

International Telecommunication Union

The First Joint ITU | ISO/IEC Still Image Compression Standards

Dr. Istvan Sebestyen

Director, Multimedia & Appl. Stds, Siemens

Dr. Joan L. Mitchell

IBM Fellow, IBM Corporation

Dr. Fumitaka Ono

Professor, Tokyo Polytechnic University

Outline

- About the History
- Continous color still picture coding
 - JPEG1 (ITU-T T.81 | ISO/IEC 10918)
 - JPEG2000 (ITU-T T.800 Series) not discussed here
- Bi-level image coding standards
 - JBIG-1 (ITU-T T.82)
 - JBIG-2 (ITU-T T.88)
- o Conclusions
- Back-up slides (for more technical details)

ITU-T

History

- Both CCITT SGVIII and ISO TC97 SC2 WG8 had standardization groups for image coding in the mid 1980s
- Historically both were targeted on image communication (such as Photovideotex)
- In 1986 it was decided to create JPEG, the Joint (CCITT/ISO) Photographic Expert Group for cont. tone color image coding
- In 1988 it was decided to create JBIG, the Joint (CCITT/ISO) Bi-level Image Group for b/w image compression and coding

What is JPEG-1?

Basically a "color-blind" image compression engine

ITU-1

What is JPEG-1?

- "Tool-Box" type of standard for cont. tone color images.
- It standardizes "common image components" needed to create cont. tone color application standards
- "Tool-Box" is strictly separated from the application standard ("bricks" versus "building" concept)
- Therefore: originally no file format, no color space, no protocols (this was left to application standards)

What is JPEG-1?

- o "Baseline" sequential (lossy)
- 1. 8 bits/sample
 - 8x8 DCT
 - 2. Huffman coding only
 - 3. Required in all JPEG-1 decoders
- Extended sequential (lossy) option
 - 1. 8 or 12 bits/sample
 - 2. 8x8 DCT
 - 3. Huffman / Arithmetic coding (QM)

What is JPEG-1? Cont.

- o Progressive (lossy)
 - 8 or 12 bits/sample
 - 2. 8x8 DCT
 - 3. Huffman / Arithmetic coding (QM)
 - 4. SA, SS, and/or hierarchical
- Lossless option
 - 2-16 bits/sample
 - Predictive based (DPCM)
 - 3. Huffman or arithmetic coding (QM)
 - 4. Sequential and/or hierarchical

Progressive vs sequential

- Sequential: 1 pass to final quality
- O Progressive : Multiple passes
 - DC always separate pass(es)
 - 2. Spectral selection (SS): band of coefficients
 - 3. Successive approximation (SA)
 - 1st pass missing some Isb
 - 1 bit added per later pass(es)
 - 4. Can mix SS and SA
- o Following images by W.B. Pennebaker

DC without Isb (0.088 b/p)

ITU-T

Entropy coder is QM. Sequential to nearest 8 line boundary

+1-63 AC w/o 3 lsb (0.283 b/p)

ITU-T

progressive

9282 bytes

sequential

+1-63 AC 3rd Isb (0.482 b/p)

ITU-T

15796 bytes

sequential

+1-63 2nd Isb (0.796 p/p)

ITU-T

progressive

26091 bytes

sequential

DC +1-63 AC lsb (1.379 p/b)

ITU-T

progressive

45172 bytes

sequential

Original = 512×512 bytes

IPR Status JPEG-1

- Royalty Free Baseline (this is challenged in practice)
- RAND Options (Arithmetic Coding, Hierarchical)

JPEG awards

o Technical Emmy (with MPEG) 1996

 Lawrence D. Eicher Leadership Award of ISO/IEC 2003

Proposed enhancement to JPEG-1

- Optional alternative arithmetic coders
 - 1. Fee-free Q-15 (in alternative baseline)
 - 2. MQ-coder from JPEG2000 & JBIG-2
- o DCT precision 8 through 16 bits/sample
- Start of Image (SOI) marker replaced with JPG extension marker plus parameters
- Converts into baseline with no loss if DCTbased

History of Bi-level Image Coding Standard

- 1st. Gen. MH /MR(T.4); MMR (T.4/T.6) 1980, 1984 [Text, Lineart] ITU-T Recommendations only One/Two-dimensional Runlength coding
- 2nd Gen. JBIG or JBIG1 (ISO/IEC 11544, T.82) 1993
 [Text, Lineart, Halftone]
 Markov-model coding +Res. Reduction
- 3rd Gen. JBIG2 (ISO/IEC 14492, T.88) 2000 [Text, Lineart, Halftone, Visually-lossless Text; Multipage, Generated] Pattern-matching:: Markov, model coding /MMR

What is JBIG1?

