control signals, transport protocols, behaviour for using VoD, monomedia coding, and receiver functions. IPTVFJ STD-0011 defines HTML application structure, behaviour and syntax of elements, and additional objects and APIs.

Both specifications will be publically available on IPTV Forum Japan website, at:

http://www.iptvforum.jp/en/download

It may be required for any IBB system to transmit application control signals over broadcast channel in order that its service is tightly combined with the broadcasting service. Such signals will be defined for each broadcasting system. Along with this approach, ARIB STD-B24 "Data coding and transmission specification for digital broadcasting" is updated to define formats and transmission scheme of application control signals to work with Hybridcast.

Specifications mentioned above are prepared to support broadcast-oriented managed applications described in § 4.1 while modelling of the system is designed with consideration for future expandability to non-broadcast-oriented managed application.

3 System model

The conceptual overall system model of Hybridcast is shown in Fig. 2.1. This model is intended to expand the services easily by allowing third parties other than broadcasters to participate in the service chain as service providers who develop and distribute applications. When the broadcaster works also as the service provider, or when the broadcaster has some control to the service providers for the service, the form of offering services is on the broadcaster centric scenario.

Broadcasting Application control signals Subject of standardization content Broadcaster Service provider Receiver App App App Application management and distribution API Broadcaster IBB Receive server functions Security API Partially Basic functions Security standardized Repository

FIGURE 2.1

Overall system model

Roles of Broadcaster, Service provider and Receiver are defined as follows:

1) **Broadcaster**

The broadcaster provides digital broadcasting signals, and metadata and video content to service providers. In the broadcasting signal, application control and permission information can be transmitted, which notifies available applications, information to launch them, and permission to access to broadcast resources. Upon contract, the service providers can obtain metadata and video content from the broadcaster to use or offer it to the end users.

2) Service provider

The service provider is the key figure who provides services with this system. The service provider produces/distributes content and application to provide services, and operates servers to enable each service. It is possible to provide link information to other service providers. In addition, APIs that are implemented on servers for access from receivers shall not be specified in the specifications because such APIs are service specific. The service provider can freely set and utilize them.

Some service providers may provide repository function. The repository registers applications to be distributed and provides lists of applications according to inquiries from receivers. Use or access to Repository is considered mainly for non-broadcast-oriented managed applications.

3) Receiver

The receiver provides functions to execute Hybridcast applications, make presentation controlled by the application, and interact with users and/or other devices as well as to receive and present broadcasting content. The receiver provides standardized functions and APIs for execution of the applications.

The companion device collaboration function of receivers allows Hybridcast application to interact with companion devices such as tablet computers. Such devices are assumed to be connected to the receiver within the home network.

4 Application model

4.1 Application type

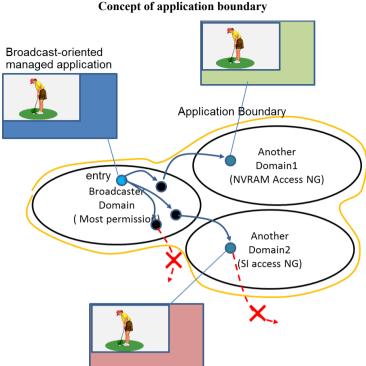
In the Hybridcast system, there are three types of applications according to the relationship with broadcasting services.

Broadcast-oriented managed applications:

Applications which are controlled by the application control signal in the broadcast signal. While the applications are launched or terminated by the control of broadcaster, the applications are allowed to access broadcast resources based on permission information in the control signals.

Non-broadcast-oriented managed applications:

Application that are not controlled for launch, sleep and termination by the application control signal in the broadcast signal but still authenticated by broadcasters by means other than broadcast signal. Permission to access to broadcast resources is given by application authentication, etc.


Unmanaged applications:

General name for applications that do not apply to either of the above two types of applications. Access to broadcast resources is strictly prohibited.

4.2 Application boundary and permission

As described in § 2, third-party made applications, or a part of applications, can be used in the Hybridcast system. To maintain interest of stakeholders or consistency of the services using broadcast-oriented managed and non-broadcast-oriented managed applications, information of accessible network domains with permission information of each domain, called application boundary, is given to each application. The application can be downloaded from or jump to the given domains only. Permission information represents allowable access to broadcast resources for each domain where an application document is downloaded from. Figure 2.2 shows this concept.

FIGURE 2.2

5 Application control signal

5.1 Application Information Table (AIT)

In ARIB STD-B24, the Application Information Table (AIT) is defined to represent application control information. AIT carries information of execution state of the application such as launch, sleep or termination, application boundary, URL and transport protocols to download the application, etc.

There are two notations for AIT. MPEG Section form of AIT is mainly intended for delivery of AIT over broadcast channel. XML notation of AIT is intended for delivery of AIT over broadband telecommunication network or DSM-CC carousel in broadcast channel.

5.2 Coexistence with data broadcasting

In Japan, data broadcasting services are common and widely used. And it is supposed that the Hybridcast receiver provides data broadcasting environment (BML browser) as well to support existing digital broadcasting services. When the broadcaster provides both data broadcasting content and Hybridcast services at the same time in the same channel, it is important for the Hybridcast receiver to determine which of the two should be launched.

ARIB STD-B24 defines a method to control invocation priority for data broadcasting content and Hybridcast application. When data broadcasting is prioritized, BML browser should start regardless of application execution information in AIT. BML browser in Hybridcast receiver provides a new function to switch to Hybridcast applications, which allows data broadcasting content to switch to Hybridcast applications. In this case, an AIT file in XML notation will be retrieved over broadband telecommunication network to control Hybridcast applications. URL of the AIT file is given as an argument to the function in BML. When data broadcasting is not prioritized, a Hybridcast application can be launched directly in accordance with the broadcast delivered AIT.

