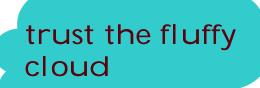
Drivers For Control Plane Technology

Alan McGuire, New Wave Networks, OneIT, BT

BI

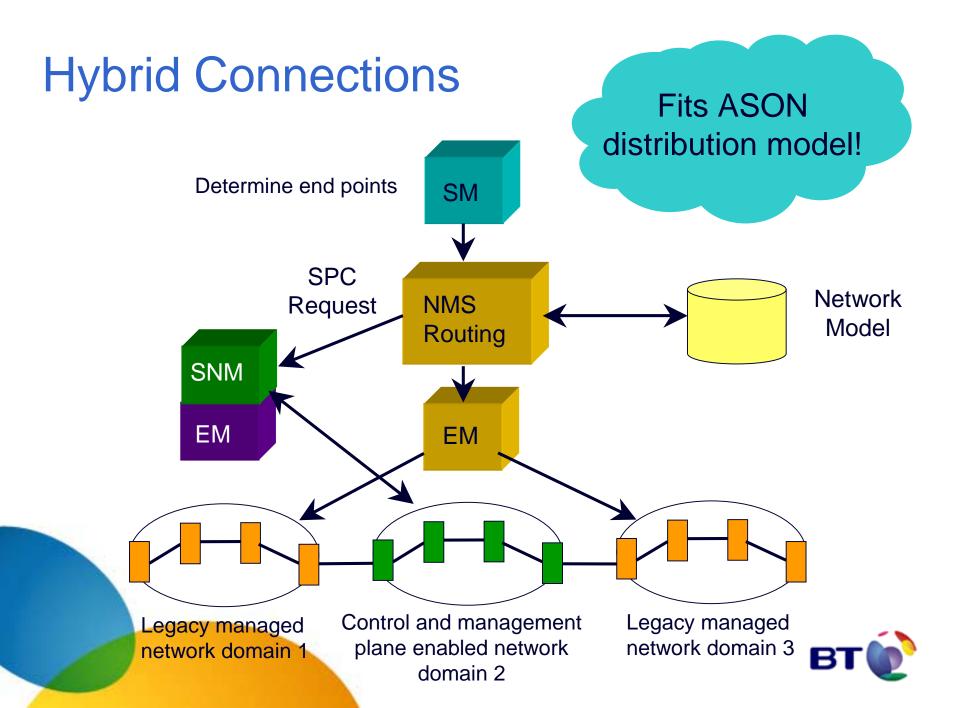
Management & Control


- Starting point is service management
- Network management criticism cannot be applied universally
 - Not all systems are the same!
 - Levels of automation vary considerably
 - Processes, planning philosophy, network structure, play a large part
- Require
 - distribution of functionality between control plane and management plane
 - Implementation choice with strong dependence on legacy
 - Component model of ASON
 - Want reuse of some capabilities in existing OSS
 - Delegation of authority

there can only be one captain of the ship

Business Drivers

• Radically simplified network


- Allow the network to manage restoration eliminate complex protection options & routing decisions
- OPEX reduction from hands-off operation using the control plane to manage restoration and planned work radically reduce need for manual intervention *(also achieved by simplifying the network)*
- CAPEX reduction from shared restoration
- Simplified product set using control plane restoration
- Simplified planning process with capacity planning & management structure
- Reduction in OSS stack complexity BUT not replacement

Operational Aspects

- Integration with essential OSS allows:
 - management of the network as a seamless entity with agreed and working interfaces into overall network capacity management and plan and build
 - management of customer service end-end with alarm and performance data
- Manage separation into and out of the control plane cloud but not within it.
- Repair is an offline activity. Restoration of service is not dependent on repair

Soft Permanent Connections

- Connections setup by network operator using signalling
 - similar to many installed ATM networks
- Managed connection characteristics
 - time to allow for order placement by customer, service management and network management processes
 - establishment of connection
 - testing of performance prior to handover to customer
 - wrap-up time
- Minimises impact on OSS

Dynamic/Switched Services

- Examples that have been proposed in literature
 - Distributed storage area networks
 - LAN extension
 - Disaster Recovery
 - Outside broadcast for major sporting events
 - Layer 1 virtual private networks
 - Real-time traffic engineering
- How well can they be supported
 - Erlang models provide a good indication