- Title: PROGRESSIVE BI-LEVEL IMAGE COMPRESSION
- The 1st Bi-level Image Coding Standard Developed by Joint Bi-level Image Experts Group [ISO/IEC JTC 1/SC29/WG1 (JBIG SG) & ITU-T SG8/Q.6] (WG9 & WG10 were merged into WG1 on Nov.1993)
- Published as :ISO/IEC 11544 | ITU-T Rec. T.82 (ITU-T FAX Profile : Rec.T.85) in 1993

Bi-level image types

- Bi-level image typically consists of text, lineart and halftone
- Robustness to image types is achieved by Markov Model Coding (Context-base coding) with
 - Adaptive Templates
 - by a floating pixel
 - Adaptive Arithmetic Coding (QM-Coder)
 - built-in state transition rule for learning statistics (Common to JPEG Arithmetic)

JBIG1 compression improvements from MMR

ITU-T

- Also "tool-box" type standard
- Breakthrough improvement for halftone compression
 - 1. Periodical halftones: 10-30 times
 - 2. Non-periodical halftones: 3-5 times
- Enhanced improvement for text /
 line art compression
 - 1. 20-50% improvement (much in CG)

IPR Status JBIG-1 (RAND)

ITU-T

- Arithmetic Coding
 - IBM, AT&T ->Lucent, Mitsubishi
 - One-time fee of \$5,000-\$15,000 to each
- Image Reduction
 - Canon, KDD, Mitsubishi
- Adaptive adjusting of AT pixel
 - AT&T -> Lucent

What is JBIG2?

- Title: LOSSY/LOSSLESS CODING OF BI-LEVEL IMAGES
- The Second Bi-level Image Coding Standard Developed by: ISO/IEC JTC 1/SC29/WG1 (JBIG SG) & ITU-T SG8/Q.6 [Joint Bi-level Image Experts Group]
- Published as :ISO/IEC 14492 & ITU-T Rec. T.88 (ITU-T FAX Profile T.89)
- Also "tool-box" type standard

JBIG2 compression

Improves all combinations of text, halftones, line art / input (scanned, generated)/# of pages/lossy or lossless

JBIG2 Improvements

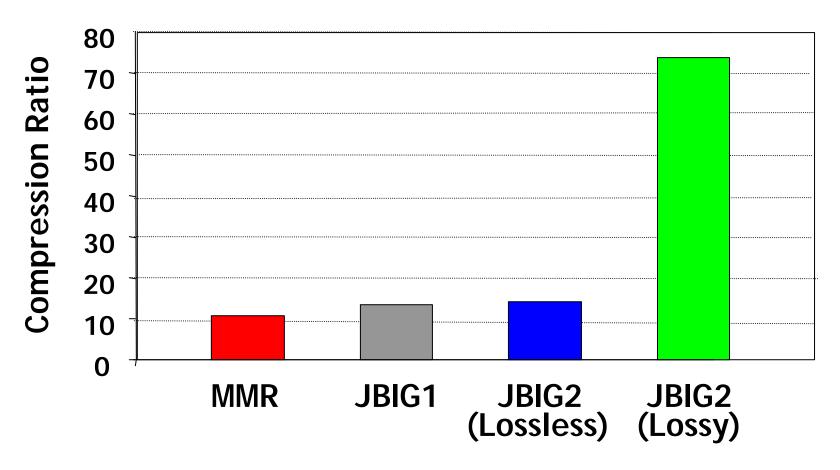
- Breakthrough text compression (3-5)
 - 1. Visually-lossless for scanned text pages
 - 2. Lossless for generated text pages
 - 3. Visually-lossless for multi-page (another factor of 2 or more)
- Enhanced *text* compression (20%)
 - 1. For **lossless** scanned pages
- Enhanced *halftone* compression (20%)
 - Extends earlier JBIG1 breakthrough for lossless halftone

IPR status JBIG-2

 License-fee free patents: Arithmetic Coder (IBM, Mitsubishi)

