

ETSI Progress in developing Fixed/Mobile Standards

Adrian Scrase CTO, ETSI

The IMT-2000 family

The 5 IMT 2000 terrestrial interfaces agreed by ITU-R

Overview of 3GPP

A collaborative agreement between Standards Development Organizations (SDOs) and other related bodies for the production of a complete set of globally applicable Technical Specifications and Reports for:

- GSM, including GSM evolved radio access technologies (GPRS/EDGE/GERAN)
- a 3G System based on the evolved GSM core network and the Universal Terrestrial Radio Access (UTRA), FDD and TDD modes;
- 3GPP has no legal status, but:
 - The 3GPP results are jointly owned by the Organizational Partners (i.e. the SDOs)
 - The Organizational Partners transpose the results into their own deliverables (e.g. Standards)

TU-T c

What does 3GPP do?

3GPP prepares and maintains specifications for the following technologies:

- GSM
- GPRS
- EDGE

- *i.e. all of the technologies on the GSM evolution path*
- W-CDMA FDD (Frequency Division Duplex)
- TD-CDMA TDD (Time Division Duplex) in High Chip Rate and Low Chip Rate (TD-SCDMA) modes

A single home for all these technologies helps to ensure global interoperability

Partnership and Membership

Partners:

Organizational Partners

- 3GPP is open to all officially-recognized standards organizations irrespective of the geographical location
- Market Representation Partners
 - invited by the Organizational Partners to offer market advice and to bring a consensus view of market requirements (e.g. services, features, functionality)

Individual Members

Hundreds of Individual Member companies are actively engaged in the work of 3GPP

Market Representation Partners

FÕRUM

Observers

3GPP currently has three Observers:

- Telecommunications Industries Association
 (TIA)
- Information and Communications Technology Standards Advisory Council of Canada (ISACC)
- Australian Communications Industry Forum (ACIF)

isacc (

3GPP New Internal Structure

Project Co-ordination Group

12-14 Sept 2005, Kiev, Ukraine

3GPP Technical Organization

12-14 Sept 2005, Kiev, Ukraine

The Mobile Competence Centre

3GPP has a Mobile Competence Centre (MCC) providing comprehensive project support

MCC:

- o is located at the ETSI HQ in Sophia Antipolis, France
- o has 24 full time personnel
- o is an International team of 14 nationalities
- o is ISO 9001:2000 compliant

ITU referencing of 3GPP results

- 3GPP does not contribute directly to the ITU
- Formal contributions to ITU Study Groups are made by ITU members using existing national/regional processes

o ITU - R

- Regular updates submitted to ITU-R Recommendation M.1457
 - High level description of IMT-2000 air interfaces
- o ITU T
 - Collaboration with ITU-T Special Study Group on "IMT-2000 and beyond"
 - Regular updates submitted to ITU-T Recommendation Q.1741
 - Framework for IMT-2000 networks

Release '99

- o Release '99 December 1999
- Main features:
 - Creation of the Universal Terrestrial Radio Access (UTRA)
 both in FDD and TDD (3.84 Mcps) modes
 - Fully referenced in ITU-R M.1457
 - Narrowband AMR (new codec)

15

Release 4 - March 2001

- Main features:
 - Bearer independent Circuit Switched network architecture
 - the MSC is split into "Media Gateway" for transport and "MSC server" for signalling
 - Low Chip Rate TDD (1.28 Mcps)
 - i.e. TD-SCDMA
 - Streaming
 - Retrieval of real time video (e.g. movie playback)
 - New Messaging Systems
 - Enhanced messaging (rich text formatting and still image)
 - Multimedia messaging (multimedia attachments)
 - GERAN concept established (EDGE/GPRS lu interface)

Main features:

- IMS IP-based Multimedia Services
 - All the core network elements for multimedia services
 - Based on SIP (from IETF) and PS bearers
- HSDPA High Speed Downlink Packet Access
 - > Data only, downlink speeds of up to 10Mbit/s
- And much more!
 - Wideband AMR codec
 - End-to-end QoS
 - Intra domain connection of RAN nodes to multiple CN nodes
 - i.e one RNC serving two or more MSCs within the same network
 - > opens the way to Network Sharing
 - > Enhancements to messaging, security, etc...

ITU-T Workshop on "Mobile Telecommunications and Fixed/Mobile Convergence – the realities going forward " 12-14 Sept 2005, Kiev, Ukraine

ITU-T

What does IMS provide?

o IMS provides:

- IP Transport in the Core network
- IP Transport in the UTRAN

o And this therefore provides the possibility for:

- End to end IP services
- Increased potential for service integration
- Easy adoption and integration of instant messaging, presence and real time conversational services

What does HSDPA provide?

