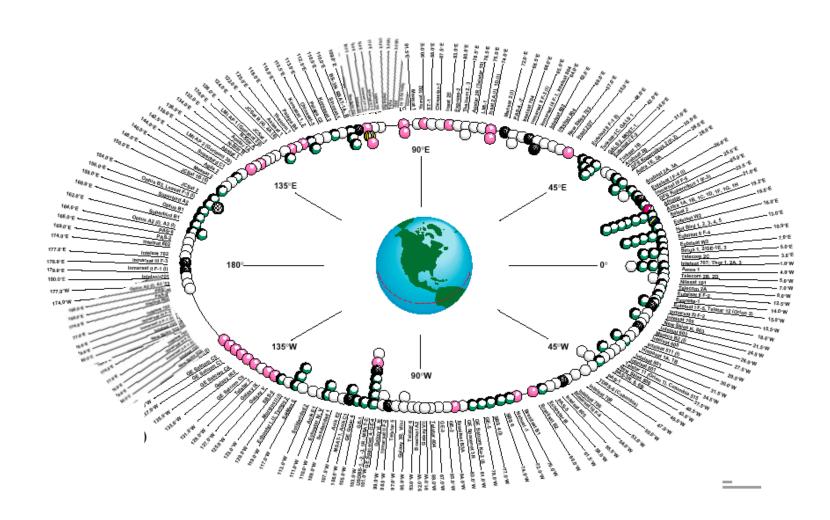


Overview of Ka-band Satellite System Developments &

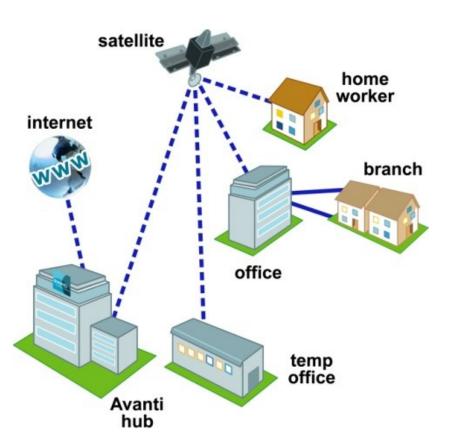
Prospects For Use Of The Ka-Band
By Satellite Communication Systems
Almaty, Kazakhstan, 5 - 7 September 2012

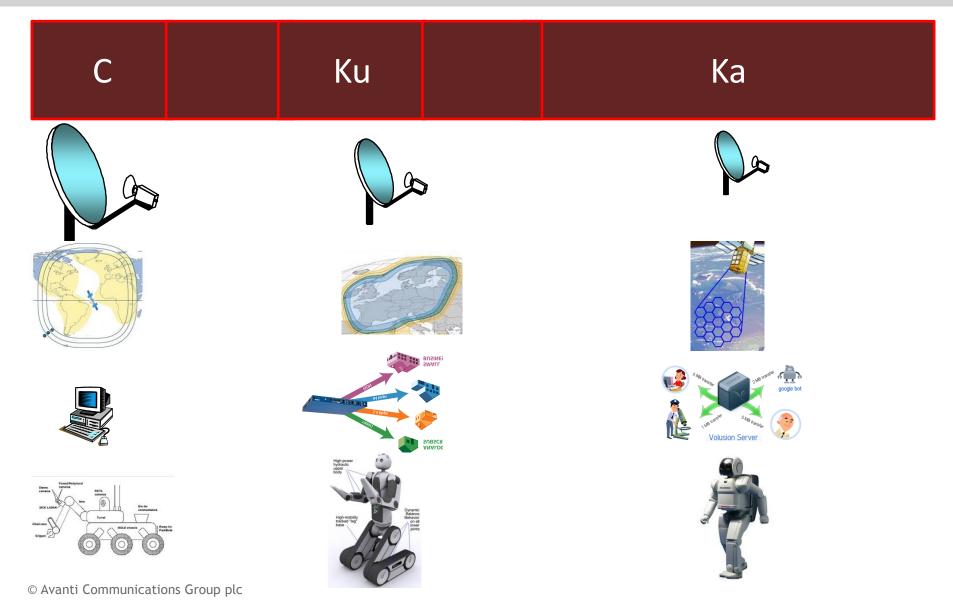
Kumar Singarajah
Director, Regulatory Affairs & Business Development
Avanti Communications Group plc
www.avantiplc.com