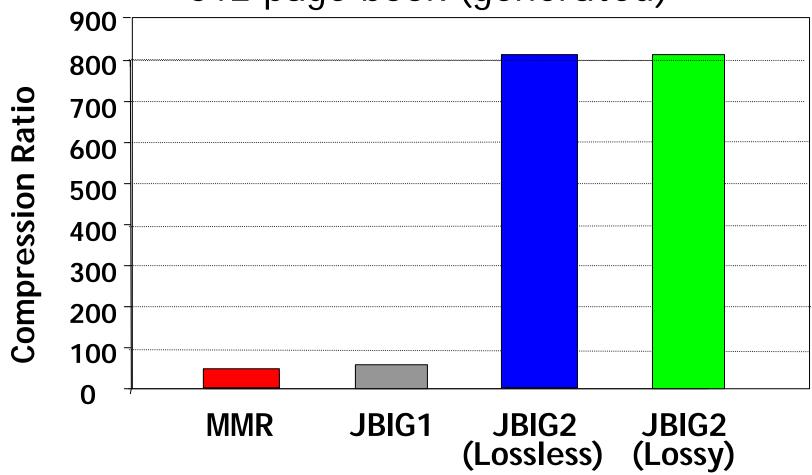
Supposed IPR-Fee Free Profile (#6,#7)

- Decoder
- No Mixed Region
- At least two stripes per page


Other profiles RAND

ITII T

Breakthrough text compression


1 page memo (scanned)

Breakthrough text compression plus multi-page compression

512 page book (generated)

Bi-level compression summary

o Lossless compression ratios:

1. MH:7

2. MR:10

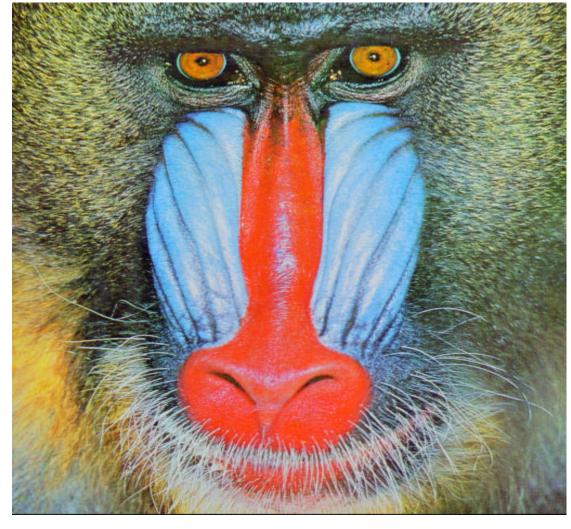
3. MMR:15

4. JBIG1:18

5. JBIG2:21

o Visually Lossless compression ratio:

1. JBIG2:100


Conclusions

- Excellent co-operation between ISO/IEC and ITU-T
- Technical Breakthrough both in bi-level and color still picture compression technology and standards
- Huge Market breakthrough for JPEG-1 one of the most successful standards ever
- JPEG-1 like market breakthrough for JBIG-1 and JBIG-2 yet to come

Thanks!

o Questions?

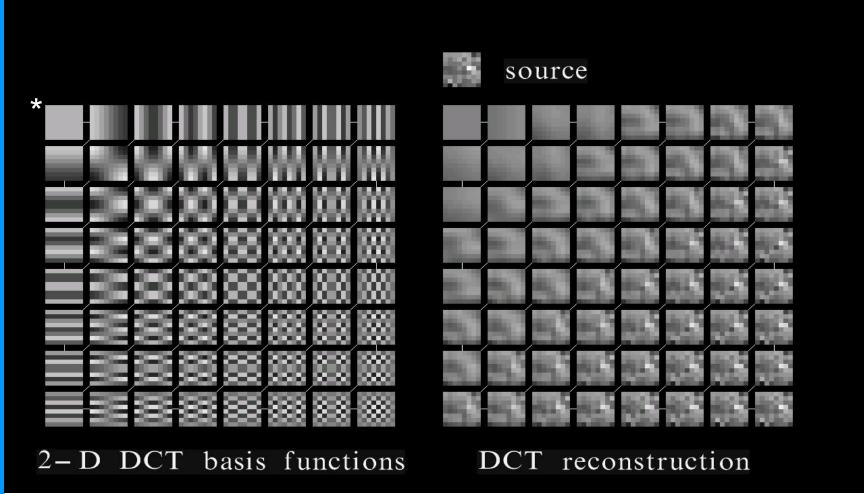
ITU-T VICA Workshop 22-23 July 2005, ITU Headquarter, Geneva