6 Hybridcast receiver

Figure 2.3 shows a structure of Hybridcast receiver. The functions to receive and present broadcasting programme and/or content are the same as those for existing digital broadcasting services. The processing of Hybridcast applications is also similar to data broadcasting content, and then the structure is similar to that defined in Recommendation ITU-R BT.1889. Some function blocks are specific to Hybridcast for security, application management, and handling of content element and functional binding between a receiver and servers.

FIGURE 2.3

Structure of Hybridcast receiver HTML5 Application Application Resident application Application engine Receiver functions Content acquisition Security Companion Broadcast Application reception and content playback nd playback via management device control Control function function function Hardware Communi Tuner Video decoder Audio decoder DeMux cation I/F

Following are Hybridcast system specific functional blocks:

Content acquisition and playback via broadband

Functions that access the video-on-demand content servers and play it.

Application control

Functions that work with application engines mainly regarding broadcast-oriented managed and non-broadcast-oriented managed applications in accordance with the application control information. These functions also control/manage lifecycles of applications.

Application engine

Functions that execute Hybridcast applications. HTML5 browser is used in Hybridcast system.

Companion device collaboration control

Functions that discover, connect to, and manage collaborative activities with external collaborated devices.

Security management

Functions that apply restrictions to application behaviour as necessary according to instructions specified by broadcast signals, etc.

Application launcher

Navigation functions that are mainly used by end users to select and initiate non-broadcast-oriented managed applications.

7 HTML5 environment and additional APIs

IPTVFJ STD-0011 defines HTML5 environment with additional APIs for Hybridcast applications. As a base environment, IPTVFJ STD-0011 employs several W3C Recommendations and Working Drafts such as HTML5, Media Queries, Device Adaptation, CSS Font Module Level 3 and Document Object Model Level 3 Events. It also employs ECMAScript 5th Edition. By employing these W3C materials, the latest ECMAScript specification, and other commonly used W3C specifications such as CSS Animations, an HTML5 browser will work in a modern way, i.e. flexible behaviour and presentation can be controlled by scripting programmes as parts of HTML applications. However, to make an HTML application be a Hybridcast application, it is required to add APIs to control the behaviour of an HTML application itself, to access to broadcast resources, and to call receiver functions. Table 1 shows major additional objects and elements.

TABLE 1

Major additional objects

Application object	An object which represents an application itself. This object is used to manage execution state of an application and to invoke another application.
ApplicationInformationTable object	An object which represents application control signals. An application can obtain boundary and permission information delivered by application control signals by calling this object.
ReceiverDevice object	An object which represents functionalities of a Hybridcast receiver and information managed by a Hybridcast receiver. This object provides functionalities for tuning, access to receiver specific information such as receiver identification and system information, and detection of current broadcasting programme, etc.
EIT related objects	Objects which handle broadcasting programme schedule information.
StreamEventTarget object	An object to handle stream events delivered over broadcast channel. This object provides functions to add and remove event listeners, to access to timer, and to handle stream event update.
BMLCompatObject object	An object to access to a part of functionalities of BML browser such as non-volatile memory.
Companion device collaboration related functions	As a part of ReceiverDevice object, functions to instruct initial URL of an application to run on companion devices and to send/receive messages to/from the devices are defined.
BroadcastVideoObject element	An object element with additional type to represent broadcast video instead of video element in HTML5. This object is defined to satisfy broadcast related requirements such as continuous presentation of broadcast video even during loading HTML document, control of z-order alignment of broadcast video and graphics with alpha blending, and mitigation of the risk of canvas element in HTML5 for content security.

8 Companion device collaboration

Manipulation of Hybridcast application by a remote controller is a common way to control and access to the application by the end users. Instead of a remote controller, use of external devices such as tablet computers or smartphones will dramatically improve easiness of manipulation and effectiveness of presentation of the applications. For this purpose, Hybridcast specifications define a mechanism and APIs to involve such devices, called companion devices, within a home network.

To collaborate with companion devices, a Hybridcast receiver or a Hybridcast application needs to discover the devices on a home network. Management of connection and communication across the devices is also needed. These functionalities are supposed to be achieved as remote control applications on tablets or smartphones by TV set manufacturers. Employment of this kind of applications will ensure connectivity and communication across the devices. In Hybridcast system, such an application is a part of runtime environment on tablets or smartphones. In other words, applications on tablets or smartphones for collaboration with Hybridcast applications on a Hybridcast receiver run on top of it.

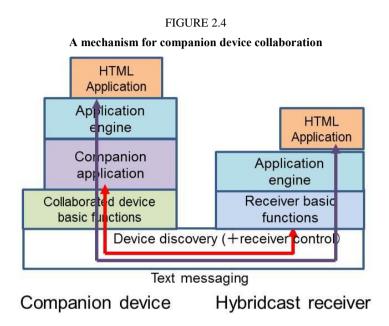


Figure 2.4 shows a mechanism for companion device collaboration. The companion application on a companion device works for device discovery and management of connection and communication. It may also provide user interface as a remote controller. A Hybridcast receiver seeks companion devices within the connected home network. A companion application on a companion device responds with a device discovery action to a Hybridcast receiver. Once recognized each other, communication is ready between a Hybridcast receiver and a companion application. Hybridcast application on a Hybridcast receiver instructs initial URL for HTML application on top of a companion application by ReceiverDevice object. A companion application obtains the initial URL and load HTML application from the given URL. Once an HTML application on a companion device has been launched, communication by text message becomes ready between Hybridcast application on a Hybridcast receiver and an HTML application on a companion device.

