

International Telecommunication Union

End to End QoS Control over heterogeneous network

http://www.euqos.org

Olivier Dugeon FTR&D Olivier.Dugeon@orange-ft.com

1	Business aspect of QoS control	
2	Technical requirements for QoS control	
3	End to End path concept	
4	EuQoS system architecture	
5	EuQoS prototype deployment	
6	Conclusion	

- 5 network providers (Prime Contractor is Telefonica)
- 5 Corporates
- 5 SMEs (consultants, small development companies)
- 9 Research Institutes

- o Simple to deploy
- o OPEX is equivalent
 - Operational just manage bigger router and link
 - The technology is the same just increase capacity
 - No more platform
- CAPEX is just investment made with 6 months advance (source Sprint)
- o But over-provisioning just guarantee Bw & Lost
 - No guarantee for delay & jitter
 - VoIP is sensible to this QoS parameters
 - This occur for long distance when cross several AS

- Flat rate model price & capacity availability advantage service provider
 - Application like skype used the over-provisioning network for free of charge
 - Operators didn't get more money from independent service provider
- Assumptions: A network with 4 CoS with limited link capacity for BE (load around 60%)
 - Skype or other's will not work correctly in loaded BE
 - Users must buy extra capacity for QoS i.e. VoIP CoS
- Both Service provider & Operators win money in this case

- E2e QoS correspond to the international part of PSTN
 - To yet studied in standardization: each Fora concentrate to the access network
 - Could be in such situation with national call provide by 2 different Service Provider
- o IMS is not sufficient
 - AS path computation is not of service role: it depend of the transfer and control level
 - Not all AS will implement an IMS i.e. transit AS
 - All AS will certainly implement a QoS control function

• Scalable QoS architecture

- IntServ over DiffServ
 - This was done by performing IntServ CAC in the Access network and used DiffServ in the Core backbone
- Lightweight IntServ/RSVP
 - This was done by study/develop a new protocol. NSIS could be a candidate
- Endpoints only CAC methods

 This was done by setup Traffic engineering tunnel or by measurement at the endpoint

• Finally EuQoS is a mix of them

2 - Divide and Conquer the problem

- Addressing the network deployment across a large number of autonomous systems (AS)
- Hierarchically and functionally decomposed into:
 - Horizontal paradigms
 - Service, Control and Transport planes
 - Vertical network partition heterogeneous technologies
 - LAN, WiFi, xDSL, Satellite, UMTS, IP/MPLS/GMPLS
 - HomeLAN, Access/Aggregation, Core, inter-domain
 - Time/Process division
 - Provisioning, Invocation, OAM (assurance)
- o 2 end-to-end layers
 - One for the session: EQ-SIP end-to-end signaling
 - One for the QoS: RM-SSN end-to-end signaling
- o 2 sub-layers
 - End-to-end QoS path computation: qBGP
 - Local QoS configuration: RA
- Three levels integrated & synchronised
 - Application Control Transport

3 - End2end path vs. complexity of AS and BR connectivity

3 - EuQoS End2end path concept

- End2end path provide a QoS path between 2 Access Network to reach a given prefix or @IP through several backbone for a given Class Of Service
- The end2end QoS belong to a given CoS
 - Bandwidth of the end2end path
 - Maximum delay, jitter, packet loss

Geneva, 14-16 June 2006

PSTN	EuQoS	
oTrunk Routing CoS Resources Provisioning Backup link oPSTN Signaling Find the suitable trunk to reach the destination Reserve an IT for this connection Reject call if no trunk or full trunk 	Invocation Provisioning	 oPer CoS EQ-path Based on BGP AS path for the loose model » Based on MPLS tunnel for the kard model » oSIP Signaling Find suitable EQ-path for the CoS to reach the destination Reserve Bw inside this EQ-path Reject call if no EQ-path or no Bw
•Adjust Trunk capacity•Traffic Matrix		 oAdjust EQ-path capacity By monitoring and measuring the EQ-path usage