KA-BAND


Ka-band Offers Significant Advantages

- Spectrum, a major constraint for satellite operators at C/Ku-band.
 Less congested at Ka-band.
- Ka-band satellites are highly efficient, which lowers bandwidth cost.
- Data traffic is increasingly bandwidth hungry. The higher Kaband operating frequency enables high bandwidth data throughput (10Mbit/s...500 Mbit/s+)
- Customer premises are equipped with small Ka-band antenna – typically 74cm.




Ka-band Satellite Broadband Provides Access To Internet

- Ka-band satellite broadband is a proven technology, delivering high-speed services to customers beyond the reach of terrestrial networks.
- Over 1 million premises are equipped with satellite broadband in the USA.
- Ka-band introduces higher download and upload speeds at lower cost.
- Typically up to 10Mbps/2.5Mbps broadband to 74cm Ka-band SITs (satellite interactive terminals) for consumers
- Higher data rates for government / enterprise customers

Spectrum & Technology Evolution

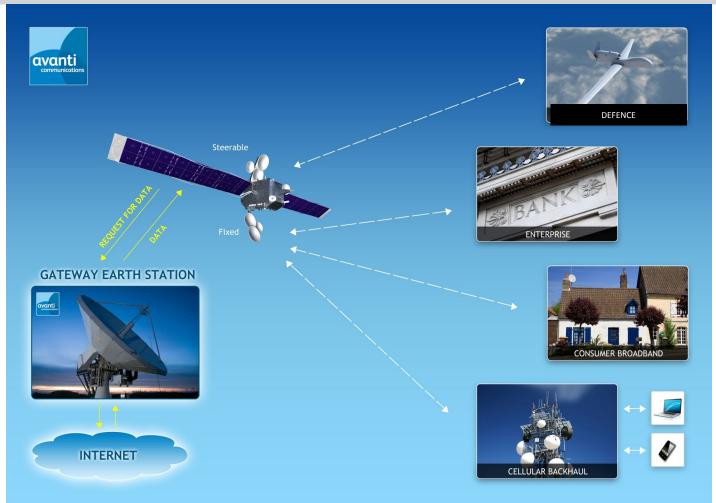
Current Use of Ka-band By Commercial Satellites

Indicative List of Launched Commercial Satellites With Ka-band			
Company	Satellite System		
Arabsat	Arabsat-5B, Arabsat 5C		
Avanti	HYLAS-1 / HYLAS-2		
Eutelsat	Eutelsat-W3 series, Ka-Sat, Hotbird		
Hispasat	Spainsat, Hispasat-1E		
Hughes	Spaceway-3 / Jupiter-1		
Intelsat	IAS-28 / Intelsat-20		
Ipstar	Ipstar		
Iridium	Iridium (LEO)		
JAXA/NICT	Winds		
Nilesat	Nilesat 201		
SES	ASTRA 1H, ASTRA-1L, ASTRA-3B, ASTRA 4A,		
	AMC-15, AMC-16, NSS-6		
Spacecom	Amos 3		
Telesat Canada	Nimiq 4		
ViaSat	ViaSat-1, Wildblue -1, Anik-F2		
Yahsat	Yahsat 1A (government) / Yahsat-1B		

Planned Use of Ka-band By Commercial Satellites

Indicative List of Planned Commercial Satellites With Ka-band				
Company	Satellite System			
ABS	ABS-7, ABS-2			
Arabsat	BADR 7			
Avanti	HYLAS-3			
Eutelsat	W3C, EUTELSAT-3B			
Eutelsat / ictQATAR	ES'HAIL			
Hispasat	Hispasat AG1, Amazonas-3			
Inmarsat	Global Xpress F1/F2/F3			
Inmarsat	Alphasat 1-XL			
ISRO	G-Sat 14			
Measat	Measat -5			
NBN Co	NBN-1 / NBN-2			
NewSat	Jabiru 1			
O3B Networks Limited	O3b Networks (MEO)			
RSCC	Express AM5 & AM6 & AM7			
SES	Astra 2E, ASTRA 2F, ASTRA 2G, ASTRA 4B,			
	ASTRA 5B			
Russia RTCom	National Systems			
Spacecom	Amos 4 & 6			
Telenor	Thor-7			
Turksat	Turksat 4A / Turksat 4B			