Back up slides

ITU-

Abstract

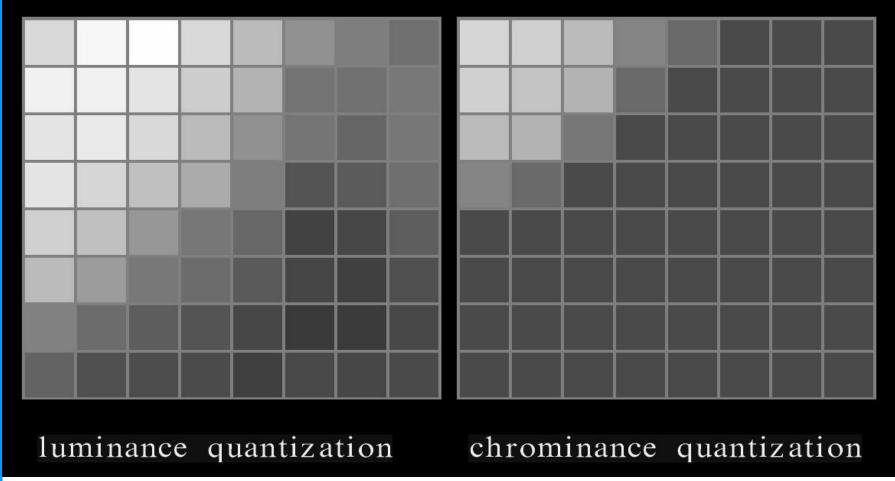
ISO and ITU (then known as CCITT) joined forces in 1986 to create the Joint Photographic Experts Group (JPEG) committee to establish a still image continuous-tone data compression standard. This cooperation extended to a sister organization, the Joint Bi-Level Image Experts Group (JBIG), when it split off from JPEG in 1988 to focus on two-tone (e.g. binary facsimile) images. The first joint standard (nicknamed JPEG-1) is widely used in cameras and on the internet. The JBIG-1 and JBIG-2 standards are included as fax standards. The first JPFG standard together with another sister organization's, the Moving Picture Experts Group (MPEG), standard were award a technical Engineering Emmy in 1996, a first Emmy presented for any standard, and in October 2003 it was honored with first Lawrence D. Eicher Leadership Award of ISO/IEC. This talk will briefly review these standards and point out their strengths.



Back-up Slides JPEG-1

ITU-T

DCT transform



* DC term. Other 63 are AC terms

Example quantization tables

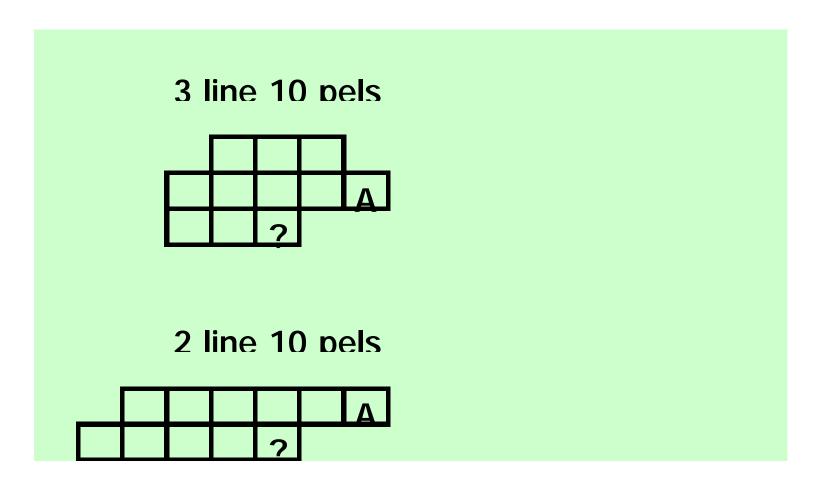
ITU-T

(Larger values are darker)

Proposed enhancement to JPEG-1

- Alternative baseline sequential (lossy)
 - 8 bits/sample
 - 8x8 DCT
 - 3. Q-15 arithmetic coding only
 - 4. Required in all DCT-based decoders
- Extended sequential (lossy) option
 - 8-16 bits/sample
 - 2. 8x8 DCT
 - 3. Arithmetic coding (Q-15 or MQ)

