INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.140

TELECOMMUNICATION (07/2001)
STANDARDIZATION SECTOR
OF ITU

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT)

The Tree and Tabular Combined Notation
version 3

CAUTION'!
PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of arecently approved Recommendation. It will be
replaced by the published version after editing. Therefore, there will be differences between
this prepublication and the published version.

FOREWORD
The International Telecommunication Union (ITU) is the United Nations speciaized agency in the field of
tedlecommunications. The ITU Teecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T isresponsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide bas's.

The World Tdecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approva of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fal within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and 1EC.

NOTE

In this Recommendation, the expresson "Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the posshbility that the practice or implementation of this Recommendation may
involve the use of a clamed Intellectua Property Right. ITU takes no position concerning the evidence,
validity or applicability of clamed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approva of this Recommendation, ITU [had/had not] received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementors are cautioned that this may not represent the latest information and are therefore strongly urged

to consult the TSB patent database.

a ITuU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanicd, including photocopying and microfilm, without permission in writing from ITU.

Recommendation ITU-T Z.140

The Tree and Tabular Combined Notation version 3
(TTCN-3): Core Language

Contents

1 00 10
2 REFEIENCES. ...ttt e e e e st e e s s bt e e e b et e e e e e e e e nn e e e e e 10
3 Definitions and @DDreVIALIONS.oiuiiiie it e e nr e nees 11
31 DIEFINITIONS ...ttt a e bbb bR bbb bbbt 11
311 DefinitioNS froM ISO/IEC-9846-1ccveierieeireeeirtieineeeiet st ssss s sess e eese s bbb ss e 11
312 DefinitionS from ISO/EC-9846-3cveiurierireeeirtieineesiet e ssss s sess s eea s bbb 12
32 A DDTEVIALIONS......ceceteeeaireeeireee ettt b bbb 12
4 10T (1T 1 o o TSP 13
41 The core language and pPresentatiOn FOrMELS ... e ese s snses 13
5 BaSiC 1aNQUBOE ElEMENTS.ueiiiiiie ittt et et e et e e bt e e sabe e nneeeanes 14
51 Definitions, iNStances and AECIAraliONS.........c.cverireeciieereeeree et et 15
52 Ordering Of 8NQUABYE EIEMENLSccueureirieie et sesss e ss st e e st s s st se s s s se e snsesnesennsen 15
521 L0 AT 0 [= o 15
53 PArBIMELENTZALION ...ttt a st e e e e s e e s s s £ e s s £ se e s e b et e e b e ee e e seseernnnbetesrenis 16
531 Parameter passing by reference and DY VAIUE ... 17
5311 Parameters passed DY FEFEIENCE...........cv et 17
5312 Parameters Passed DY VAIUE...........cccceecc ettt st bbb bbbt s s 17
532 Formal and aCtual ParamELET [ISES.........cvuiucierriicereec ettt ae bbb bbbt s st b 17
533 EMPty fOrmal ParamELEr [iSh......c.o it ettt s st 17
534 NS 0o o= = 1= (= 1 TP 18
54 o0 1 11T 18
54.1 Scope and overloading Of IAENLITIENS ..ot 19
54.2 SCOPE Of FOIMAl PArBIMELEIS........cveeereeeirrieeie sttt s s st st e e e sesne e nnansens 19
55 1AENLITIErS ANA KEYWOIUS......c.cveeiececeeiriceeie ettt s ettt a s s s se s ea e snsnsnesnsnsnsnsnens 19
6 TYPES @MU VBIUES.......coiniiieiiiie ettt e e sae e bt e e bt e e e b e e e nbe e e e abe e e snbe e e snbeeennneas 20
6.1 BaSiC tYPES QNU VBIUESc.ceeieerirecieiricesisire et esessas et se s s s ee e s st se s snsessesesssessssesnsesesnssnsesnssesssesssenss 20
6.1.1 BasiC SLHNG tYPES ANU VBIUESccvieeeriei ettt s st 21
6.1.2 Accessing individual SrNG EIEMENTS ... s 22
6.2 User-defined SUD-tYPES BNU VAIUESceeiirerireciricieie st s 22
6.2.1 LISES OF VAIUES......ceeeiieeieieeseeee ettt e se bbbttt 22
6.2.2 2 1010 OO TOSTOSTRSTRTN 2
6.22.1 INFINITE FANGES. ..ottt bbb e et b bbbt e R b b e Rt et s s an b et s s ae bt s nns 22

ITU-T Z.140 (07/2001) — Prepublished version 1

6.2.2.2
6.2.3
6.3
6.3.1
6.31.1
6.3.1.2
6.3.2
6.3.21
6.3.3
6.34
6.35
6.4
6.5
6.6
6.7
6.7.1

v
71
72
721
7.3
731
74
75
751
752
753
754
755
756
757
758
759
75.10

8
81
82
83
831
84
841
842
85
8.6
87

9
10
11
111
12
121

13
131
132

14

141
1411

MiIXING TISES BN FANGESvueeveeireect ettt bbb
String length restrictions
Structured types and values......
Record type and VaIUES ...
Referencing nested record fields
Optional elementsSin arecordcocoveeecnveneeeenesee e
SELLYPE ANU VAIUES.......oeeeectetcste ettt sttt a et e bbbttt s st b
Optional ElEMENESIN ASELocceeeeeece st b st s s st ea s s st s e nnseen
Records and sets of SiNGIE tYPES.......cccvveevreeecrrercsiesesee s
Enumerated type and VAIUES...........cccvveveeennesecesescsesesese e
UNIONS....oiiiieeniei s