9 Service examples

Some examples which are enabled by Hybridcast specifications version 1.0 are described in this clause.

9.1 Multilingual closed caption

According to Japanese digital broadcasting standard, closed caption can be provided for up to two languages within a broadcast channel. Two languages may not be enough for some people including minority or foreign travellers. If a viewer would like to watch closed caption in a language not delivered over the broadcast channel, additional closed caption text in a preferred language may be

obtained through broadband telecommunication network. The closed caption server feeds caption data in the requested language and corresponding time information. The Hybridcast application renders caption texts in accordance with given time information.

Figure 2.5 shows an example image of this service. In Fig. 2.5, seven languages are available. A viewer selects the preferred language by using a remote controller, and closed caption in selected language is on the screen.

FIGURE 2.5

Multilingual closed-caption

9.2 Social TV

One of the highlights of TV viewing is to spend time and discuss with family or friends while watching TV programmes, especially live broadcasting programme. It is quite natural to do so when a family shares the single TV set and watches the same programme together. By integrating with a Social Networking Service (SNS), Hybridcast enables people who are not in the same location to share the feelings as if they were nearby. It is called Social TV.

Figure 2.6 shows a chat application example. It lists friends who are watching the same programme on top-right of the screen by icons. On the bottom-right, chat messages are displayed.

The Hybridcast application manages the login status of SNS and watching status of the programme. The application obtains the ID of programme from the receiver. The application then sends the ID of programme to the server for the SNS. The friends or family who are logged in and have registered the same ID of programme become chat members. Thus, Social TV service can create a virtual space for TV experience and overcomes physical distance among friends or family.

FIGURE 2.6 Social TV

9.3 Language study

Providing an educational broadcasting programme is one of the important elements of a public service. A language study programme is a typical example of this. Hybridcast can provide a language study service with a secondary screen device (Fig. 2.7), which contributes to an efficient and effective education. An application on a tablet is used to ask questions about conversation in the programme. Viewers can answer the questions using touch controls.

Stream event within a broadcast channel indicates a moment to progress to a next step of lessons. For example, a broadcaster sends the stream event when asking a question. Once the Hybridcast application on a Hybridcast receiver receives the stream event, it tells the application on the tablet to acquire data of the question over the telecommunication network and to start asking it.

Such a mechanism and user interface of a tablet may introduce viewers to new experiences of language learning. Especially, the touch interface makes learning fun and viewers may not get tired quickly.

Use of the companion device as an interactive text book can be applied to other subjects of education. It will allow reviewing the matters of wrong answers later very easily, and help effective learning.

Language programme (Broadcast)

Companion device

WiFi

Hybridcast receiver

Application for language study (Broadband)

FIGURE 2.7 Language study

9.4 Multilingual caption with companion devices

As described in the previous clause, secondary screen devices, or companion devices, can be integrated into the Hybridcast services. An application that uses a companion device for multilingual closed caption was developed to evaluate the effectiveness of use of the device. To support a variety of languages, closed-caption data are delivered over a broadband channel. The use of the device enables language selection without disturbing the content on the primary screen. For animation programmes, introducing the captions in balloons near the relevant objects on the screen will provide ease to the viewers in understanding the programmes. Figure 2.8 shows example images of a primary screen in various languages with regard to this application.

FIGURE 2.8

Multilingual closed captions in balloons on a TV screen

Japanese

English

Spanish

In addition, the companion device can be used to improve accessibility to the content. Synopses of the content and presentation of a representative picture of each scene with captions on the device will facilitate understanding of the story by the viewers. The presentation of the picture on the device changes in accordance with the progress of the programme presented on the Hybridcast receiver. Figure 2.9 shows the synopses and a representative scene presentation in multiple languages.

FIGURE 2.9 Synopses and representative picture of the scene on a companion device

Synopses

Japanese

English

Spanish

9.5 First Hybridcast services

Hybridcast services are planned to be introduced from simple services to sophisticated ones. In September 2013, the first Hybridcast services were launched in Japan. Figure 2.10 shows the appearance of the top-level menu in the Hybridcast services.

FIGURE 2.10

Top-level menu in the first services

From the top-level menu, various services, including news, weather, stock market information, and EPG, can be selected. Viewers can select any applications from their own remote controller. Figure 2.11 shows example images when weather forecast is selected from the menu.

FIGURE 2.11
Screen image of weather forecast

Detailed forecast

Current weather

The combination of the broadcast and Web services is a natural feature of the Hybridcast system. For the Hybridcast applications, accessing the Web sites to retrieve information is easy because the functionality of Hybridcast applications is based on HTML5. Figure 2.12 shows example presentations of the Hybridcast news application that retrieves news articles and headlines from Web services.

FIGURE 2.12 Information retrieval from websites by the Hybridcast application

(a) Headlines

(b) Brief index

(c) News article

(d) Access rank

Information on the news headline, brief index, and news article, as shown in cases (a) to (c), is retrieved by the Hybridcast application from existing news website on the Internet. The application displays the retrieved news headlines at the bottom of the screen by scrolling, as shown in (a). The viewers can configure the application to show the headlines on the basis of the preferred genres and regions of the news. Each article headline also works as the button to select the article. When one of the headlines is selected, a brief index is displayed, as shown in (b). When the enter key on the remote controller is hit again, the detailed news article is displayed, as shown in (c). Whilst the detailed news article is displayed, information on the access rank of the news items is retrieved and displayed by hitting the left arrow key, as shown in (d). In any case, the same mechanism for information retrieval used on the Web is used for the Hybridcast applications, which also allows broadcasters quick implementation and easy deployment of their services.