Proposed enhancement to JPEG-1


- Progressive (lossy)
 - 1. 8-16 bits/sample
 - 2. 8x8 DCT
 - 3. Arithmetic coding (Q-15 / MQ)
 - 4. SA, SS, and/or hierarchical
- Lossless option
 - 1. 2-16 bits/sample
 - 2. Predictive based (DPCM)
 - 3. Arithmetic coding (Q-15 / MQ)
 - Sequential and/or hierarchical

Back-up Slides JBIG-1

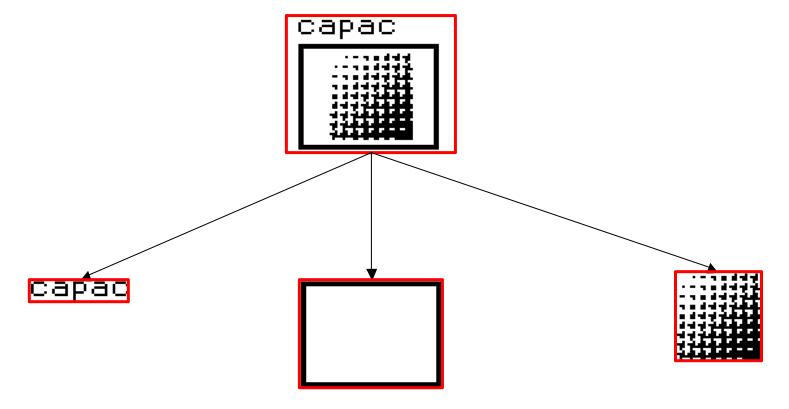
Two kinds of First Layer Template

Arithmetic Entropy Coding

- OM-coder
 - multiplication-free
 - MPS/LPS conditional exchange
 - renormalization-driven update
 - 113 state transition model
 - Byte-stuffing for carry propagation prevention

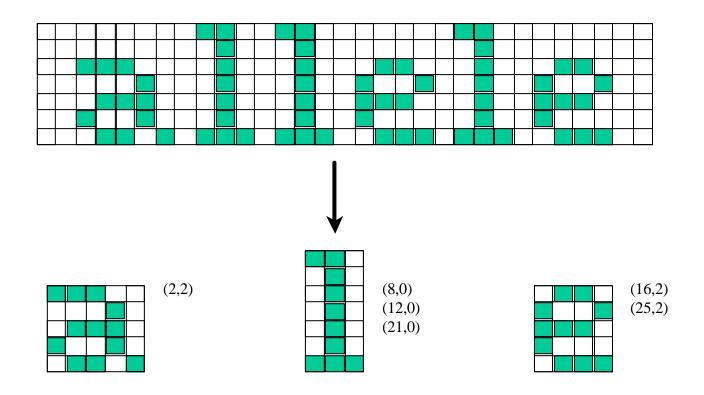
FAX Application

o ITU-T T.85


- Single-progression sequential coding only
- 2. Horizontal offset allowed for AT pel: 0-127
- 3. Vertical offset allowed for AT pel: 0
- 4. Periodic resynchronization allowed

Back-up Slides JBIG-2

Segmentation Example


Text region:
Use symbol coding

Generic region:
Use generic (MMR or JBIG1-like)
coding

Halftone region: Use pattern coding

Symbol Extraction

Context-base Arithmetic coding Compared to JBIG1

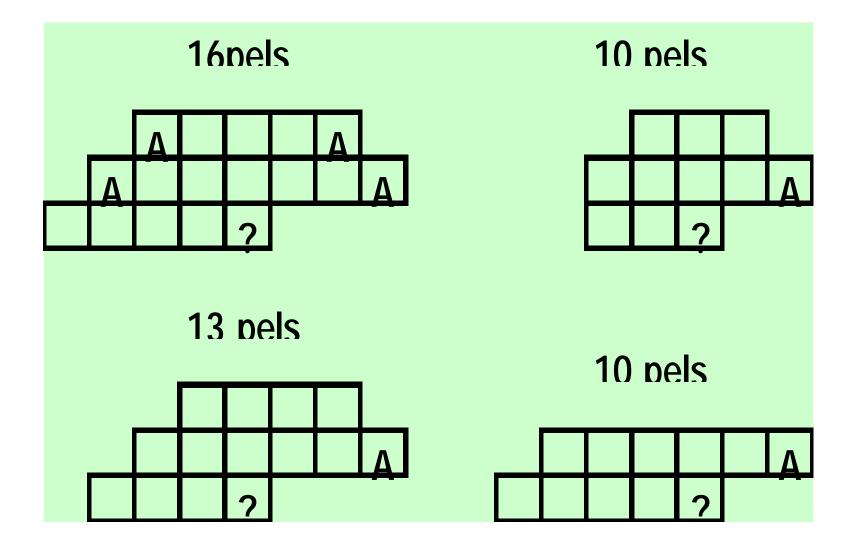
Number of template pels (Adaptive Pel)