RECUISIVE LYPES.....coceeteeteeeteee et

IR 0=l 2= = 1= (= 4= (o TSR

TYPE COMPBLIDITTY .ttt bbb
TYPE CONMVEISION....ouiuirierisieristeteerstee s s st E Rttt

IMMOOUIES ...ttt e e e e ettt e e e et e e e ans e e e e snse e e e e anseeeeeennseeeeeannseeeeeannneeeeennes
NBMING OF MOUUIESeetete e st
ParameteriZatiON OF MOGUIESc.ciuieriereere ettt s a bbb et

Default values for module parameters
MOUIE EFINITIONS PAITcocveiieiecieieecc et a s a e e a e b s et s s s et s s e st b es s s ses s ennsetsnas
GrOUPS Of AEFINITTONS. ..ottt s s b s s et s s s s nna et e
/Koo [U1FSX ot] 1 o o = i T
Importing from MOAUIES..........cvirerrree s
RUles 0N USING IMPOIT ..ot
Importing single definitioNS.........cveverrcneneeeeeee e
Importing all definitions of amodule
[MPOITING GIOUPS.....euevuteeestieesereesessesesseses s sesse s st s st b b
Importing definitions Of the SAME KING ...
Recursive import of complex definitions...........cooeveerneerneeeenernnnenn.
Handling name clashes on importcccceveeeevecccesesee e,
Handling multiple references to the same definition
Import and Module ParamELEr'Scccccevereceeresese e
Import definitions from NON-TTCN MOUUIES...........ccouveeeeiririccerese s snses

TESE CONFIQUIBLIONS.eiiiieeeeeee s s aab b r e e e eeaeeesasassraaeeeeaeeesannnneees
Port communication model
Abstract test system interface
Defining communication port types
Lo 1 £
DefiNiNg COMPONENT LYPES........ouiverererireeiririsessiesesessssesessssssssesessssssssesssessessssssssssesssssessssssssessssssssessssssssessssssssessssssssessssenss
Declaring local variables and timersin a component
Defining components With @rray's Of POITS.........ccerrrcceeee e
Addressing entitieSiNSIAE ThE SUT ..o s
COMPONENE FEFEIEINCEScueeeeereeeeree ettt et sneeseenaens
Defining the test system interface

DECIAING TIMIEYS. ...ttt etttk e ekt e e ae e e e be e e e bs e e e abe e e eabe e e sabeeeenneeeenneeeanes 38
TIMEIS @S PAIAIMELETScuveeereeerrere s sees st ses e s e b ses s s e bR bbb b 33

DECIAITNG MESSATES. ... eueeee ettt ekttt ettt ettt e st e e e st e e atb e e e ae e e e be e e ebs e e eabe e e eabeeesabeeeanneeeanneeeanes 39
OPtioNal MESSAGE FIEIAS. ..ottt s st 39

Declaring ProCeaure SIGNGIUIMNESeieiuiee e rtieesteeesitee s sib e sis e e e sbeeeabs e e sbeeesbseesabeeesabeeesnneeeanes 40
OMIttiNG GCLUBI PAIAMELEISceeeieriereree ettt a s sttt 40
SPECIHTYING EXCEPLIONS......cevreeeeieresceresse ettt ses st b bbbt 40

DEClArNG tEMPIELES. ...ttt ettt ettt be e e be e e s e e e eabe e e eabe e e anbe e e s nneeeanes

Declaring MESSAgE LEMPIALESc..ccuiereriereieretie st ettt
Templates for sending messages

ITU-T Z.140 (07/2001) — Prepublished version 2

1412 TemplateS fOr FECEIVING IMESSAGES.cuueuereerreserreseertssestssesss st ses bbb bbbt nb s

142 Declaring Signature teMPIaLeS ..o

1421 Templates for calling ProCEAUIES.........cvrerrecerrierenreeseseseseseeeesseens

1422 Templates for accepting procedure Callsccvennnenensnecnieniennns

143 Template matching MEChANISMSccceurieeeeerece e

144 Parameterization Of teMPIaLES..........cccccevvecceseseee e

1441 Parameterization with matching attributes...........cccoovcevevcceeeccceieenns

145 Passing templates as ParameEterS........ccccovreenereeneresse s ssesssssssesssesens

146 MOdified tEMPIALES......cc v sees

146.1 Parameterization of modified templates..........cocoevvrecnvencensereesreeens

14.6.2 In-line modified templates

147 Changing template fields........coeiremreeneeree e

148 Match Operation.........cccccveeernenee

149 W BIUE OF OPEIBEIONcuvieieeeteeetere ettt ea bbb
ST @ o< £ (o= S PP PUP P PPTUUPRPPPPPRRPN
151 ATTENMELIC OPEIGLOIS ...ttt bbbt
152 SETNQ OPEIBEOIS.....veevceiieee ettt ee s s bbb bbb
153 REIBLIONAl OPEIELOISoucveereacreeeteee ettt es bR st s bbbt
154 Logical operators

155 BITWISE OPEIBEOIS.cucuevieiucietetsissseteeses et re e st s s st e s s s e b s s s s s e e A b s e R b b s e ae b et e e Re b s s e ae bt en s e s et s e antetasnas
156 S TN A0 0T (o (=TT
157 ROLBEE OPIEIALOIS. ... vttt ettt a et b et e b et e b bR e e e b e e £ b e b e nE b e Rt e b b e R s e bR e e e nb b et st b be e e et e ne s
G ¥ (001 1 < T PP UPPRRPPPPRP
161 Parameterization of Functions

16.2 INVOKING FUNCLIONS......cuoiicc e

16.3 PredefiNed FUNCLIONS..........cu ettt bbb s bbbttt
A < o= OO P PP P PP RTPPPPPPPPPPP
18 Program Statements and OPEIatiONS.uuveiereeeeiiiiiiiieeeeee e e e s esiriree e e e e e e e e s ssnrraereeaaessessnsnrnreeeaaeeaaans 56
LSRN S =S Tol o (0o = 0 (RS = (= 1 11 | SR PRRSPPPRR
191 0= o] 1O OOV
1911 Boolean expressions............

