HANDBOOK – RADIOWAVE PROPAGATION INFORMATION FOR DESIGNING TERRESTRIAL POINT-TO-POINT LINKS
FOREWORD
PART 1 – LINE-OF-SIGHT LINKS
1 Introduction
2 Typical applications
3 Basic propagation effects
    3.1 Free-space loss
    3.2 Attenuation due to atmospheric gases
    3.3 Diffraction fading and path clearance
        3.3.1 Basis of prediction method for diffraction loss
        3.3.2 Basis of procedures for determining path clearance
    3.4 Scintillation fading
    3.5 Summary of propagation mechanisms associated with multipath fading
4 Attenuation due to precipitation and other atmospheric particles
    4.1 Attenuation due to precipitation
        4.1.1 Basis of prediction method for rain attenuation
        4.1.2 Specific attenuation
        4.1.3 Effective path length
        4.1.4 Application examples
        4.1.5 Prediction of combined rain and wet snow
        4.1.6 Long-term frequency and polarization scaling of rain attenuation statistics
        4.1.7 Statistics of duration and rate of rain induced fading
        4.1.8 Seasonal variations - worst month
        4.1.9 Discussion of model evaluation (testing)
        4.1.10 Example of calculation
    4.2 Tandem and convergent links
        4.2.1 Correlated fading on tandem paths
        4.2.2 Convergent paths
    4.3 Paths with passive repeaters
5 Multipath fading and enhancement at a single frequency
    5.1 Prediction of the fading/enhancement distribution
        5.1.1 Basis and accuracy of Methods 1 and 2
        5.1.2 Basis and accuracy of the method for shallow fading
        5.1.3 Basis and accuracy of the method for the enhancement range
        5.1.4 Application examples
    5.2 Statistics on fade number and duration
        5.2.1 Estimation procedures
        5.2.2 Experimental basis of the estimation procedures
    5.3 Rate of change of signal level
    5.4 Short paths
    5.5 Short periods of time
    5.6 Tandem links
6 Propagation induced distortion
    6.1 Multipath propagation models
        6.1.1 Hypothetical ray models
        6.1.2 Polynomial models
        6.1.3 Parametric models
    6.2 Performance calculation
        6.2.1 Signature curve methods
        6.2.2 Fade margin methods
        6.2.3 Method using linear amplitude dispersion (LAD) statistics
7 Reduction in cross-polarization discrimination
    7.1 Channel model
        7.1.1 Nominal received field
        7.1.2 XPI due to propagation (1 ray approach)
        7.1.3 XPI due to multipath propagation (2 rays)
        7.1.4 Co-polar attenuation dependence
    7.2 Prediction of XPD statistics during clear air conditions
        7.2.1 Description of Method Q
        7.2.2 Application examples
    7.3 Prediction of XPD statistics during precipitation conditions
        7.3.1 Basis of prediction methods of XPD during precipitation
        7.3.2 Application examples
    7.4 Relative effects of XPD deterioration in clear-air and rain conditions
    7.5 Cross-polarization due to sand and dust storms
8 Multipath-propagation related alleviation techniques
    8.1 Non-diversity strategies and techniques
        8.1.1 Increasing path inclination
        8.1.2 Reduction of the effect of surface reflections
        8.1.3 Reduction of path clearance
    8.2 Diversity techniques
        8.2.1 Space diversity
        8.2.2 Antenna spacing in space diversity systems
        8.2.3 Angular spacing in angle-diversity and combined space/angle-diversity systems
        8.2.4 Space-diversity improvement in narrow-band systems
        8.2.5 Frequency diversity
        8.2.6 Polarization-diversity improvement factor for wideband systems
        8.2.7 Relative merits of the various diversity techniques and their combinations
    8.3 Diversity techniques for alleviating reductions in XPD
References
PART 2 – TRANS-HORIZON LINKS
1 Introduction
2 Typical applications
3 Basic theory
    3.1 Diffraction
        3.1.1 Diffraction over a smooth spherical Earth
        3.1.2 Diffraction over isolated obstacles
        3.1.3 Diffraction over multiple obstacles
        3.1.4 Diffraction over irregular terrain
    3.2 Tropospheric scatter
4 Prediction of transmission loss
    4.1 Diffraction loss
        4.1.1 Diffraction over a spherical Earth
        4.1.2 Knife-edge diffraction
        4.1.3 Single rounded obstacle
        4.1.4 Double knife-edges
        4.1.5 Multiple isolated obstacle
        4.1.6 Application examples
    4.2 Troposcatter transmission loss
        4.2.1 Path antenna gain
        4.2.2 Application example
        4.2.3 Testing results
        4.2.4 Combined loss and its variability
5 Propagation induced distortion
6 Diversity techniques
    6.1 Space diversity
    6.2 Frequency diversity
    6.3 Angle diversity
    6.4 Polarization diversity
    6.5 Time diversity
    6.6 Combining techniques
    6.7 Diversity gain
References
PART 3 – FREE-SPACE OPTICAL LINKS
1 Introduction
2 Initial considerations in designing an FSO link
3 Geometrical attenuation
4 Atmospheric attenuation due to absorption and scattering
    4.1 Clear air attenuation
    4.2 Excess attenuation
        4.2.1 Mie scattering (estimation of fog attenuation)
        4.2.2 Rain attenuation
        4.2.3 Snow attenuation
5 Scintillation effects
6 Ambient light attenuation
7 Other issues
8 Application example
References