

International Telecommunication Union

Standardization activities for multimedia opinion model: G.OMV

Akira Takahashi
Research group manager
NTT Service Integration Labs.

ITU-T Workshop on "End-to-End QoE/QoS" Geneva, 14-16 June 2006

Objective, but subjective

- Fundamental aspect of audio and visual communication services is users' perceptions (i.e., subjective assessment).
- Subjective assessment is time-consuming and not applicable to in-service and realtime scenarios.
- Means for estimating subjective quality solely from objective characteristics is necessary (i.e., objective assessment)
- Various standards exist for various application scenarios.

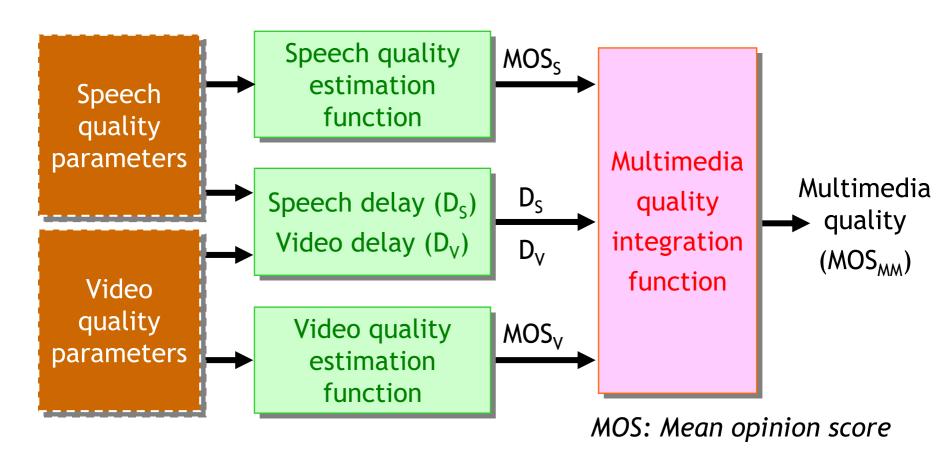
Application scenarios (1/2)

- Quality planning
 - 1. Objectives for individual quality factors (e.g., delay, echo, and packet loss)
 - 2. Quality assignment to each element (e.g., network link, network node, and terminal)
 - 3. Designing optimum balance of multiple quality factors (e.g., delay and packet loss)
- Quality benchmarking
 - 1. Comparing different products in terms of speech quality under various conditions
 - 2. Evaluating actual performance of service

Application scenarios (2/2)

- Quality monitoring
 - 1. Confirming service being delivered as required (e.g., SLA)
 - 2. Diagnosing a problem on a user-complaint basis (e.g., terminal/network, own/other network)
 - 3. Macroscopic analysis of QoE/QoS for facility planning (e.g., enhancing link capacity of a specific route)

Map of current and future standards


black: telephone-band, green: for wideband, purple: for cable TV, red for multimedia

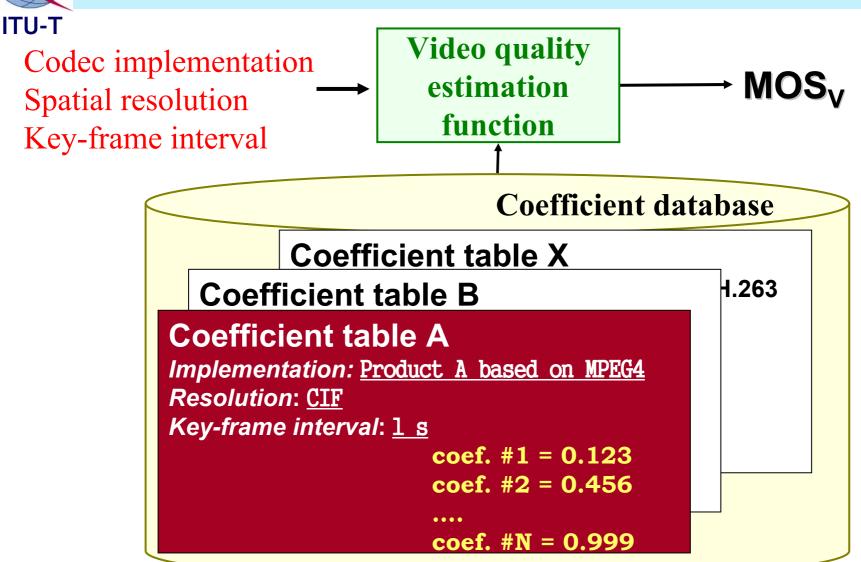
Media	Estimated subjective quality	Use case		
		Benchmarking/ Intrusive monitoring	Non-intrusive monitoring	Network planning
Speech	One-way	P.862/P.862.1 P.862.2	P.563, P.VTQ	G.107
	Two-way	P.CQO		G.WBEM
			P.561, P.562	
Audio	One-way	BS.1387-1		
Video	One-way	J.144	?.YYY	
		?.XXX	?.ZZZ	
Speech/Audio	One-way			
and Video	Two-way	J.148		G.OMV (Videophone)