192 ASSIGNMENLS ...

193 The Log statement..........cceuneee.

194 The Label statement...................

195 The Goto statement.....................

19.6 The If-else statement..................

19.7 The For statement..........ccccceunee.

198 The While statement

19.9 The Do-while statement.............

19.10 The Stop execution statement

20 Behavioural program SIaEMENTScooiiuerieiiiiieeeeiieeeeessieeeessieeeeessteeeeessssseeeesnsseeeesssseeeesnnssees 60
20.1 SEQUENLIAl DENAVIOUN.........vcteictcteeece ettt bbb bbbt b bt s et b ee bt s e tee
202 Alternative behaviour

2021 Execution Of alterNative DENAVIOUL ...t sess e sea sttt 62
202.2 Selecting/desel €Cting @N AlLEINNALIVE..........c.cccueuiiecereres st a s nae s 63
20.2.3 Else branch in alternatives

2024 Declaring NAMEd @ltEINALIVES.........ccoveirrcce sttt ee s s s s snaesens 63
2025 Expanding aternatives with Nnamed alterNatiVes..........cco et ssssessens 64
20.2.6 Parameterization of named alternatives

20.2.7 The Label StatemMENt iN DENAVIOUNccvieerieeieeesee ettt sttt s b e st s e sa e s b e se e e st et besee e ns
20.2.8 The Goto StALEMENE 1N DENAVIOUF ...ttt s st e b se s st e e e se e ns
20281 Restricting the use of Goto

20.3 EaLCE g2 YL o l o< Tz Y/ o U
204 (DL = 0| L o= 0= Y o LU SRS
204.1 The Activate and Deactivate operations.

205 THE RELUINN SLALEMENLc.eivvceiesectee ettt ettt sttt b e e e e b e b st st e b be s se b e ss s sesbess st et ebase s sbebe s et sbsbeas st sbesssnatas
21 Configuration OPEIEHIONSc..uveeeieeeeiiiiiitieree e e e e e eeeree e e e e e e e e s satarr e e eeaeeessaastraeeeeaeesaaassrrreeeeaesaaans

ITU-T Z.140 (07/2001) — Prepublished version 3

211 THE CrEatE OPEIGLION.......cecveeetieeiete ettt s bbb bbb
212 The Connect and Map OPEratioNS..........cveerreerreemnienesenesinesersese e sesessersenens

2121 CONSISLENt CONNECLIONS.......ccucerereeertrirereeieeseseeae e sesee et easees

213 The Disconnect and UNmap OPEratioNS............oceeeeeeeerereneserseeessesenseressessenens

214 The MTC, System and Self Operations...........ccccvceverecenesenseessese e

215 The Start test compoNent OPEratioN..........ccceerereererereeienesense s

21.6 The Stop test COMPONENt OPEratioN.........ccccereereererereeee e seesesssesens

21.7 The Running operation..............

21.8 The Done operation....................

219 Using component arrays

21.10 Use of Any and All With COMPONENES..........ccceirrererereeicr s ssss s s ss s sssessssssnsssssssssesssnens
22 COMMUNICALION OPEIBHIONSveeiieieeiiieeieeeeieeeateeesbe e e st e e sbe e e ssbe e e sabeeassbeeessbeesbneeanbeeeenseeesnseeeanes 75
221 1SS To [T [] 1= = £ o LT 76
2211 General format of the SENiNG OPErBEIONS. ..o Va4
22111 Response and eXception NANAIINGcveiee e Va4
2212 The Send operation

2221 THE Call OPEIGLTON........ceieeieietireicitee et
22211 Handling reSPONSESt0 @ Callccveirieriirecrecete s
22212 Handling exceptionsto a Call

22213 Handling timeout eXCeptionNStO thE Call...........cceiiererceree st 79
2222 TRE REPIY OPEIGLION ...ttt b ettt es st as b b s e sttt s s s et s s nntetasnns 80
2223 The Raise operation

223 RECEIVING OPEIGLIONS.......vieceetetrisreseetseseste s sesstesassssssesess s st sesessse s ss s sesee e s seses e e setesss s snsessssssnsessssesnsesessnsnsesnssnsesasssnsnss
2231 General format of the reCeiViNg OPEratiONS.........ccccvuccererrre sttt
22311 M aking assignments on receiving operations.

