ITU-R Handbook – The Ionosphere and its effects on radiowave propagation (1998)
CONTENTS
PREFACE
CHAPTER 1 – INTRODUCTION
    1.1 Relationship of this Handbook to ITU-R Recommendations
    1.2 Application of the Handbook
CHAPTER 2 – IONOSPHERIC PROPERTIES
    2.1 The ionosphere
    2.2 Ionospheric profiles and structural features
        2.2.1 Physical processes of the ionosphere
        2.2.2 D region (50-90 km)
        2.2.3 E region (90-130 km)
        2.2.4 Sporadic E (Es)
        2.2.5 F region (130-500 km)
        2.2.6 F region irregularities (Spread F)
        2.2.7 Topside ionosphere
    2.3 Geographical features
        2.3.1 Ionospheric control points
        2.3.2 High latitudes
        2.3.3 Mid-latitudes
        2.3.4 Equatorial latitudes
    2.4 Solar cycle effects on propagation
        2.4.1 Solar cycle
        2.4.2 Annual cycle
        2.4.3 Diurnal cycle
    2.5 Modelling of ionospheric properties
        2.5.1 Empirical models
        2.5.2 Physical models
        2.5.3 Hybrid models
    2.6 Ionospheric variability and disturbances
        2.6.1 Solar-induced disturbances
        2.6.2 Disturbances of atmospheric origin
    REFERENCES FOR CHAPTER 2
    BIBLIOGRAPHY
CHAPTER 3 – IONOSPHERIC PROPAGATION
    3.1 Waveguide propagation
    3.2 Sky-wave propagation
    3.3 Trans-ionospheric propagation
    BIBLIOGRAPHY
CHAPTER 4 – PROPAGATION AT VERY LOW FREQUENCIES BELOW ABOUT 500 kHz
    4.1 ELF, VLF and LF propagation
    4.2 Propagation characteristics
        4.2.1 The waveguide mode propagation of VLF waves to great distances
        4.2.2 Normal diurnal variations of phase and amplitude at middle and low latitudes
        4.2.3 Phase stability
        4.2.4 Fading of the waves
        4.2.5 Variations during ionospheric disturbances
        4.2.6 High latitudes
    4.3 Calculating field strength: early approaches
    4.4 ITU-R Method of calculating field strength at VLF and LF
        4.4.1 The Wave-Hop method
        4.4.2 The Waveguide Mode method
    4.5 Reliability of the wave-hop method
    REFERENCES FOR CHAPTER 4
CHAPTER 5 – PROPAGATION AT FREQUENCIES BETWEEN 150 kHz AND 1 700 kHz
    5.1 Field strength measurements and analysis
        5.1.1 Field strengths at distances of less than 300 km
        5.1.2 Field strengths at distances between 300 and 3 500 km
        5.1.3 Field strengths at distances greater than 3 500 km
    5.2 Variations of field strengths and factors affecting propagation
        5.2.1 Fading rate
        5.2.2 Amplitude distribution
        5.2.3 Diurnal variations
        5.2.4 Variation with season
        5.2.5 Variation with solar and magnetic activity
        5.2.6 Influence of the ground on radiation towards the ionosphere
        5.2.7 Excess polarization coupling loss, Lp
        5.2.8 Field strengths exceeded for different percentages of time
    5.3 Discussion on prediction methods
        5.3.1 Sky-wave prediction methods in use at LF and MF
        5.3.2 Comparison of predicted field strengths with measured data
        5.3.3 Comparison of prediction methods
    5.4 LF/MF skywave propagation at daytime
        5.4.1 Seasonal variation
        5.4.2 Effects of latitude
        5.4.3 Effects of solar activity
        5.4.4 Statistical distribution of field strengths
        5.4.5 Daytime sky-wave field strength and interference levels
    REFERENCES FOR CHAPTER 5
CHAPTER 6 – HF PROPAGATION
    6.1 HF circuit design
    6.2 Requirement for predictions
    6.3 Development of prediction techniques
    6.4 Noise and interference
    6.5 Variations of field strength and propagation features
        6.5.1 HF signal characteristics - multipath
        6.5.2 Absorption
        6.5.3 Fading
        6.5.4 Regional anomalies
    6.6 Reliability of HF radio systems
        6.6.1 Basic circuit, reception and service reliability (BCR, BRR, BSR)
        6.6.2 Overall circuit, reception and service reliability (OCR, ORR, OSR)
        6.6.3 Basic path and communications reliabilities (BPR, R)
        6.6.4 Computation of compatibility
    6.7 Service needs
    6.8 The HF radio sky-wave propagation model
        6.8.1 Path lengths up to 7 000 km
        6.8.2 Path lengths beyond 9 000 km
        6.8.3 Paths between 7 000 and 9 000 km
        6.8.4 System performance parameters
    6.9 Antenna considerations
        6.9.1 Antenna characteristics
        6.9.2 Gain
        6.9.3 Radiation pattern
        6.9.4 Polarization
        6.9.5 Ground effects
        6.9.6 Radiated power
    6.10 Application of prediction to HF system planning and design
    6.11 Operational constraints
        6.11.1 Available frequencies (bands)
        6.11.2 Interference
        6.11.3 Digital systems
    6.12 Selection of system parameters
        6.12.1 Selection of frequencies
        6.12.2 Selection of antennas
        6.12.3 Selection of transmitter power
        6.12.4 Location of terminals
    6.13 Overview of computer programs
    REFERENCES AND BIBLIOGRAPHY FOR CHAPTER 6
CHAPTER 7 – PROPAGATION AT VHF AND ABOVE - EARTH-SPACE
    7.1 Earth-space propagation
    7.2 Total Electron Content (TEC)
    7.3 Effects due to background ionizations
        7.3.1 Faraday rotation
        7.3.2 Group delay
        7.3.3 Dispersion
        7.3.4 Doppler frequency shift
        7.3.5 Direction of arrival of the ray
        7.3.6 Absorption
    7.4 Effects due to ionization irregularities
        7.4.1 Scintillation effects
        7.4.2 Geographic, seasonal and solar dependence
        7.4.3 Scintillation models
    7.5 Summary
    REFERENCES FOR CHAPTER 7
CHAPTER 8 – PROPAGATION AT VHF AND ABOVE - TERRESTRIAL
    8.1 Ionized propagation at VHF and above
        8.1.1 Normal F-region propagation at VHF
        8.1.2 Trans-equatorial propagation (TEP)
        8.1.3 Sporadic-E propagation
        8.1.4 Meteor-trail ionization
        8.1.5 Auroral ionization
        8.1.6 Ionospheric scatter propagation
        8.1.7 Summary
    REFERENCES FOR CHAPTER 8
    BIBLIOGRAPHY
CHAPTER 9 – GLOSSARY
    9.1 Ionosphere and waves
    9.2 Signals, noise and interference
    9.3 Antennas and radiation
    9.4 Radiowave propagation
    9.5 Fading and loss
    9.6 Reliability and compatibility