With regard to the application implementation, the broadcaster benefits from the use of the data broadcast content as a launcher of Hybridcast applications. In Japan, almost all digital TV receivers provide data broadcast capability, and all Japanese broadcasters have deployed their own data broadcast services since digital broadcast was launched. Along with the development in the Hybridcast specifications, the data broadcast API is enhanced to provide capability to also launch Hybridcast applications. Because Hybridcast-capable receivers provide both Hybridcast and enhanced data broadcast environment, this enhancement of the data broadcast API allows Hybridcast applications to be started by modifying only the existing data broadcast content. This enhancement reduces the need for the broadcasters to install additional Hybridcast signalling facility for simple Hybridcast services and provides opportunity to broadcasters to easily and quickly deploy Hybridcast services. And the API to start data broadcast content defined in the Hybridcast specification allows broadcasters to enhance their services by combination of data broadcast and Hybridcast.

The applications are designed to provide appropriate actions in case of emergency. Broadcasters should present prioritized information as one of their essential roles. In Hybridcast applications, graphic components can be overlaid with the broadcast video, as shown in Figs 2.10 to 2.12. However, in case of an emergency such as a disaster alert, a signal multiplexed in the broadcast stream causes the applications to hide immediately so that the broadcast video is preferentially displayed and notifies the viewers of what is currently happening.

9.6 Planned services

Some new sophisticated services are planned to be launched soon. The following are under consideration as upcoming Hybrideast services, which will be launched in 2014:

1) Start-over service

This service offers viewers the opportunity to enjoy a broadcast programme that has already started. This is different from the catch-up service; this service can start playing the programme before it ends.

2) Multi-view

This service allows viewers to watch the scene from a variety of angles. The angle to be presented is chosen by the viewer, and the selected video image is delivered over the broadband channel to the companion devices.

3) Programme-related services

These services offer viewers the opportunity to participate in programmes, for example, a quiz show, post opinions about the programmes and obtain additional information including keywords of the programme. Additional information may be updated in accordance with the progress of the programme.

4) Video-on-demand

This service offers viewers the opportunity to playback various videos in addition to the broadcast programmes. It allows playing of video clips of previously broadcasted programmes or highlight scenes of the current programmes, for example. Some video clips may be automatically recommended by using the functions in the servers. The selection of a video clip can be made on the companion device. The selected video clip will be displayed on a TV screen with HD resolution.

In addition to the above services, the use of companion devices to improve accessibility is under consideration to improve accessibility of the broadcast content. Typical usages of this device are sign-language presentation and enhancement of the programmes, such as drawings for kids.

10 Future development

Hybridcast specifications version 1.0 satisfies a basic features and broadcast-oriented managed application. Standardization and development of Hybridcast specifications continues to include advanced features such as accurate cross-stream synchronization and non-broadcast-oriented managed application. The new version of Hybridcast specifications will be released in the near future.

Annex 3

Integrated broadcast-broadband system based on enhancement of data broadcasting

1 Introduction

Since the launch of digital broadcasting services in Japan in 2000, interactive data broadcasting has been made possible by the use of Broadcast Markup Language (BML). BML is defined in ARIB STD-B24 and Recommendation ITU-R BT.1699, and is designed to provide bidirectional communication capability by using a return channel. However, in the early stages, the return channel was 2 400 bit/s analogue telephone line. It can be used to send a short text message from a receiver to a broadcaster, but it is impractical to use it as a forward channel. As the number of Web users increased rapidly, the broadband environment also made significant progress. In 2004, an Internet-based interactive data broadcasting service was launched for digital TVs equipped with an Ethernet port. The Internet-based interactive data broadcasting enables to combine interactive content over broadcast and additional interactive content over the Internet. One-Seg, which is aimed at handheld receivers and cell phones began in 2006, also offers interactive services that effectively link broadcast and telecommunications.

Recently, broadband network has reached more than 70% penetration in Japan and FTTH is the most major access method for broadband connection. This means that broadband networks can be used as a practical channel to deliver audiovisual content. By using this infrastructure, some broadcasters launched a broadband-based video-on-demand service for digital TVs in 2009, and which is under the control of interactive content.

All the features mentioned above are achieved by the combination of broadcast and broadband networks, that is, hybrid broadcast services, and have been achieved by enhancement of BML functionalities. Hybrid broadcasting services using enhanced BML are broadcast-centric as they are

always activated from normal data broadcasting. Additional functionalities of BML for hybrid services are described below.

2 Internet-based interactive data broadcasting

Interactive data broadcasting or interactive TV (iTV) content is delivered over broadcast channel. Because broadcast channel is unidirectional, all the iTV content elements have to be delivered together simultaneously and a receiver selects required elements from the delivered elements according to end-users' instruction for presentation. Content elements to deliver is sometimes limited by the available transmission bandwidth. However, if content elements are delivered over broadband channel, such limitation can be overcome by use of server-client data transfer like Web.

BML has ability to interact with web servers. The mechanism is quite simple; only to specify a web server instead of broadcast carousel. Obtained content elements from the web servers are parts of broadcast service and thus simultaneous presentation of broadcast AV content is allowed. Figure 3.1 shows the behaviour of a receiver in this case.

Internet-based interactive data broadcasting

iTV content over broadcast

Content acquisition

Server for additional iTV content (Text, Pictures, etc.)

