

Recent developments in QoE aspects of videoconferencing services

Patrick Luthi, TANDBERG Rapporteur for Q.1/16 (multimedia systems, terminals and data-conferencing)

- Recent developments in SG16 significantly enhanced the videoconferencing user's quality of experience (QoE).
- Standards defining new features or codecs such as:
 - dual video streams (H.239)
 - video coding (H.264)
 - audio coding (AAC-LD, G.722.1)
 - NAT/firewall traversal methods (H.460.18,19)
 - H.324m call setup acceleration techniques (H.324 Annex K)
- Improved perception of quality of a video call even if end to end QoS is not guaranteed when using the Internet as a transport network.

- Best feature of the decade! (IMTC 2002 Spring Forum)
- H.239 Role management and additional media channels (AMC) for H.300-series terminals
 - Use of more than one video channel in H.320-based systems
 - Indication of video bitrate supported for AMC and in-call bitrate management
 - Labelling of individual channels with a "role" applicable to H.320 and H.245 signalling-based systems
- Collaborative standardization effort
 - ITU identified the need to standardize a way to transport multiple media streams in H.320 in February 2002
 - First approved in July 2003, revised in Sept. 2005
 - For the future: multiple audio channels in H.239 for multilingual and simultaneous translation applications

- o H.264 considerably increased coding gain
- Significantly better than H.263 and MPEG-2 same video quality at half of the bitrate
- o Enhanced error and packet loss resilience
- o HD ready
 - Maximum picture size: 4096 x 2048 (variable aspect ratio)
 - bandwidth requirement of 1 Mbit/s is sufficient if the picture has little motion
 - Example: HD MPEG-2 content (1920x1080) traditionally runs at 12-20 Mbps. H.264 can deliver 1920x1080 content at 7-8 Mbps at the same or better quality.
- Computational efficiency with new Annex B/H.241 which specifies a reduced-complexity decoding process to be applied to H.264 bitstreams

- Improved intelligibility and transparency
- Better music and sound effect quality
- Users experience less fatigue during video meetings
- Low Delay Advanced Audio Coding (AAC-LD)
 - high quality low delay audio coding standard of MPEG-4.
 - closely derived from MPEG-2 Advanced Audio Coding (AAC).
 - algorithmic delay of only 20 ms.
 - supports e.g. 20 kHz at 64 kbit/s or stereo 20 kHz at 128 kbit/s
- G.722.1 Annex C
 - extension to G.722.1 (7 kHz audio).
 - low complexity
 - algorithmic delay of 40 ms.
 - supports 14 kHz at 24, 32 and 48 kbit/s.

Network Address Translation: the Challenge

- Organizations use private addressing schemes and share a public address
- Outside terminals cannot access to those private addresses
- Translation function is widely exploited as a security feature
- Address translation typically applies to packet headers, but not to the protocol within the packets (H.245, etc.)

The Firewall Problem

- Rules that allow everyone to connect to everyone else are unusual and unwelcome to the security administrator.
- Unsolicited incoming connections are typically not allowed
- A firewall can be "opened" for video calls, but results in either loss of features (such as encryption) or reduced security
- IP communication protocols use a wide range of network ports

- No firewall, no NAT (public IP address)
- o VPN to connect separate locations
- o ISDN Gateway
- o Proprietary protocols
- o Stand-alone or Gatekeeper Proxy
- o Application Level Gateway
- MIDCOM, a protocol to let an outside box issue commands to open and close ports on the firewall
 - Complex and unproven standard still in development
- ICE (Interactive Connectivity Establishment), a methodology for NAT traversal
 - Still in development, makes use of existing protocols (STUN, TURN, RSIP)
 - Works only for SIP

- Secure tunnelling of H.323 calls through any firewall
- No features are lost works with H.264, MPEG-4, AES, H.239, etc.
- Border controller provides traversal for ALL other H.323 endpoints and MCUs
- The Border Controller allows secure traversal through firewall
- The Border Controller might be hosted by a service provider, or hosted in an enterprise DMZ along with the enterprise mail and web proxies.

- o Embedded in endpoints
- o Allows secure traversal of ANY firewall
- The firewall only needs to allow connections between the solution components
- The Border Controller and endpoints are designed to use a very small number of registered ports.
- Enhanced Endpoint and Border
 Controller create a route
 through the firewall
- The outside world calls through the Border Controller

- Collaborative standardization effort
 - Approved in September 2005
 - What took so long? IETF kept promising, but couldn't deliver because of lots of "religious" disagreements
 - Key decision for ITU 2005-08 Study Period: Focus narrowly on H.323 solution
 - Based on TANDBERG's Expressway technology

- H.460.18 Traversal of H.323 signalling across network address translators and firewalls
 - H.323 signalling traversal & call setup
 - Is mandatory
 - All traffic originates inside NAT/FW boundary
 - Port symmetry lets response to pass through NAT/FW
 - This opens bi-directional "pinhole" through NAT/FW
 - Keep-alive packets sent periodically to keep pinholes open
- H.460.19 Traversal of H.323 media across Network Address Translators and Firewalls
 - H.323 media traversal
 - Depends on signaling traversal mechanism such as H.460.18
 - Uses similar principles as H.460.18 (pinholes and keep-alive packets to maintain path)

- Motivation comes from mobile world (3g-324m)
- o A 3G video call can take a long time...
 - ~8 seconds to set up bearer (pre-ringing)
 - Ringing and answering time
 - 4 to 6 seconds for "call setup" (H.324)
 - Setting up multiplex level (H.223)
 - Exchange caps, configure mux, open audio/video channels (H.245)
 - Send / Receive / Render initial Audio & Video

Call setup acceleration – The MONA solution

- - Annex K/H.324 Media oriented negotiation acceleration (MONA)
 - Exchange of "fast call setup" capabilities and preferences ("MONA Preference" Messages)
 - Quick set up of audio and video channels
 - Maintains full compatibility with legacy terminals 0 (using regular H.245 - not accelerated)
 - Expected performance (MONA-to-MONA case)
 - Time to receive media ranges 0.5 to 1.5 RT
 - "Typical" RT = 800 ms
 - So call setup may range 400ms to 1.2 sec

FM

FSS

ACN

Call setup acceleration contributing techniques

- Media Preconfigured Channels (MPC)
 - Small table of commonly used codec + mux configurations
 - Early-bearer may be used to send media
- o Signaling Preconfigured Channel (SPC)
 - Early-bearer exchange of capabilities/prefs + inference model
 - Preserves full flexibility of H.245 channel establishment
- Accelerated H.245 Procedures (A2P)
 - Media can be sent without waiting for OLC and MES exchanges
 - Implemented as minor changes to existing H.245 procedures

Mapping to original proposals

International Telecommunication Union

Thank you!

ITU-T Workshop on "End-to-End QoE/QoS" Geneva, 14-16 June 2006