2232 THE RECEIVE OPEIALTONvieeiecieee ettt bbb
22321 RECEIVE GNY MESSAYE.......ceveereieieeer et sesse ettt b e
22322 Receive on any port

2233 THE THIQQEN OPEIBEIONc.cviereieeteee ettt bbb
22331 TTIQOEr ON @NY IMESSAJE. ...eueurersrreeserreserresessesesstssssessesessessssessssts st s s s s s s sese s sese s s e st s e bbbt p b benaes
22332 Trigger on any port

2234 THE GELCAIl OPEIGLIONcvviicectetrece et bbb bbb s a s ee st et s et et s s s st es s ant et s nas
22341 Accepting any call

2234.2 Getcall on any port

2235 The Getreply operation

22351 Get any reply fFromM @NY Call ...ttt naen
22352 Get areply on any port

2236 THE CALCN OPEIALION.....ceeuieietieecirtie ettt bbb
2236.1 THE TIMEOUL EXCEPLION ...ttt bbb
2236.2 Catch any exception

22.36.3 CALCN ON @NY POIT ...ttt s bt
2237 THE CNECK OPEIBHION.......cuierieiiecreee ettt
22371 The Check any OPEration.........cccceveeeerneneee e sseenns

24 Controlling communication ports

2241 THE ClEar POIT OPEIBEIONeivcvevecieir ettt ettt ee s bttt esss e s s e ae b b s e st et s s s ses s s sntetasnns
2242 The Start port operation

2243 The Stop port operation

225 Use Of @ny and @ll WIith POIS......cccccceiriscce st s ettt ea s s st esnnnsessens
A T N 107= g0 o 10 < PP
231 R LERS - L0 1= o] o 1= (o) o TP
232 LI LERS o] o RN =] 1= o] R
233 I LS RS0 R 0= 0] 0 = 1 o o O
234 The Running timer operation....

235 THE TIMEOUL EVEINL.......euceeeeerereeceete et eseeas st se et se e sessas s s e st e e seanseese e s b e s e sese b £ e e e aes et ee e snb b s sene bt ee e e sesnesenneeteeas
236 Use of any and all WIth TIMEIS........cceeere e s
p2Z B == V7= (o o fo o < £ 1ol TN TSRO PR PR
24.1 TESE CASE VEITICE ...ttt ettt e st ae et seae et ebese e seebeseae et esese e eeebassasesebensseetessnsssesetensesesesenssentensanasas
242 Verdict values and overwriting rules

2421 EITON VEITICL ...ttt ettt b e e R e s bbbt £ st ettt s

ITU-T Z.140 (07/2001) — Prepublished version 4

VS TS W 0o = = (o] USSR 93

26 MOUUIE CONEIOI PAIMT......eoiiieeiiie ettt sttt e et e e ab e e rbb e e e bb e e enbeeeenbeeesnbeeeanes
26.1 EXECULION OF TESE CASES.....ucuiiectcteeieesectee ettt et st sa st e et sbeae st st esese s st e b e e st e bebesssesbess e st e s esese et ebeseassesbensaesbessassentesenen
26.2 TErMINatiON Of tESE CASES......ccveeieereeeecteeeese ettt

26.3 Controlling execution Of tESt CASES..........ou e

264 TESE CASE SEIECLION.......vceecteecieeeee ettt st s seas

265 USE OF TIMEIS TN CONIIOL ..ottt ettt et e e st e e b et e b s ae s s b et ebe s b et ebeseemesb et ebeseenesbeseebesbe e ebeseenene
27 SPECITYING @ITDULES. ...t e e e e e e enneeeenes
271 DiISPIAY BIITDULES.......ceeveeeeereerreer ettt s bbbt
272 Encoding attributes

2721 Invalid encodings

273 EXEENSION BHITDULESce ettt sttt s s e a sttt
274 Scope of attributes

275 Overwriting rulesfor attributes

276 Changing attributes of imported [anguage ElEMENLS ... sees
Annex A (normative): BNF and Static SEMantiCS........ueeiuiieiiiieiiie i 99
O I 4] N | PSSR 29
All Conventions for the SYNtaX JESCITPLIONc.cueeeierrirerreerreee e 99
A.l2 Statement terminator symbols

A.1l3 L[S0 LN £
Al4 L0 110101= 1K
A.l5 TTCN-3 terminals
A.16 TTCN-3 syntaX BNF PrOQUCLIONS.......c.ccccctriiecicereec ettt see s bbb s st b s st ss s s s sssanteses 101
A L I A I IO NV 1Y, o (U
A.1.6.2 Module Definitions Part
R I A Y/ oY= 1= B D= T T 0P
N N G A ©a 1415 = 10| A D T= 1 a1) T
A.1.6.2.3 Template Definitions
F N I A ¥ g (ox (o W T T 11)
A.1.6.2.5 Signature Definitions
A.1.6.2.6 Testcase Definitions....................
A.1.6.2.7 NamedAlt Definitions
A.LB.2.8 IMPOIT DEFINITIONSvieiiieeiretrictrier ettt
A.1.6.2.9 Group DEfINIIONS......c.coccieieirecceeece ettt

A.1.6.2.10 External Function Definitions
A.1.6.2.11 External Constant Definitions
F N R T @0 a1 0 I T T
A.1.6.3.1 Variable Instantiation
N ST T T 0 =g 1S 7= 1= o T
A.1.6.3.3 Component Operations
A L6.3.4 POIT OPEIAIONS.....veureerrereesessesessesesseseestsessssesss s s e s sse s eae s s s ses e s e e e s b e s e st b e Rt R bbb
ALLB.3.5 TIMEN OPEIBLIONS.ceviereereeereseeresesseseestsesssseass s s sese b ese s sesessese s st s et s e e s b ee st s et bbb bbbttt
A.1.6.4Type 110

R I N =V 5/ 0= J OO OO 111
A.1.65Vadue 111

Y ST = = 041 (= =) SO R
A.1.6.7 With Statementccccoeeeeeererernne.

A.1.6.8 Behaviour Statements.....................

A.1.6.9 Basic Statements..........cccceeeeeeerernne.