Classical Performance Requirements

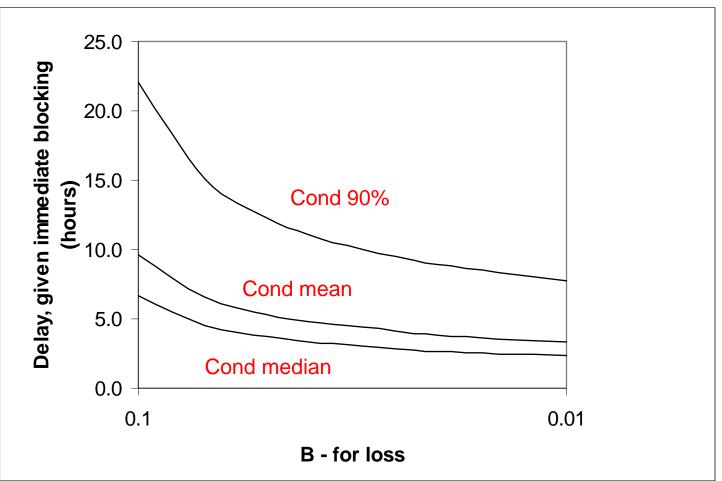
- Traditional performance requirement for the Phone Network is simply defined by the percentage of calls blocked in a single hour
 - assumes Poisson arrivals and negative exp holding times, infinite sources
- Adopting above for a transport network leads us no further
 - Phone network is scale invariant: passing to a system with longer holding times has no effect on network sizing or cost
 - Phone network is independent of the 1-hour assumption, this merely serves to define the duration (the busy hour) over which the reference traffic is measure
- Scaling up the holding time in above way would however lead to relaxation times that would be unacceptable to the customer.

New Service Criteria

- We suggest that any network which offers single high bandwidth connections should be designed and dimensioned not on the basis of the percentage of calls blocked, but rather on a delay basis. A suggested service description might be:
- A request for a connection will be successful immediately on at least S% of occasions; of those not immediately successful, T% will be satisfied with a delay of not more than t.

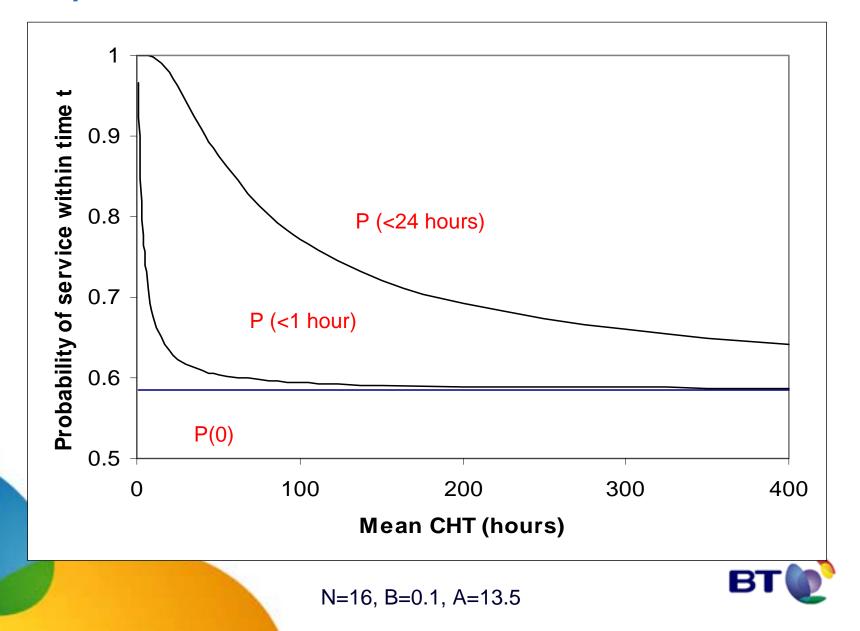
Delay System

- Enqueued, FCFS
- M/M/N queue model
- N: discrete circuits, A: offered traffic, H: Holding time
- Classical Erlang Theory
- Conditional mean delay = H/(N-A)
- Conditional median delay 0.69H/(N-A)
- Conditional 90th Percentile delay = 2.3H(N-A)


$$P(queueing) = C_N(A) = \frac{NE_N(A)}{N - A(1 - E_N(A))} = \frac{NB}{N - A(1 - B)}$$

 $P(service < time t) = P(0) + (1 - P(0))(1 - e^{-(N-A)t})$

P(0) - Probability of immediate service


Example

N=16, CHT=24 hours, 0.01< B < 0.1

Example

Conclusions

- Major driver is soft permanent connections
- Strong interaction with network management required
 - control plane only solutions inadequate
 - offline tools and many OSS functions required
 - hybrid connections required to work with installed base
- Studies suggest it may not be commercially viable to offer a switched service for long-holding times: the expected delays for initially blocked calls are likely to be intolerable to users

ASON tutorial

 A. McGuire, G. Newsome, L. Ong, J. Sadler, S. Shew and E.Varma: "Architecting the Automatically Switched Transport Network: ITU-T Control Plane Recommendation Framework", Chapter 16, Optical Network Standards, Edited by K. Kazi