Source: Global VSAT Forum / November 2011


AVANTI & KA-BAND

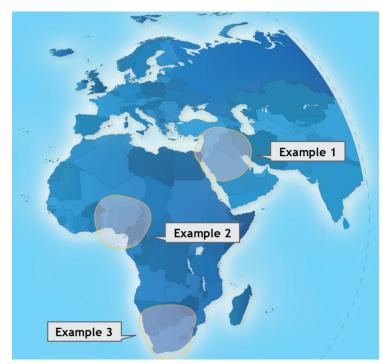
- Avanti Communications is a UK Hqed satellite operator
- 14 years experience in the satellite industry
- Listed on the London Stock Exchange (AIM:AVN)
- > US\$ 850 million capital deployed
 - Top shareholders include: M&G, Caledonia, GIC, Capital Group, Fidelity
 - Lenders EXIM (US), COFACE (France), Barclays Capital (UK)
- Use the latest Ka-band satellite technology
- Main activity is to provide broadband data communications
- Commercial satellite names: HYLAS-1 / HYLAS-2 / HYLAS-3 etc
- ITU-R Sector Member as a Recognised Operating Agency (ROA)
- ITU-D Sector Member

Avanti Operates In Four Markets Using Ka-band Satellite Technology

HYLAS-1 (Launched 26 November 2010)

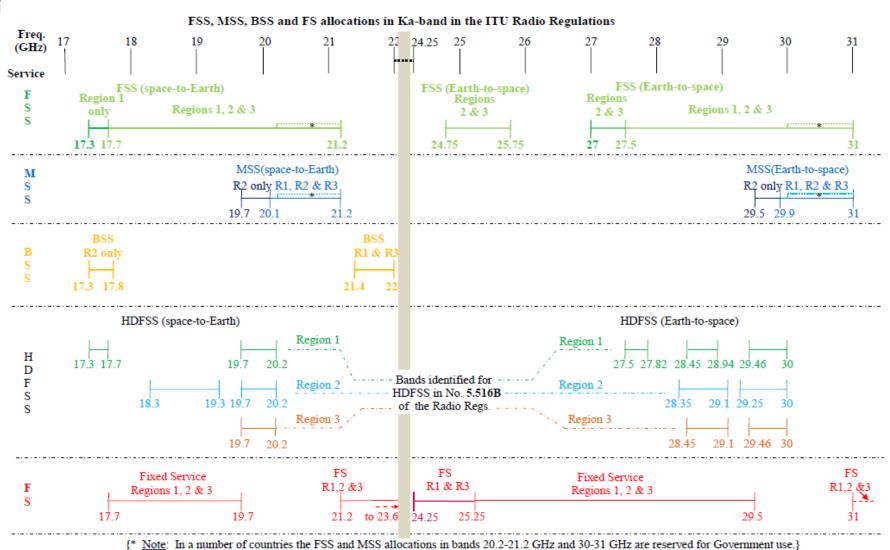
- Private Public Partnership (PPP) with European Space Agency (ESA)
- Civil and government Ka-band system
- Multiple Ka-band Spot Beams
- Very high power (> 62dBW) Spot Beams
- Orbital location 33.5°W / Operational
- Constructed by EADS Astrium (EU) / ISRO (India)
- Other service / coverage areas feasible
- Ka-band Gateway Earth Stations in UK at Goonhilly and Lands End, Cornwall UK (diversity sites / connected by dark fibre)

HYLAS-2 (Launched August 2, 2012)