A.1.6.10 Miscellaneous productions

Annex B (normative): Operational SEMANTICSc.eiiiiieiiiie e 116
B.1 SHUCIUIE OF thiS @NMNEX......eiiiiiiiiiie ittt rbb et e et e e sneeeeenes 116

B.2 Replacement of shorthand notations and Macro CallScocvveiiiiiiiiiiiie e 116
B.21 Order Of FEPIBCEMENT SLEPScueiereee ettt bbb 117
B.22 Adding stop and return operations in behaviour eSCIiPLIONS...........cverererriene et seseeseaees 118
B.23 Replacement of global constants and module parameters
B.24 Embedding single receiving operations into alt StALEMENTSccverrrrirninesee s 118

ITU-T Z.140 (07/2001) — Prepublished version 5

B.25 IMLBETO EXPANSI ON.....vrteaeeaer sttt ettt

B.251 Expansion of named alternatives in alternative statements,

B.252 Explicit call of anamed alternative...........ccovecneeneenernneneerneeeneenne

B.26 Replacement of the interleave CONSIIUCK............ovveeerreecneenereserereeeeene

B.27 EXpansion of defalllts.........ccvvcenneccinrece e asens

B.28 Replacement of trigger OPEratioNns.........cccvvcceveveeeeesesee e sessessseeens

B.29 Replacement of the keywords'any' and ‘all'........cccooveeenvevccenenecceseneeees

B.29.1 Replacement of 'all' in timer and port operations............ccceevveveenvennens

B.29.2 Replacement of 'any’ in timer and receiving operations..........c.cccvveea.

B.29.3 The keywords 'any' and 'al’ in 'done’ and 'TUNNING'..........ccceiirrrneeensese s ssssssssesssesesnes
B.3 Flow graph SemantiCS Of TTCN-3.....cciiiiiie e e e e e e e e e e nnaneeas
B.3.1 L 0T A0 =T o TP
B.311 Flow graph frame

B.3.12 FIOW GFaPN NOTES........cecteeireeeereee ettt
B.3121 0= 700 =T
B.3122 End nodes

B.3.123 BBSIC NOUES ...ttt bbb e b bbb e £t E bbbttt be e s
B.3124 REFEIENCE NOUES........oeeeetrer ettt et bbbttt b e s
B.3.1241 OR combination of reference nodes

B.3.1.24.2 Multiple occurrences Of rEfErENCE NOUES.........cccccuriieicerese ettt es
B.3.13 FLOW TINES <.ttt ettt s b bbb bbbttt
B.314 Flow graph segments

B.3.15 L0001 0100T= 013U
B.3.1.6 Handling of flow graph deSCrPLIONS........ccccricrscce ettt se e nnanees
B.3.2 Flow Graph Representation of TTCN-3 behaviour

B321 The flow graph CONSLIUCETON PIrOCEAUNE..........ceeieeecereei et
B.322 Flow graph representation of MOAUIE CONEIOL ...
B.323 Flow graph representation of test cases

B.324 Flow graph representation of functions

B.325 Flow graph representation of component type defiNitions..........cccvernrnceeee s
B.3.26 Retrieval of start nodes of flow graphs

B.33 State definitionS fOr TTCN-3 MOGUIES ...ttt s seb bbbt
B.331 IVLOQUIE SEBLE.......oeeeeereet ettt bbbt b bbbttt
B.3311 Accessing the module state

B.3.3.2 Y= 11T
B.3321 ACCESSING ENLILY SLALES. ...uvireeericeeeiresesie s ssst et ss st ss st s e b st e s an st es s sns s sse s s et essnnsesnsnnnsasas
B.3322 Data state and variable binding

B.33.23 Timer state and timer DINAINGccurerieerrre e
B.3324 ACCESSING tIMEr AN BEA SLALESveereerreeee ettt e
B.333 Port states

B.3331 Handling of connections between ports
B.3332 HaNAIiNG Of POIS SEALEScecvierieireriee et

B.334 General functions for the handling of modul e states

B.34 Messages, procedure calls, replies and EXCEPLIONS. ..ot s s saesenes
B.34.1 IMLESSAgES.cutuieieeuiirieieissiiese st e s s a bbb bbb b e s e s b e b e s e s e b e b e be b e b e b b et e b e bR s e bR e b bbb e bbb e b e b e b e b bbb b e b et e bbbt e st et et ntee
B.34.2 Procedure calls and replies

B.34.3 o011 o 1T
B.344 Construction of messages, procedure calls, replies and exceptions

B.345 Matching of messages, procedure calls, replies and exceptions

B.34.6 Retrieval of information from reCEIVEA ITEMS ...t sennaeens
B.35 Call recordsfor fUNCLIONS @NA LESE CASES ...t nss e s s snesenes
B.351 Handling of Call FECOIMS. ..ot

B.36 The evaluation procedure for a TTCN-3 module

B.36.1 EVAIULTON PRBSES........cocrieiieeieiesete et
B.36.11 Phase I: Initialization

B.36.1.2 =S o = TR PTR
B.36.13 Phase 1112 SEIECLION......cuueeirieeiree ettt bbb bbbttt
B.36.14 Phase IV: Execution

B.36.2 GlOD@I FUNCLIONS....c..eiticeiereeie ettt bbb bbb bbbt bbbt
B.3.7 Flow graph segment definitions for TTCN -3 CONSLIUCLSc.cvvireeerireseiriresesiesessssessesssssessesesssssssssssssssssssssesesnes
B.37.1 ATE SEBEEMENT ...ttt bbb bbbt