FIGURE 3.1
Internet-based interactive data broadcast

However, security mechanism for Internet-based data broadcasting is introduced into the receivers to maintain content integrity. Allowable sites or domains for each broadcast channel are presented to a receiver by manufacturers. If iTV content instructs to get content elements or BML documents from the sites outside of allowable areas, a receiver terminates the presentation of broadcast AV content.

3 Switching to IPTV/Internet-TV⁵ services

Interactive data broadcasting can be used as a gateway to IPTV/Internet-TV services including video on demand (VOD). To enjoy VOD services, viewers need to select content to play and command equipment to play it. Switching to VOD portal site from interactive data broadcast content is the simplest way to follow needed actions. This is one of the suitable ways to take the viewers to IPTV/Internet-TV services where the broadcasters offer their specific services.

A function added to script language of BML starts another browser in a different language such as HTML. The function instructs initial URL to the other browser and terminates the BML browser where the script runs. The function can be applied in both normal data broadcast and Internet-based interactive data broadcast described in the previous clause. Figure 3.2 shows transition paths to IPTV/Internet-TV services by using this function.

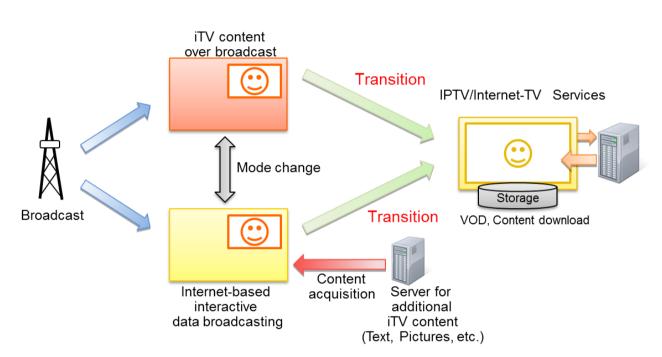


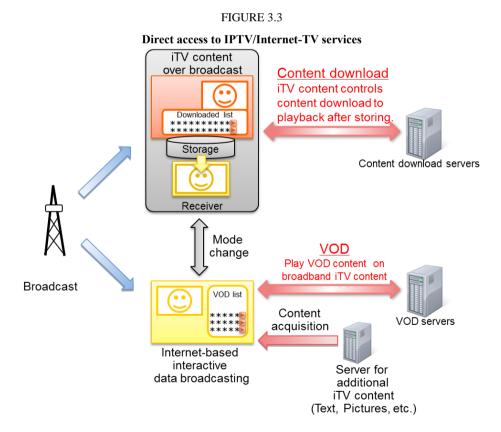
FIGURE 3.2 Switch to Internet-TV services

The function also "suggests" URL of the original interactive content to the other browser to return to broadcast-based services. However, the return to the original content is not guaranteed. Similar to start the other browser, the BML browser has to be restarted and the BML browser may not accept "suggested" URL for return. (Because Japanese data broadcast is operated in a way that an entry document is always the same, the BML browser does not need to provide ability to receive URL as an invocation parameter.) Another way to go back to the broadcast service is to tune the channel again.

4 Direct access to IPTV/Internet-TV services

In contrast with switching to IPTV/Internet-TV services described in the previous clause, this functionality employs IPTV/Internet-TV services as a part of interactive data broadcast services.

⁵ The term "Internet-TV" is used in this Report to indicate interactive services providing delivery of video/audio/metadata/multimedia information over unmanaged Internet networks.


This functionality is intended to incorporate VOD and content download offered in IPTV/Internet-TV services from both normal data broadcast content and Internet-based interactive data broadcast content.

For this functionality, other additional functions of script language of BML are added. The functions are to call receiver-resident VOD playback and content download functions. Figure 3.3 shows this functionality.

When VOD related function is called, a receiver-resident VOD player starts in response to the function call. The VOD player obtains streaming signal for specified VOD content. When the VOD player finishes its presentation, the same page of BML content as the calling page is presented. By using this function, keeping user interface, offer of trailer video clips and catch-up service are available.

In normal interactive data broadcast content, while presenting VOD content, data broadcast content may be changed according to the progress of broadcast programme. To avoid the loss of the return page of BML document, call of the VOD related function is limited from Internet-based data broadcasting content only.

Similarly, when content download function is called, a receiver-resident content downloader starts. The content downloader runs in background and stores specified content in a receiver built-in storage device. Because this function returns immediately after start of the content downloader, this function can be called from normal interactive data broadcast content.

5 Compatibility consideration

A receiver equipped with enhanced BML functionalities also provides capability of probing functions. By using these functions, the interactive data broadcast content can be authored to maintain compatibility with legacy models or receivers. That is, the interactive data broadcast content can call enhanced functions only on the capable receivers.

6 Future development

BML is designed specifically for interactive data broadcast. To get more flexibility and compatibility with the latest web technologies, development and standardization of a new system based on HTML5 is underway. The new system will be introduced into the market in two steps. The first step will provide rather simple functionalities similar to the interactive data broadcasting including functionalities described above. The second step will provide more complex and advanced functionalities such as precise cross-stream synchronization or third-party made applications. Even in the first step, capability of dynamic JavaScript libraries, flexibility of presentation and compatibility with existing web will allow wider range of services.

Annex 4

Consideration on use of Integrated broadcast-broadband technologies on mobile devices

These user requirements apply when the mobile consumer device is designed to be able to simultaneously connect to broadcast emissions and to the Internet by means of separate over the air connections.

1 User requirements

When considering the user requirements for mobile reception of broadcasting of multimedia and data application, the following should be considered.