HSDPA (High Speed Downlink Packet Access):

- Supports services requiring instantaneous high data rates in the downlink
 - e.g. Internet browsing; video on demand
- May be deployed in both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) modes (both high and low chip rates)
- Various configurations defined, offering data rates of up to 10Mbit/s

Interoperability Testing

Thorough testing

- Major investment in TTCN (Tree and Tabular Combined Notation) testing
- Well over 4 M€ already invested in TTCN development
- Interoperability is paramount
- Permanent team to draft and deploy TTCN
- More than a standards issue
- Testing provides vital feedback into the technical specification work
- ► ETSI "Plugtests[™]" events feature 3G interoperability testing

Main features:

- IMS Phase 2, including...
 - Interworking IMS-CS networks; IMS non-IMS networks; IMSCOOP (with 3GPP2)
 - Group management (Presence, Messaging, Conferencing)
 - IMS Charging
 - Lawful interception
- MBMS
- Enablers for services like PoC (with OMA)
- WLAN interworking scenarios 1 3
- Push services
- Speech recognition and speech enabled services
- Digital Rights Management (with OMA)
- continued...

- EDCH (Enhanced uplink)
- AMR-WB+
 - AMR-WB extension for high audio quality
- Packet streaming (PSS)
- Generic User Profile
- Presence
- Charging management for WLAN, PoC etc
- etc

Currently planned features:

- MIMO
- 7.68 Mcps TDD
- GERAN conversational services
- Access Class Barring & Overload Protection
- 3.84 Mcps TDD Enhanced Uplink
- Advanced Global Navigation System
- New spectrum, RAN improvements
- Various enhancements
 - IMS, LCS, video and voice services
- etc, etc...

3GPP Long Term Evolution (LTE) philosophy

- Current LTE focus is on enhancement of the Universal Terrestrial Radio Access (UTRA)
- With HSDPA and Enhanced Uplink, UTRA will remain highly competitive for several years
- LTE project aims to ensure the <u>continued competitiveness</u> of the 3GPP technologies for the longer term (10 years and beyond)
- Similar initiative underway for GERAN (GSM/EDGE radio access)

Basic criteria for LTE

- o Demand for higher data rates
- Expectations of additional 3G spectrum allocations
- Greater flexibility in frequency allocations
- Continued cost reduction
- Growing experience with the take-up of 3G is helping to clarify the likely requirements of users, operators and service providers in the longer term

LTE targets

- o Significantly increased peak data rates
- o Increased cell edge bitrates
- o Improved spectrum efficiency
- o Improved latency
- Scaleable bandwidth
- Reduced CAPEX and OPEX

- Acceptable system and terminal complexity, cost and power consumption
- o Compatibility with earlier releases and with other systems
- Optimised for low mobile speed but supporting high mobile speed

Peak data rate

- Goal: significantly increased peak data rates, scaled linearly according to spectrum allocation
- o Targets:
 - Instantaneous downlink peak data rate of 100Mbit/s in a 20MHz downlink spectrum (i.e. 5 bit/s/Hz)
 - Instantaneous uplink peak data rate of 50Mbit/s in a 20MHz uplink spectrum (i.e. 2.5 bit/s/Hz)

Latency

o C-plane

- Significant reductions in transition times from idle or dormant states to active state
- C-plane capacity aiming for at least 200 active users per cell for 5MHz spectrum allocation, and at least 400 active users for higher allocations

o U-plane

Radio access network latency below 100

User throughput

- o Downlink target:
 - 3-4 times that of Release 6 HSDPA
 - Scaled according to spectrum bandwidth
- o Uplink target:
 - 2-3 times that of Release 6 Enhanced Uplink
 - Scaled according to spectrum bandwidth

Spectrum efficiency

- Significantly improved spectrum efficiency and cell edge bitrate
 - Whilst maintaining same site locations
- Downlink target (bits/sec/Hz/site):
 - 3-4 times that of Release 6 HSDPA
- Uplink target (bits/sec/Hz/site):
 - 2-3 times that of Release 6 Enhanced Uplink

Mobility

• The Enhanced UTRAN (E-UTRAN) will:

- Be optimised for mobile speeds 0 to 15 km/h
- Support, with high performance, speeds between 15 and 120 km/h
- Maintain mobility at speeds between 120 and 350 km/h
 - And even up to 500 km/h depending on frequency band
- Support voice and real-time services over entire speed range
 - With quality at least as good as UTRAN

Coverage

o Cell ranges up to 5 km

- With throughput, spectrum efficiency and mobility as defined above
- o Cell ranges up to 30 km
 - Mobility as defined above; some degradation in throughput and spectrum efficiency permitted
- o Cell ranges up to 100 km
 - Supported; degradations accepted

MBMS

- Enhanced UTRA to support enhanced Multimedia
 Broadcast Multicast Service modes
 - Reuse of same physical layer components as for unicast, to reduce complexity/cost
 - Simultaneous, integrated and efficient voice and MBMS to the user
 - Support of MBMS in unpaired spectrum
 - Maximum throughput up to 1Mb/S