ITU-T Z.140 (07/2001) — Prepublished version 6

B37.11
B.3.7.2
B.3.7.3
B3.731
B.3.7.32
B.3.7.33
B.3.7.34
B.3.7.35
B.3.7.36
B.374
B.374.1
B3.742
B.3.75
B.3.7.6
B.3.7.7
B.3.7.8
B.3.7.9
B.3.7.10
B.3.7.10.1
B.3.7.10.2
B.37.11
B.37.111
B.3.7.112
B.3.7.12
B.3.7.13
B.3.7.14
B.3.7.15
B.3.7.16
B.3.7.17
B.37.171
B.3.7.17.2
B.3.7.18
B.3.7.181
B.3.7.182
B.3.7.183
B.3.7.184
B.3.7.19
B.3.7.20
B.3.7.21
B.3.7.22
B.3.7.23
B.3.7.24
B.3.7.25
B.3.7.26
B.3.7.27
B.37.27.1
B.3.7.27.2
B.3.7.28
B.3.7.281
B.3.7.282
B.3.7.29
B.3.7.30
B.3.7.30.1
B.3.7.30.2
B.3.7.31
B.3.7.32
B.3.7.33
B.37.34
B.3.7.35
B.3.7.351
B.3.7.352
B.3.7.36

Flow graph segment <reCeiViNg-DranCh> ...
Assignment statement
Call OPEIBLION.......oierieee et

Flow graph segment <nb-call-with-receiver>..........c.cccovnvncrnen.

Flow graph segment <nb-call-without-receiver>............ccccoeveerueeen.

Flow graph segment <b-call-with-receiver>ccoevvevervenrncnnn.

Flow graph segment <b-call-without-receiver>ccccocvevrvenrneeen.

Flow graph segment <b-call-with-rec-dur>c..cccoevvvvrvevrerenenen

Flow graph segment <b-call-without-rec-dur>..........cccccoevverrerrnnen.
(@7 o3 0] 0= = 11 o] U

Flow graph segment <catch-with-sender>..........ccocoovevrvrccrnennennnn,

Flow graph segment <catch-without-sender>...........c.cccoouvnerrrernens
Clear POIt OPEFELIONcvviereeererereeersese s
CONNECE OPEIBLIONceuvieeceresceressireseeeee s s e
Declaration 0f @ CONSLANTccceveririeirireeerereeee e
Create OPENALION ..o
Declaration Of @POIT ...

Declaration Of @tIMEr ..o

Flow graph segment <timerdecl-default>..........c.cccooevevveerrennnnen,

Flow graph segment <timerdecl-no-def>cccovvevvceccvveccnen,
Declaration of avariable ...

Flow graph segment <var-declaration-init>...........ccccceeererererrerrnnnnn,

Flow graph segment <var-declaration-undef>...........cccccovvverrerrennnn.
DiSCONNECE OPEIALION.......cereerieeereeeeeiseee e
DO-While StAtEMENLcveeereeee e eens
Done-all-components OPEratioN...........ccouererereeeereeernererseseesessees e
Done-any-component OPEratiON..........ccocverereerneeeneeerseesssersesesseessesessesenns
Done component operation
EXECULE SLALEMENL.......c.cuimiecieiririecrieee e

Flow graph segment <execute-timeout>............ccoveeneeeneeeeneereneenenens

Flow graph segment <execute-without-timeout>............ccccccvveerneeen.
g o] =515 T o) o R

Flow graph segment <lit-value>cccoevevvereenvencsnsesesesesenens

Flow graph segment <Var-vValue>cocoevverennenssesenesssesesenssneens

Flow graph segment <func-op-call>........ccccoovrrevrnrsnneneeserenseeenns

Flow graph segment <operator-appl>
Flow graph segment <finalize-component-init>.........ccccocovvevncrnercneenn.

Flow graph segment <init-component-SCOPE>...........oceverrererrererreeerenenne
FOr SEAEEIMENL.......ceciieeee e
FUNCETON Call ...ttt
Flow graph segment <value-par-calculation>............ccccverenerencereneerenen.
Flow graph segment <ref-par-var-CalC>..........cccccovvnrenreneeneneseessenenns
Flow graph segment <ref-par-timer-calC>.........ccovvveevevecnneseessennnns
Flow graph segment <parameter-handling>............cccccovveveenerereennennnns
(€T Cor= | W0 == 4 o o 1T

Flow graph segment <getcall -with-sender>............cccceovrvrcerrenrenenns

Flow graph segment <getcall -without-sender>c.cccooveevrerreenn.
GELreplY OPEIALTION......c.coviereeererireeireee e

Flow graph segment <getreply-with-sender> ...,

Flow graph segment <getreply -WithOUE-SENAEI>..........c.ccrrererireereereeeeseeresseress s essesesssensssensesenns
(GOLO SEBLEIMENLeeeeeeeeeereee ettt sttt ettt e st e e e s e £ e e 8 e eE £ e e e e e e b b st et et eenene s st nne s
If-el se statement

Flow graph segment <if-with-€lSe-branCh> ...t s

Flow graph segment <if-without-elSE-branCh>...........ccovcreccinrscce s
Label statement
L OQ SEALEIMENL........ciireeteirieie sttt bbb b e bt E b e R e bR e e e s A ket e b bt se b e be e eaene e neeran
=l o o= 4o o PP
MTC operation
Raise operation

Flow graph segment <rai SEWith-TECEIVEFOPS.........cceurirerrrererereesereseesesesesesesesessssss s sssessesesssssesessssssenes

Flow graph segment <raise-without-receiver-op>
REAA tIMET OPEIALIONcvueerieeereee ettt es et b bbb

ITU-T Z.140 (07/2001) — Prepublished version 7

B.3.7.37 RECEIVE OPEIBIION......vucetieteeereie ettt bbb

B.3.7.37.1 Flow graph segment <receive-with-sender>..........cccccconvnernncrnens

B.3.7.37.2 Flow graph segment <receive-without-sender>cccccouuvvernene.