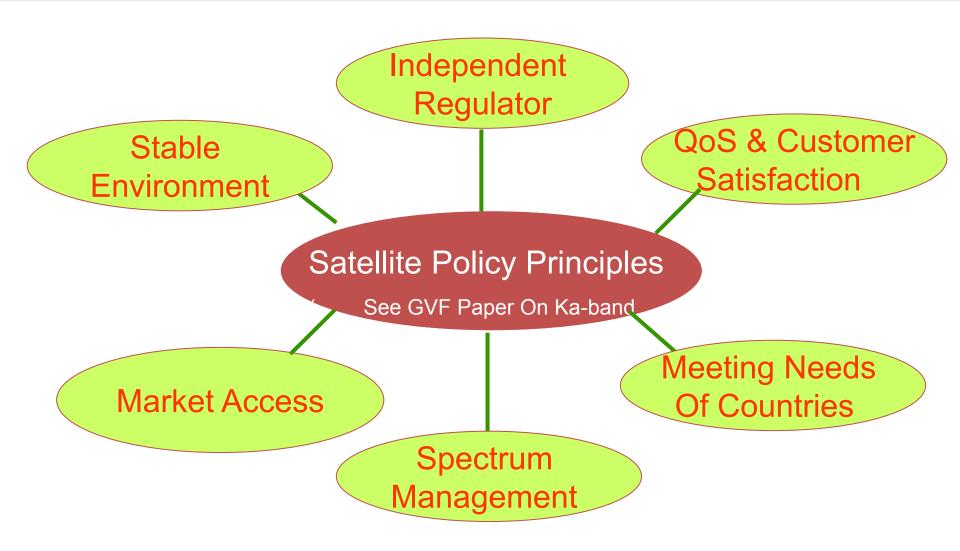


- Civil and government Ka-band system
- Ca 50 spot beams across Middle East,
 Africa and Europe (> 24 active in normal operations)
- Plus steerable spot beam
- Very high power (> 62dBW) Spot Beams
- 'Wet' and 'dry' spot beams for differing regional climates
- Multiple gateway earth stations (UK, Cyprus, Germany, etc)
- Constructed by the Orbital Sciences Corporation (USA)

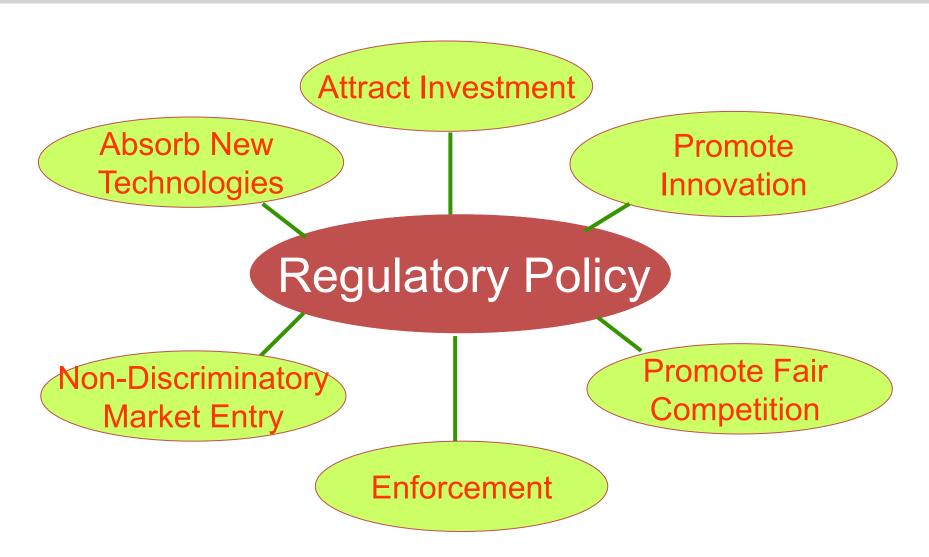
- Private Public Partnership (PPP) with European Space Agency (ESA)
- HYLAS-3 will be a "hosted payload" on a GEO EDRS-C satellite mission flown by ESA. The HYLAS 3 payload would be integrated onto the ESA EDRS-C GEO satellite.
- The HYLAS-3 Ka-band capacity will operate in a cluster of Ka-band user spot beams large enough to cover an area the size of Southern Africa. It could go anywhere in Africa or the Middle East or CIS.
- The HYLAS-3 Ka-band user-beam antenna is fully steerable throughout the life which confers great flexibility advantages to certain customers.
- Avanti completed financing round of £ 75 million for HYLAS-3 in February 2012
- HYLAS-3 Ka-band payload : MDA (Canada) is primecontractor.