Spectrum issues

o Spectrum flexibility

- E-UTRA to operate in 1.25, 2.5, 5, 10, 15 and 20 MHz allocations...
- uplink and downlink...
- paired and unpaired
- o Co-existence
 - With GERAN/3G on adjacent channels
 - With other operators on adjacent channels
 - With overlapping or adjacent spectrum at country borders
 - Handover with UTRAN and GERAN
 - Possibly not a mandatory requirement (to help reduce network and terminal complexity)

Cost considerations

- o Optimisation of backhaul
- Maximised re-use of existing sites
- o Maximise Multi-vendor interface
- Terminal complexity and power consumption to be optimised/minimised
- Avoidance of complicated architectures and unnecessary interfaces
- Efficient OAM&P (Operation, Administration, Maintenance and Provisioning)

Timescales

- Initial studies and workplan creation to be completed by June 2006
- Aim at developing relevant standards by June 2007

Progress to date

- Work is underway
- TR 25.913 on LTE requirements approved and under change control and work on Stage 2 is initiated
- Joint work has started with TSG SA WG2 (Architecture) on architecture issues
- Work also started in TSG RAN WG1 (Layer 1)
 - Current preference appears to be an OFDMA based downlink
 - For the uplink, SFDMA and OFDM both being considered
 - But also MC TD SCDMA and MC WCDMA are considered

2005

- o Already 75 commercial UMTS networks ...
- o ... in 33 countries ...
- o ... serving 33 million subscribers ...
- ... and many more launches foreseen this year

2005

ITU-T

ETSI TISPAN

What is ETSI TISPAN

- TISPAN in an ETSI technical body, dealing with fixed networks and the migration from switched circuit networks to packet-based networks
- TISPAN is responsible for all aspects of standardisation for present and future converged networks including the NGN
- TISPAN deals with the service aspects, architectural aspects, protocol aspects, QoS studies, security related studies, mobility aspects within fixed networks, using existing and emerging technologies.

Technical Committee Structure

Etc... as needed

NGN high level Roadmap

Towards a converged Wireline and Wireless NGN ...

NGN Release 1 scope

- Ongoing discussion
 - Being consolidated meeting after meeting
 - Stabilized at TISPAN#4 (Sept.) & #4bis (Nov.) meetings
- Major service capabilities under consideration
 - Real time conversational services (Voice, Videotelephony)
 - Messaging (Instant Messaging, MMS), Presence Management
 - Legacy services emulation enabling legacy PSTN/ISDN migration towards NGN
 - Content delivery such as VOD, Video Streaming, TV-Channel distribution (if inputs and resources available)
- Network Architecture basis
 - ADSL access prime focus, possibly WLAN (may be deferred to Release 2)
 - 3G/UMTS IMS sub-system reused as basis for real-time Conversational services (SIP-based session control)

NGN architecture design principles

A sub-system oriented approach, enabling:

- The addition of new subsystems over the time to cover new demands and service classes.
- •To import subsystems from other standardisation bodies.
- •Flexibility to adjust the architecture.
- IP connectivity is provided using two subsystems:
 - Network Attachment Subsystem (NASS)
 - Ressource and Admission Control Subsystem (RACS)

• First service-oriented subystems include:

- •The 3GPP IMS suitably adapted to accomodate xDSL-based access networks requirements (joint effort with 3GPP), supporting multimedia services and PSTN/ISDN Simulation.
- •A PSTN/ISDN Emulation subsystem specifically tailored to allow TDM equipment replacement, while keeping legacy terminals unchanged.

NGN summary

- A strong industry demand
 - For new generation Multimedia services on xDSL access
 - For preparing replacement of soon becoming obsolescent PSTN
- For a first Release of specifications by end-2005
 - Giving main standards directions
 - With realistic and implementable solutions
- ETSI TISPAN taking the lead to propose an architecture basis consisting of a range of **subsystems**
 - Maximizing Wireline and Cellular convergence, through adoption of 3G/UMTS IMS component for support of conversational services
 - Access network attachment Subsystem, Resource and admission control sub-system ... preparing for next Releases

NGN summary

- TISPAN collaborating with 3GPP to accommodate Wireline access network requirements by IMS
 - A 1st Workshop held last June, 2nd held in April 2005
 - To coordinate the IMS specifications evolutions to support various Wireless and Wireline access technologies
- o Other collaborations very welcome
 - ITU-T NGN Focus Group, other SDOs
 - European IST projects e.g **Marger** which is considering IMS in the scope of their system architecture too.

Thank you for your attention

adrian.scrase@etsi.org

For general enquiries about ETSI activities, deliverables & IT questions

Tel: +33 (0)4 92 94 49 00

Internet: helpdesk@etsi.org

Address: ETSI helpdesk, 06921 Sophia Antipolis Cedex, France

www: http://portal.etsi.org/Helpdesk/home.asp