B.3.7.37.3 Flow graph segment <receive-assignment>...........cccouerereenereencrrenens

B.3.7.38 REPIY OPEIGLIONcvvvicctereece et ae b naas

B.3.7.38.1 Flow graph segment <reply-with-receiver-op>.........ccccoeevevvenrnnen.

B.3.7.382 Flow graph segment <reply-without-receiver-op>.........ccccoevevvueen.

B.3.7.39 RELUMN SEALEMENT.......coitieiceeireeeie e

B.3.7.39.1 Flow graph segment <return-with-value>...........c.cocoovvvvrecerrencennnn,

B.3.7.39.2 Flow graph segment <return-without-value>cccccoovevevverneneen,

B.3.7.40 Running-al [-components OPEratiON...........ccovveeerereseeeseressssesesesseesereneens

B.3.741 Running-any-component OPEratiON...........c.veeeereeerneeerseeemsessesesseesseseeseseens

B.3.7.42 Running component OPEratioN...........cowererereeerneeernesessesesnessesesseessesssesenns

B.3.743 Running timer operation

B.3.7.44 SENA OPEIBEIONvuverierreerirterett e

B.3.7441 Flow graph segment <send-with-receiver-op>..........cccovnernncrnens

B.3.7.44.2 Flow graph segment <send-without-receiver-op>cccccovveerneen.

B.3.7.45 SElf OPEIALION.......cecviecctecce e et es

B.3.7.46 Start component operation

B.3.7.47 Start port operation..............

B.3.7.48 Start tiMer OPEratioNc.cueeeeereriree st sseses

B.3.7481 Flow graph segment <start-timer-op-default>...........cccooovevevvernnnen

B.3.7.482 Flow graph segment <start-timer-op-duration>..........ccccceeeeevrerrenenn.

B.3.7.49 StAEMENt DIOCK ... e nsees

B.3.7.50 Stop operation............cceeeee

B.3.751 Stop port operation...............

B.3.7.52 Stop timer operation

B.3.7.53 Sut.action operation.............

B.3.7.54 System operation..................

B.3.7.55 Timeout timer operation

B.3.7.56 Unmap operation..................

B.3.7.57 Verdict.get operation...........

B.3.7.58 Verdict.set operation............

B.3.7.59 Wil SLEEEMENT ..ot

B.38 Lists of operational semantiC COMPONENESccoveerererererirerreeereressseereressenenns

B.38.1 FUNCLIONS BN SLBLES.........cereeereceeeeirerereeresesesesesesses s st ssssesesessssssenennens

B.38.2 Special keywords.................

B.3.83 Flow graph segments

Annex C (normative): Matching inCOMING VAIUESc.cooiiiiiiiieeiee e
C.1 Template Matching MECNANISITIS.coiiiiiii it e e e e e e e e e s r e e e e e e s e s nrrraeeeeeas
Cl1i MELChiNG SPECITIC VAIUES.......cucviececteieecete ettt st et b st b s st et s s aetn s
Cl2 Matching mechanismsinstead of ValUEs..........cccccevvericnvencssseneessesseeens

Cl21 WV BIUB TSttt b

cl22 Complemented value list

Cl123 Omitting values...........c.c.......

Cl24 Any value.....cccoeeeerrereeennne,

Cl25 AANY VBIUE OF NOME.....eiiteiteietie ettt s et
Cl26 WV BIUB FANQE ..ottt R Rt
C.1l3 Matching mechanismsinside values

Cl31 ANY BIBIMENT ... e
Cl311 Using single CharaCter WildCAIdS.........ccviccieiniiceeeee ettt bbbt bn s
C.l132 Any number of elements or no element

Cl321 Using multiple character wildcards

Cl4 MatChing attribDULES OF VAIUESc.cueecee sttt s s nae s
Ccl41 Length restrictions

C.l42 THE ITPrESENt INTICALOTouieeeeeeeeireeetree ettt
C.15 s ot g T O == o (= gl = = o P
Annex D (normative): Pre-defined TTCN-3 fuNClionS..........ccoeiiiiiiieee e 234
D.1 Predefined TTCN-3 fUNCHONS........coiiiiiiiiieeiiiiie e e e et e e e see e e s e e e s nnaeeeeeenaaeeessnreeeeennneeeas 234

ITU-T Z.140 (07/2001) — Prepublished version 8

D11 INEEQGET 10 CRAIBCLET. ...ttt bbb bbb
D12 CharaCter t0 INTEOEYcvueereerereereerreee e

D.13 Integer to uNiversal CharaCter ...

D14 Univeral charaCter 10 iNtEOETovvrerrererreerrieeneieese e

D.15 Bitstring to integer.....................

D.16 Hexstring to integer...........

D.17 Octetstring to integer.

D.18 L@ TS LT 0T (0T 1= <! PO
D.19 Integer to bitstring.............

D.1.10 Integer to hexstring............

D111 Integer to octetstring

D112 Integer to charstring..........

D.113 Length of string type.

