

Standardization in JVT: Scalable Video Coding

Jens-Rainer Ohm

RWTH Aachen University Institute of Communications Engineering ohm@ient.rwth-aachen.de http://www.ient.rwth-aachen.de

Outline

- Introduction
- Summary on MPEG Call for Proposals on SVC and subsequent Core Experiments process
 - Results
 - Technical solutions
- Present status of SVC standard development in JVT
 - Temporal scalability and open-loop concepts
 - Spatial scalability
 - SNR and fine-granularity scalability

ITU-T VICA Workshop, 22-23 July 2005, Geneva

Conclusions

ITU-T VICA Workshop, 22-23 July 2005, Geneva

Scalable Media – the Idea

- **Universal Media Access:** code once and then customize the stream to access content
 - "Anytime"
 - from "Anywhere" (i.e. using any access network wireless, internet etc.)
 - and by "Anyone" (i.e. with any terminal complexity)
- **Compatibility** of different formats/resolutions

Terminal capabilities & Network characteristics feedback

MPEG/ITU-T Work Item on Scalable Video Coding

- SVC Work item
 - started as ISO/IEC 21000-13 (MPEG-21 Scalable Video Coding)
 - was moved to ISO/IEC 14496-10 January 2005
- Timeline:
 - October 2003: Call for Proposals
 - March 2004: Evaluation of proposals
 - January 2005: Working Draft (now within JVT)
 - October 2005: Committee Draft
 - March 2006 Final Committee Draft
 - July 2006 Final Draft International Standard

MPEG Call for Proposals on SVC – Results

Scenario 2: Scalability over 2 spatial layers

Following the Call

- Core experiments were run to further identify and develop SVC technology
 - based on Scalable Video Model (SVM)
- Comparison made for wavelet-based and AVC/H.264-extending solutions
 - Full range of scalabilities tested (3x spatial, 3x temporal, medium-granularity SNR)
 - Formal visual tests (experts & non-experts) indicated superiority of AVC/H.264 solution, particularly at low rates and resolutions

JSVM and Working Draft

- JSVM: Joint Scalable Video Model (extending from MPEG Scalable Video Model 3.0)
- Working Draft of 14496-10:2005/AMD1 Scalable Video Coding
 - Extension of AVC / H.264 with compatible base layer
 - Motion-compensated temporal filtering (MCTF) with adaptive prediction and update steps for open-loop compression
 - Layered structure with "bottom-up" prediction from lower layers
 - One decoder loop
 - FGS functionality as extension of CABAC, modified interleaved scan order ("cyclic block coding")
 - New SVC-specific NAL unit types
 - Bitstream scalability at level of NAL packets

Motion-compensated Lifting Filters

- Temporal-axis lifting filters, MC/IMC in lifting flow
 - MC and IMC must be aligned
- H pictures similar to MC prediction P pictures
- Adaptive predict & update
 - Switching intra/forward/ backward/bi-directional
 - L pictures similar to I pictures when update turned down

RWTH Aachen University

ohm@ient.rwth-aachen.de Institute of Communications Engineering

ITU-T VICA Workshop, 22-23 July 2005, Geneva

MCTF as "Temporal-axis Wavelet Tree"

original video sequence

1st decomposition level

2nd decomposition level

Prediction loop over LLL.. possible

3rd level

Layered Coding with compatible base layer

Layered Coding with Spatial Pyramids

Pyramid structure

- Basic building blocks from AVC / H.264
- Spatial transform coding using integer DCT approximations (4x4 and 8x8)

Inter Layer Prediction

- Motion: Upsampled partitioning and motion vectors for prediction
- **Residual:** Block-wise upsampled residual (bi-linear)
- Upsampled intra MB (H.264 / AVC 1/2-pel filter) Intra:

- Cropping and non-dyadic up-sampling
- Macroblocks not aligned between layers

Enhancement spatial layer

Base spatial layer

Standardization of SVC

SNR Scalability

- Layered representation of L/H pictures
- Non-scalable 'base-layer' (BL)
 - Motion information
 - Coarsest representation of intra and residual data
 - Minimum acceptable reconstruction quality
- **Quality scalable enhancement layers (EL)**
 - Residue between original and SNR-BL representation
 - Doubled quantizer precision per SNR-EL
 - FGS: truncation of EL packets at arbitrary points
 - Refinement in the transform domain
 - Single inverse transform at the decoder side
- "Dead substream" concept allows flexible increase of quality beyond the limitations of layered coding

SNR&Spatial scalability: 2 spatial layer example

ITU-T VICA Workshop, 22-23 July 2005, Geneva

SNR&Spatial scalability: 2 spatial layer example

Realisation of FGS SNR Scalability

Three scans for FGS coding of transform coefficients

- Non-significant transform coefficients of significant blocks
- Refinement symbols for already significant coefficients
- Coefficients of non-significant blocks

Scanning pattern for each scan

- Scanning from low to high frequency bands (zig-zag)
- Inside each band: first luma, then chroma in raster scan

Coding of transform coefficient levels

- Non-significant coefficients
 - Coded Block Pattern, Coded Block Bit, DeltaQP, Transform Size
 - CABAC symbols (SIG, LAST, SIGN, ABS)
- Significant coefficients
 - Refinement symbol (-1, 0, +1)

Bitstream structure

Data cube model and layered stream representation

New SVC NAL unit types can be ignored by conventional AVC parser

SVC sample

ITU-T VICA Workshop, 22-23 July 2005, Geneva

Standardization of SVC

ITU-T VICA Workshop, 22-23 July 2005, Geneva

Standardization of SVC

ITU-T VICA Workshop, 22-23 July 2005, Geneva

Standardization of SVC

Summary

SVC to become an extension of H.264 / AVC

Residual coding using existing tools

ITU-T VICA Workshop, 22-23 July 2005, Geneva

- MCTF open loop structure with update step
- Pyramid structure with inter layer prediction
- FGS quality layers plus a minimum quality base layer

Good compression performance

tradeoffs by the amount of flexibility in scalability

Further improvements expected e.g. by

- adaptive MCTF structures
- combinations closed/open loop
- improvement of quantization & FGS schemes
- cross-layer dependencies of texture and motion
- joint RD optimization over multiple layers