- access to content and services may be controlled via conditional access/service access protocols and other content protection mechanisms;
- seamless service access to content and services across networks:
- flexible configuration of a large variety of services;
- transmission of good quality of image, video, audio and data services;
- support for interactivity, where content and applications have to be interactive;
- technical aspects enabling interoperability of the services between broadcast and telecommunication networks, for example, content format, audio/video codecs, and encapsulation methods.

TABLE 2

Technical characteristics of mobile reception include

User requirements	Technical characteristics
a) Image resolution, frame rate and bit rate	i) Video should have QVGA, WQVGA as well as other display resolutions. Up to ~2.25 Mbit/s per stream as frame rate and up to 30 fps as bit rate.
	ii) Audio should have stereo and mono, 12 kbit/s bit rate supported.
	iii)Data supported include binary data, text, data, audio/video file distribution
b) Monomedia coding	a) Video:
	– H.264/AVC.
	b) Audio:
	- HE AAC-v2
	c) Data format
	 MPEG4 files.
	– JPEG.
c) Flexible configuration of services:	 Real-time audio and video.
- Audio/video	 Scheduled content and file download based on network
 Ancillary and auxiliary data 	load.
	 IP data streams.
	 Electronic programme guide.
	- $C/N = 13.5$ dB in a typical urban mobile environment.

2 Interoperability between telecommunication services and interactive broadcasting services

In order to achieve the interoperability of telecommunication services and interactive broadcasting services, two levels have to be considered; one is content level and second is service level, which have to complement each other in order to have interoperability of those two media of transmission of video and audio signals.

The content format level of multimedia format of ISO/IEC 14496-14, mono-media coding of audio coding of ISO/IEC 14496-3/2001:Amd.4, video coding of ISO/IEC 14496-2/10 MPEG-4 AVC and data coding of ISO/IEC 10918 (JPEG) are possible formats.

Annex 5

Integrated broadcast-broadband system based on the Ginga middleware

1 Introduction

The architecture of the Ginga middleware requires at least two sub-systems: Ginga Common Core (Ginga-CC) and Ginga Nested Context Language (Ginga-NCL). Ginga-CC delivers applications with their associated media content – which can come from broadcast signals or be delivered by broadband IP services – to Ginga-NCL. Ginga-NCL is the Presentation Environment of Ginga, the logical subsystem responsible for running NCL applications.

NCL is the declarative language of Ginga. Its characteristics make it a sound declarative solution for IBB services: the language flexibility; its reuse facility; multi-device support; presentation and application content adaptability; API for building and modifying applications on-the-fly; and, mainly, its intrinsic ability for easily defining spatiotemporal synchronization among media assets (including viewer interactions). For particular procedural needs, e.g. when more complex dynamic content generation is required, NCL provides support to the Lua scripting language. Lua is a powerful, fast, lightweight, embeddable scripting language.

2 Ginga position

Ginga 1.0 was developed in 2006 and first standardized by ABNT in November 30, 2007 (see References). The first commercial Ginga-NCL implementations appear in 2008. In 2009, Ginga-NCL 1.0 and NCL 3.0 became part of Recommendation ITU-T H.761 for IPTV services and Recommendation ITU-R BT.1699. Many countries, particularly in South America region, have adopted Ginga as the middleware of their terrestrial DTV standards, based on the Brazilian-Japanese ISDB-T Standard.

Currently, work is underway towards Version 2.0 of Ginga-NCL and Version 4.0 of NCL. Some new features to be introduced are presented in the next sections of this annex.

Consumer equipment manufacturers offer a large number of models of Ginga enabled TV sets, set-top boxes and mobile (smart) phones. There are open source implementations for Linux, Windows, MAC OS, and Android platforms which can be embedded in desktop computers, tablets, smart phones, etc. Some consumer equipment manufacturers offer these open source implementations in their products.

Several textual and graphical authoring tools were developed to help application designers to create new NCL applications. Figure 5.1 exemplifies some of them.

FIGURE 5.1

Some NCL authoring tools

a) NCL Eclipse b) NCL Composer c) ISB Designer

Up to now, a high number of applications have been developed for NCL. They come mainly from broadcasters in Brazil and Argentina, but also come from other countries that have adopted Ginga. A number of applications are also available in the Web. Several Web browsers are able to play NCL applications natively or using NCL plug-ins.

FIGURE 5.2 **Some Ginga applications**

a) Learning

b) Sport

c) Advertisement

d) News

e) Talk show

f) Soap opera

g) One-Seg applications

h) NCL application presented by an HTML browser

3 Ginga architecture

The Ginga architecture is depicted in Fig. 5.3. Ginga allows for some extensions, but they are optional. To be Ginga complaint, the Ginga-NCL subsystem is required.

The Ginga Common Core (Ginga-CC) is composed of media players, of procedures to obtain contents that can be transported in diverse networks accessed by a receiver (see § 4), and of the conceptual display graphical model defined by the receiver platform. The Ginga Common Core is also responsible for gathering metadata information and providing this information to NCL applications; for providing an API to communicate with DRM system; for managing context information (like user profiles and receiver profiles); and for supporting software version management (update) of Ginga's components.

Media player components serve application needs for decoding and presenting content types such as PNG, JPEG, MPEG and other formats, including those for content which contains declarative or imperative code, like HTML, Lua, etc. A generic media player API establishes the necessary communication between media player components and the Ginga-NCL subsystem. Thanks to this API, Ginga-NCL and the Ginga-CC are strongly coupled but independent subsystems. Ginga-CC may be substituted by other third part implementations, allowing Ginga-NCL to be integrated in other DTV middleware specifications, extending their functionalities with NCL facilities. Players that do not follow the generic API are required to use the services provided by Adapters.