KEY KA-BAND REGULATORY ISSUES FOR GEO KA-BAND FSS


Top Level View Of ITU Frequency Allocations At Ka-band

Source: Global VSAT Forum / November 2011



Estimate Of Ka-band GEO FSS Satellite Network Filings To ITU By CIS Countries

CIS Cou	untry	Ka-band ITU Satellite Filings At "API" Stage	Ka-band ITU Satellite Filings At "NOT" Stage
	Armenia	0	0
C•	Azerbaijan	23	0
	Belarus	1	0
	Kazakhstan	16	10
1	Moldova	0	0
	Russia	61	28
623	Tajikistan	0	0
(4)	Uzbekistan	0	0
8	Kyrgyzstan	0	0
(a)	Turkmenistan	0	0
	Ukraine	4	0

Source: ITU SNL Database (Date: August 20, 2012)

Ka-band GEO FSS Satellite Systems & Typical GEO FSS Frequency Bands Used

Shared Bands (FSS / FS)

17.7 – 19.7 GHz ↓

27.5 - 29.5 GHz 个

 Allocation of adequate spectrum on an exclusive basis by ITU for Ka-band FSS

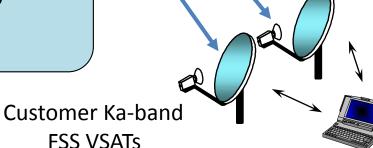
- National Frequency
 Allocations for Ka-band FSS
- Is it feasible to establish GW inside every country?

Exclusive Satellite Band

 $19.7 - 20.2 / 21.2 \text{ GHz} \downarrow$

29.5 − 30.0 / 31.0 GHz↑

Frequency coordination (with terrestrial FS)


Spectrum Fee for GWs

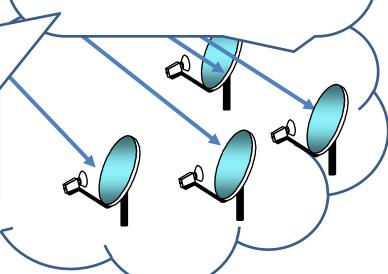
Gateway Earth
Stations (GW)

Incorrect alignment of VSATs

Spectrum Fees for VSAT Networks

Public networks

Ka-band GEO FSS Licensing


Typical Ka-band Regulations in Other Countries - For Blanket Licensing of GEO FSS Earth Stations:

- Meet off-axis EIRP density limits (viz ITU-R Recommendation 524-9)
- Meet antenna side-lobe limits (viz ITU-R Recommendation 580-6)
- EIRP ≤ 55 dBW
- ≥ Outside airport perimeter

Typical Ka-band Regulations in Other Countries:

- No charge for individual VSAT
- Network / Spectrum Authorisation Fee
 - Throughput (bandwidth)
 - Power
- Flat rate based on cost recovery


- Service Provider Licensing / Network Authorisation
- Blanket licensing of GEO Ka-band VSATs which comply with international standards (e.g. ETSI, ITU-R)
- Compliance and QoS
- [Registration of VSATs]
- Licensing fees

Regulatory Steps To Enable Ka-band GEO FSS Satellite Services

- 1. Ensure Ka-band FSS satellite frequency allocations of the ITU are implemented in national frequency allocations tables.
- Ensure equitable market access for Ka-band GEO Systems and application of WTO "National Treatment" principle.
- 3. Ensure licensing policies established to enable Ka-band GEO FSS satellite. service provision and Ka-band GEO FSS VSAT network operations in country.
- 4. Transparent, efficient and fair licensing regime to meet needs of operations, service providers and consumers / customers for GEO Ka-band FSS satellite services.
- 5. Implement a Ka-band VSAT Blanket License approach for GEO Ka-band VSATs (so end users do not need to apply for individual licences).
- 6. Implement a transparent and fair spectrum / licence fee for GEO Ka-band VSAT network operations / service providers.
- 7. Effect appropriate enforcement.
- 8. See GVF White Paper (2011) On Ka-band Licensing Principles.