- EuQoS system must be aware of the QoS capabilities along the data path
 - By means of enhanced version of BGP or Traffic Engineering
- Enhanced version of BGP guarantee an AS path inside a given CoS for delay, gigue & lost parameters
 - There is a PhB continuity along the AS path
 - There is no bandwidth guarantee
- MPLS-TE guarantee an AS path tunnel inside a given CoS for bandwidth, delay, gigue & lost parameters
 - There is no bandwidth guarantee inside the tunnel
- CAC must be perform in order to
 - Choose the appropriate End2end path to meet the CoS
 - Perform bandwidth control to protect the QoS end2end path

3 – EQ-Path setup procedure

stacking model

Built End-to-end QoS path

3 – EQ-BGP deployment in Loose model

- Standard BGP sessions established with peering routers are disconnect
- And replace by EQ-BGP sessions between peers RM
- Then we provide routing information to all border routers by means of iBGP

- Multiple standard BGP sessions are established through MPLS VPN (RFC 2547)
 - One BGP session per Class of Service (CoS)
- RM setup appropriate BGP configuration inside each CoS VPN
- LSP (normal or TE) are setup to carry traffic from PE to the corresponding CoS VPN

4 - EuQoS Architecture

4 - EuQoS connection setup

Use End-to-end QoS path

(SPAIN)

503

5 - EuQoS Network General Overview

Moscow

Smolensk

Kiev

Homyel

SWITCH

Deligente RUSSIA Oslo ALAND Flexible architecture with private BGP 0 Stockholm Tallinn ESTONIA sessions vanger Independent of GEANT BGP Göteborg Gotland 44.300 LATVIA routing Riga A path can be established through as many different ASs as Baltic Sea th Vitsyebsk LITHUANIA Oland DENMARK required Vilnius, Malmö Mahilvow Copenhagen Minsk Kaliningrad Extensible testbeds possible : RUSSU Bornholm addresses pools of /16 size with private addressing for each BELARUS Gdańsk Hrodna Hamburg bartners ARSTRO Brest Full meshed Bremen Berlin Poznań PO 131 GRE (BE) tunnels Rivne PTC Essen Leipzig_ Sea 12 different testbeds Brussels-0 channel English Lille 731 Prague connected via GEANT Guernsey (U.K.) Kral kfurt Main Jers CZECH REPUBLIC based in 10 different SLOVAKI Brno uttgart locations in 6 Bratislava Munich countries/NRNs on 4 Buda Vienna FCH AUSTRIA different access networks HUNGARY technologies : Bay of o Ljubljana Biscay XDSL SLOVENIA * Zagreb Milan A Turin ENTRA deaux PHERZEGOVIN LAN CROATIA Génoa WiFi AASD Toulouse MONACO Sarajevo Andorra Ligurian la Vella Marseille UMTS Porto Sea UOP Adriat **NRNS** Sea 0 QRRA Corsica Madrid VATICAN Tiran. France : RENATER. PORTU Barcelona CITY * THD UPC Naple Italy : GARR, Sea SPAR Sardinia Tyrrhenian Valencia **Poland : PIONIER** Sea BALEARIC 0 Portugal : RCTS ISLANDS Sevilla Cagliari Solu lon Palermo Spain : RED IRIS Mediterranean Sea Gibraltar Malaga Sicili Switzerland : Strait of Gibralt Algiers Ceuta Alborin Scale

- EuQoS system is based on End2end path concept
- End2end path is efficient, reliable and scalable
 - Efficient since the invocation used them and not built them
 - Reliable since the OAM process monitor the end2end path
 - Scalable as they describe AS path and could be merge
- End2end path could be accommodate to various configuration and technology
 - Both "loose" and "hard" model are supported
 - End2end path could be setup at Layer 2 or Layer 3
 - Over-provisioned network are also supported through dummy end2end path
- EuQoS system will be built progressively
 - Phase0: End2end path will be setup manually (done)
 - Phase1: End2end path will be setup with the loose model (done)
 - Phase2: End2end path will be setup with both loose and hard model

International Telecommunication Union

Questions ?

Thank you for your attention