Ginga Optional Extensions **Ginga-NCL Presentation Environment IPTV Services / Applications** XML Parsers **NCL** Player NCL Context VOIP EPG Converters Manager Scheduler Bridge Gaming Private Base Player Layout Manager Manager Manager PPV VOD Adapters Ginga Common - Core Context Manager Data Update Manager CA Search Engine Processing **Players DRM** Tuner G. Manager Protocol Stack SI MPE DSM-CC Media Streams FTP **HTTP RSTP** RTCP **IGMP** TS and Others **RTP** TCP UDP ΙP

FIGURE 5.3

Ginga architecture

The core of Ginga-NCL subsystem is the NCL Player. This component is in charge of receiving and controlling multimedia applications written in NCL. Applications are delivered to the NCL Player by the Ginga Common Core.

In Ginga-NCL, a declarative application can be generated or modified on the fly, using NCL editing commands (see § 6).

The NCL Player deals with NCL applications collected inside a data structure known as private base. A Private Base Manager component is in charge of receiving NCL editing commands and maintaining the NCL documents being presented (see § 6).

Ginga-NCL Presentation Engine supports multiple presentation devices through its Layout Manager module. This component is responsible for mapping all presentation regions (see § 5) defined in an NCL application to canvas on receiver's exhibition devices.

In particular, Ginga-NCL provides declarative support to IPTV specific services, such as VOD, datacasting, etc. Thus, a VoD service may, for example, play an NCL application besides the main audiovisual stream. Moreover, an IPTV service itself can be an NCL application.

4 Integrated broadcast and broadband delivery

Since its first standardized version in 2007, Ginga provides support to converged services by making use of broadcast and IP distribution path.

NCL applications have a stricter separation between its content and its structure. NCL does not define itself any media content. Instead, it defines the glue that holds media objects together in multimedia presentations. An NCL document (NCL application specification) only defines how media objects are structured and related, in time and space. As a glue language, NCL does not restrict or prescribe the content types of its media objects. Which media objects are supported depend on the media players that are coupled in the NCL Presentation Environment. One of these players is the main video and main audio decoder/player, usually implemented using hardware resources in a DTV receiver. Therefore, the main video and the main audio of a service are treated like all other media objects that may be related using NCL.

Another media object that is required in a Ginga-NCL implementation is the HTML-based media object. Which HTML-based language will have support in an NCL formatter is an implementation choice, and, therefore, it will depend on which HTML browser will act as a media player integrated to the NCL presentation engine.

Still another media object that is required in a Ginga-NCL implementation is the declarative NCL media object, that is, a media object containing an NCL application. Therefore, NCL applications can be embedded in NCL parent applications, likewise HTML-based applications can be.

To extend the NCL declarative language basic model adding decision-making features that deserves the imperative paradigm, NCLua objects are part of the Ginga-NCL specification. Lua is the scripting language of NCL. NCLua media objects carries Lua code based on the standard NCLua API.

Each media object of NCL specifies in its src attribute the URI Scheme used to retrieve its content. Depending on the specified scheme, Ginga knows if it has to get the content from the broadcast signal from or the ΙP network. For example, if the URI http://server identifier/file path/#fragment identifier, the content must be retrieved from the IP network, if it is isdb://program number.component tag, it must be retrieved from the tuned channel signal.

The advent of new multimedia services, such as ultra-high definition TV or free viewpoint TV, will put a very large bandwidth pressure on the broadcast networks. In order to offer these services while maintaining quality, enhancing broadcast services with broadband media may be one key point to low-cost deployment of new services. Integrated broadcast and broadband retrieval of audio-visual content in NCL allows for specifying URI schemes that locate the enhancement streams besides the usual URI scheme to retrieve the base stream in a broadcast signal.

5 Secondary devices (second screens)

Since its first standardized version of 2007, NCL and Ginga-NCL provide declarative support for presenting DTV applications distributed on multiple devices, namely multiple device exhibition and multi-user control.

Presentation of media objects of NCL applications can be associated to devices using the abstraction called device classes. Secondary devices (child devices) are registered to classes controlled by a parent device.

NCL 3.0 has originally defined two types of device classes: the passive one, in which the same content is shown on all paired devices under the rendering of their parent device; and the active one, in which the content exhibition is rendered by each individual child device, thus allowing independent navigation and interaction.

The parent device can be the base device or any descendent secondary device. The parent device can delegate control to child devices registered in its active classes. From these secondary devices, it is possible to create new sub-domains (new classes under control of the new parent device), forming a hierarchical application domain, as shown in Fig. 5.4.

Hierarchical device control model **Base Device Parent Device** Sub-domain **Exhibition devices** Application's Device Domain

FIGURE 5.4

In defining a class, it is possible to define the maximum and minimum number of devices it has. This mechanism comes together with a method to identify each device in a class. For each media object, NCL allows for defining in which class of devices must be exhibited and in which region on the screens of all devices registered in the class.

Three classes are pre-defined in Ginga 1.0: passive Class 1, and active Classes 2 and 3. Devices registered in Class 1 can present pre-rendered encoded media streams received from a parent device in the hierarchical orchestration tree to which it is paired, and to navigate in such content as a group; that is, any navigational action is reflected in all paired devices (individual navigation is not allowed). Devices registered in Classes 2 and 3 can individually control the decoding and/or the execution of an NCL application (Class 2) or HTML application (Class 3) sent by the parent device. offering an individual (personalized) navigation on the content.