JBIG2:16(4AP); 13(1AP); 10(1AP)

JBIG1:10(1AP)

Adaptive arithmetic coder

JBIG2:MQ(47states, bit-stuffing)


common to JPEG2000

JBIG1:QM(113 states, byte-stuffing)

common to JPEG

Direct Templates

Compression performance

ITU-T

Image	Pages	MMR	JBIG1	JBIG2 (exact)	JBIG2 (lossy)
F04_300	1	95.9 KB (1)	77.7 KB (0.81)	73.4 KB (0.77)	14.2 KB (0.15)
Report	23	1.2 MB (1)	926.2 KB (0.74)	842.9 KB (0.67)	184.5 KB (0.15)
Book	512	45.7 MB (1)	34.7 MB (0.76)	2.6 MB (0.06)	N/A

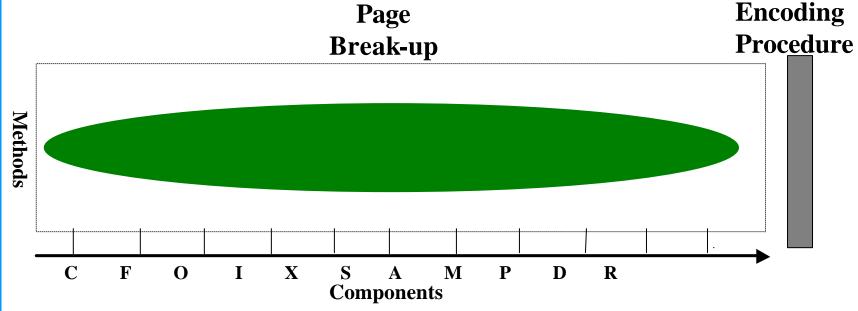
Context-base arithmetic coding JBIG2 compared to JBIG1

- Number of template pels (Adaptive Pels)
 - 1. JBIG2:16(4AP); 13(1AP); 10(1AP)
 - 2. JBIG1:10(1AP)
- Adaptive arithmetic coder
 - 1. JBIG2:MQ (47states, bit-stuffing) common to JPEG2000
 - 2. JBIG1:QM (113 states, byte-stuffing) common to JPEG

JBIG2 Additional Work

- o AMD1: Encoder (Published Dec.2004)
 - JBIG2 standardized a *code-stream* and *decoding* functions
 - Based on request to provide one or more normative, but nonmandatory, complete JBIG2 encoding methods
- AMD2: Extension of Adaptive Template for halftone coding (Published Dec.2003)
 - Based on request from high resolution printing market
 - At high resolutions, extending the number of AT pixels from 4 to 12 may achieve 20% compression improvement
 - Improvements used 'Genetic' AT pixel placement method

JBIG2-AMD1 Content


Encoding functions to mirror decoding functions (normative)

- entropy-encoding as exact inverse of entropy-decoding
- control-encoding as exact inverse of control-decoding
- page-breakup as analogous inverse of page-makeup (many-to-one architecture with optional components)
- Examples for all page-breakup components (non-normative)
 - based on journal publications, book and expired patent
 - **Updates to the List of Patents annex (non-normative)**
 - revises existing patent lists with latest additions and changes
 - adds additional list - patents identified in JBIG2, for which patent statements weren't obtained (with notes of explanation)

ITU-T

JBIG2-AMD1 Diagram

- Encoding Procedure: defined using conventional specifications
- Page Break-up: defined using an architecture, consisting of -
 - any sequence of components (each optional), from the set:
 {Capture, Filter, Orient, Identify, Extract, Screen, Align, Match, Post-Match, Dictionary, and Refine}
 - a user-specified method to perform each component (choice of each method is open, hence non-normative)
- Ellipse: represents wide variety of components and methods

Conclusion

JBIG2 Offers unprecedented compression
 As a Rule of Thumb
 Lossless compression ratio:

MH:7,MR:10,MMR:15, JBIG1:18, JBIG2:21 Visually Lossless:

JBIG2:100

AMD1(RF Encoding) is also available