ITU-T Workshop on "End-to-End QoE/QoS" Geneva, 14-16 June 2006

Framework of G.OMV (overview)

Framework of G.OMV (1/3)

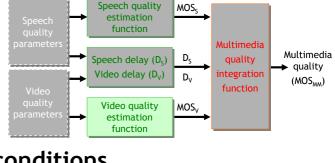
- Assuming typical terminal characteristics
- o Input:
 - 1. Speech and video codec
 - 2. Speech and video packet loss rate
 - 3. Speech and video delay
 - 4. Talker echo loudness rating
 - 5. Spatial resolution of video codec
 - 6. Key-frame interval of video codec
 - 7. Video frame rate
- Output: MOS_s, MOS_v, MOS_{MM}

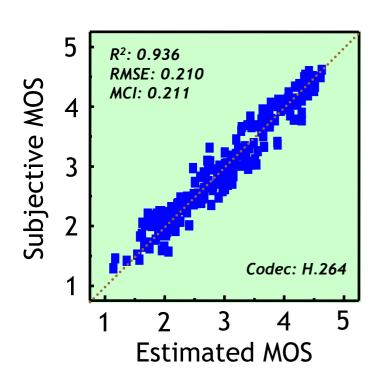


Framework of G.OMV (2/3)

o Individual speech and video quality estimation functions with predetermined coefficient databases for various kinds of codecs and coding conditions such as frame rate.

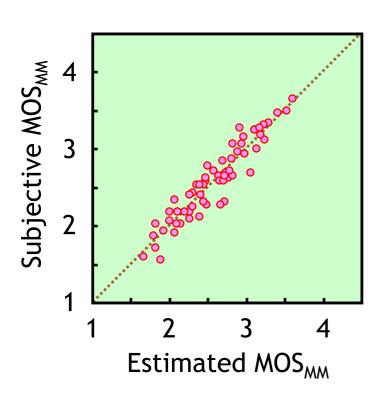
Determining audio and visual quality




Framework of G.OMV (3/3)

- Multimedia quality integration function that takes into account
 - 1. interaction between speech and video quality,
 - 2. effect of delay, and
 - 3. effect of delay synchronization

Example of video quality estimation function



Experimental conditions

- Video codec: H.264 (Quicktime)
- Video format: QVGA
- Key frame interval: 1 s
- Coding bit rate: 64 1024 kbps
- Frame rate: 1 30 fps
- IP packet loss ratio: 0 10%
- Subjects: 32 non-experts

Example of multimedia quality integration function

Experimental conditions

- Speech codec: G.722 (64 kbps, mono)
- Video codec: MPEG-4 (4 Mbps, VGA, 30 fps)
- Network performance:
 - IP packet loss ratio: 0~10%
 - IP packet transmission delay: 167~1200 ms

Speech quality estimation function

Speech delay (D_s)

Video delay (D_v)

Video quality

estimation function

Multimedia

quality

integration

function

 MOS_v

Multimedia

quality

 (MOS_{MM})

- Task: Free conversation
- Subjects: 32 non-experts

Ref.: T. Hayashi, K. Yamagishi, and H. Yoshino, "Perceptual QoS Evaluation Model for Audiovisual Communication Services," World Telecommunications Congress 2006 (WTC'06), May 2006.

Future work

- Global consensus on framework of G.OMV
- Development of model (in collaborative way)
- Validation of model
- Development of procedure for deriving model parameters for new codecs (G.OMV Annex A)
- Provision of model parameters for typical codecs (G.OMV Appendix I)