Figure 5.5 shows an NCL application exhibited in South Africa during the FIFA World Cup 2010, announcing the World Cup 2014. The base device was a TV set and several smart phones were used as secondary devices. Additional information about the previous world champions were presented on the secondary screens; in another moment, it was possible to buy tickets for the World Cup 2014; and finally a game was presented near the end of the video, in which a device could act as a penalty shooter and another as a goalkeeper. The result of the game was displayed in the TV set.

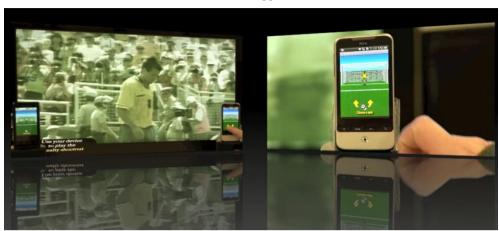


FIGURE 5.5

Multi-screen application

In NCL 3.0 and Ginga 1.0, dynamic class specifications are not supported. In addition, which protocols underlie the communication between the cooperating devices is left to proprietary implementations, although they shall follow the standardized multiple device API. The next version NCL 4.0 and Ginga 2.0 remove these limitations.

In addition to NCL 3.0 default feature to define passive and active classes (classes 1, 2 and 3), mechanisms will be introduced in NCL4 for describing specific capabilities a device aiming at registering to a class must have. It is also possible to dynamically associate states and arbitrary parameters to already defined device classes. Secondary device registrations and deregistration on these classes are conditioned to this dynamic parameters and states. A media capture class is also introduced. Devices registered in this class can capture media content to be exhibited on its parent device. Finally, the protocols and APIs for device communication are being standardized.

6 Application control

The core of an NCL presentation engine is composed of the NCL player and its private base manager module. The NCL player is in charge of receiving an NCL application and controlling its presentation, trying to guarantee that the specified relationships among media objects are respected. The player deals with NCL applications that are collected inside a data structure known as *private base*. NCL applications in a private base may be started, paused, resumed, aborted, stopped and may refer to each other.

NCL editing commands control private base operations (openBase, activateBase, deactivateBase, saveBase, and closeBase commands). A second subset of NCL editing commands allow for application manipulation in a private base (to add, remove, and save an application in an open private base; and to start, pause, resume, and stop application presentations in an active private base). A third subset defines commands for live editing in an open private base, allowing the creation of live applications.

NCL editing command to add an application in an open private base also carries information of accessible network domains, including permission information for each domain. Permission information represents allowable access to resources in a network domain.

Applications which are controlled by NCL editing commands coming in the broadcast signal are called *broadcast-oriented managed applications*. These applications are allowed to access broadcast resources of the tuned channel and Web services based on permission information in the *add* NCL editing command.

Ginga also allows for using the application information table (or AIT) and its descriptors, to control broadcast-oriented managed applications, besides the use of NCL editing commands. Each service that has an application associated with it may contain an AIT, and each AIT can contain a description of every application that can run while that service is being broadcasted, and must carry information of accessible network domains with permission information of each domain. For each application_control_code of an AIT there are equivalent NCL editing commands to perform the same tasks.

Applications that are not controlled by NCL editing commands coming in the broadcast signal may still be authenticated by broadcasters by means other than broadcast signals. Permission to access to broadcast resources is given by application authentication.

Ginga associates at least one private base, the *default private base*, with each IBB service. An IBB service may be a broadcast TV channel, or an IPTV channel, or a Web service. When an IBB Service is open, e.g. when a broadcast TV channel is tuned, its corresponding default private base is opened and activated by the Private Base Manager. Other private bases can then be opened (or created), but at most one base associated with each service of an IBB service (for example, a service of a broadcast TV Channel). When an IBB service has just one service, it only has one private base associated, the default private base.

NCL resident applications are managed in a specific private base.

NCL Editing commands are wrapped in a structure called event descriptors. They may be issued externally to an NCL application execution, or internally by the execution of an NCLua object.

NCL Editing Commands sent from an IBB service can control only the private bases created by previous NCL editing commands sent through the open IBB Service and the default private base associated with the IBB Service. In other words, editing commands coming from an IBB Service have no effect on private bases associated with other IBB Services. For example, editing commands coming from a tuned broadcast TV channel have no effect on private bases associated to other TV channels.

NCL editing command events generated by NCLua objects running in private bases may control just these private bases.

7 Developing and testing Ginga and applications

Ginga has an open source reference implementation that can be downloaded from http://git.ginga.org.br. Several commercial releases are derived from this reference implementation.

At http://testsuite.gingancl.org.br, Ginga developers and testers can find a comprehensive specification of testing procedures for the Ginga-NCL presentation environment. This helps manufacturers verify the compliance of their products and give confidence that a proper interoperability level can be achieved.

For testing the more TV-related NCL applications, open source NCL Players are available for Windows, Linux and MAC platforms (http://www.gingancl.org.br/en/ferramentas). There are also NCL Players running natively or as plug-ins of HTML browsers.

There are several tools to help authors to design NCL applications. For example, one can find NCL Composer and NCL Eclipse at http://www.ncl.org.br/en/autoria, which are two open source authoring tools available in the official site of the NCL language.

References

ITU-T H.761 Recommendation ITU-T H.761 (2011), Nested Context Language (NCL) and

Ginga-NCL for IPTV Services.

ABNT NBR 15606-2 ABNT NBR 15606-2 (2007), Digital Terrestrial TV - Data Coding and

transmission specification for digital broadcasting – Part 2: Ginga-NCL for fixed and mobile receivers: XML application language for application coding.