D.114 Number of elementSin aStrUCIUIEH LYPE.....c.oc et res e
D.115 THREISPIESENt FUNCHION. ..ottt bbb e bbb
D.116 THe I SCROSEN FUNCHION... ..ottt bbbt bbbt
Annex E (normative): Using other datatypeswith TTCN-3.......ccccoviiieeeeiiiieeee e, 238
E.l USNGASN.LIWItN TTCN-3 ..ottt e e e e e e s st e e e e e e e e s esannreneeeaaeeenns 238
E1l1 ASN.1and TTCN-3tYPE EQUIVAIENLES......ccevierecieiricectetreeste ettt s et se b s sas e ses s s sessansnses 238
E12 ASN.1 datatypes and VaAlUES..........ccccveuvereeerereresienesesessssesssssesesssssssens

El21 Scope of ASN.1 identifiers

E1l3 ParameteriZation INASN.L ...t bbb bbbt 239
El4 Defining message types With ASN.L ...

E15 Defining ASN.1 MESSAgE tEMPIALES........coiereerereieiricier et s bbb
E151 ASN.1 receive messages using the TTCN-3 template syntax

E152 Ordering of template fields.........coveieineeneee e

E16 Encoding information....................

E16.1 ASN.1 encoding attributes

ITU-T Z.140 (07/2001) — Prepublished version 9

1 Scope

The present document defines the Core Language of TTCN Version 3 (or TTCN-3). TTCN-3 can be used for the
specification of all types of reactive system tests over avariety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of CORBA based platforms, APIsetc. TTCN-3is not restricted to conformance testing and can be used
for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The
specification of test suitesfor physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format [1] and a
graphical presentation format [2]. The specification of these formats is outside the scope of the present document.

The present document defines a normative way of using of ASN.1 as defined in the ITU-T Recommendation X.680
series[7],[8], [9] and [10] with TTCN-3. The harmonization of other languages with TTCN-3is outside the scope of
the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilersinto
consideration the means of realization of executable test suites (ETS) from abstract test suites (ATS) isoutside the
scope of the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

For a specific reference, subsequent revisions do not apply.

For a non-specific reference, the latest version applies.

1 Recommendation ITU-T Z.141: “The Tree and Tabular Combined Notation version 3 (TTCN-3):
Tabular Presentation Format”.

[2] Draft new Recommendation ITU-T Z.142: “The Tree and Tabular Combined Notation version 3
(TTCN-3): Graphicd Format”.

[3] ISO/IEC 9646-1 (1994): "Information technology - Open systems interconnection - Conformance
testing methodology and framework - Part 1: General Concepts'.

4 |SO/IEC 9646-3 (1998): "Information technology - Open systems interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)
Edition 2".

[9] ISO/IEC 646 (1990): "Information technology - 1SO 7-bit coded character set for information
exchange".

[6] ISO/IEC 10646 (1993): "Information technology - Universal Multiple Octet-Coded Character Set

(UCS) - Part 1: Architecture and basic multilingual plane”.

[7 ITU-T Recommendation X.680 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".

[8] ITU-T Recommendation X.681 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification”.

9 ITU-T Recommendation X.682 (1997): "Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification”.

ITU-T Z.140 (07/2001) — Prepublished version 10

[10] ITU-T Recommendation X.683 (1997): " Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications”

[11] ITU-T Recommendation X.690 (1997): "Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)".

[12] ITU-T Recommendation X.691 (1997): "Information technology - ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

compatibletype: TTCN-3isnot strongly typed but the language does require type compatibility. Variables, constants,
templates etc. have compatible typesif they resolve to the same base type and, in the case of assignments, matching
etc., no sub-typing (e.g., ranges, length restrictions) is violated

communication port: abstract mechanism facilitating communication between test components
A communication port is modelled as a FIFO queue in the receiving direction. Ports can be message-based,
procedure-based or a mixture of the two.

exception: in cases of synchronous communication an exception (if defined) is raised by an answering entity if it
cannot answer aremote procedure call with the normal expected response

test suite: TTCN-3 modulethat either explicitly or implicitly through import statements completely specifiesall
definitions and behaviour descriptions necessary to define a complete set of test cases

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by areal test system

type parameterization: ability to pass atype as an actual parameter into a parameterized object

This actual type parameter then compl etes the type specification of that object. Note that the parameter is not a val ue of

atype but the type itself.

3.1.1 Definitions from ISO/IEC-9646-1

For the purposes of the present document, the following terms and definitions given in 1SO/IEC-9646-1 [3] apply:
Implementation Confor mance Statement (ICS)

Implementation eXtra Information for Testing (IXIT)

Implementation Under Test (IUT)

System Under Test (SUT)

test case

test caseerror

test system

ITU-T Z.140 (07/2001) — Prepublished version

11

3.1.2 Definitions from ISO/IEC-9646-3

For the purposes of the present document, the following terms and definitions given in 1SO/IEC-9646-3 [4] apply:
Main Test Component (MTC)

Parallel Test Component (PTC)

snapshot semantics

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

ASP Abstract service Primitive

ATS Abstract Test Suite

BNF Backus-Nauer Form

CORBA Common Object Request Broker Architecture

ETS Executable Test Suite

FIFO First In First Out

IDL Interface Description Language

IUT Implementation Under Test

MTC Master Test Component

PDU Protocol Data Unit

PTC Parallel Test Component

PICs (Protocol) Implementation Conformance Statement
PIXIT (Protocol) Implementation eXtra Information for Testing
SUT System Under Test

TTCN Tree and Tabular Combined Notation

ITU-T Z.140 (07/2001) — Prepublished version

4 Introduction

TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), servicetesting (including supplementary services), modul e testing, testing of CORBA based platforms, API
testing etc. TTCN-3is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

From asyntactical point of view TTCN-3isvery different from earlier versions of the language as defined in
I1SO/IEC 9646-3 [4]. However, much of the well-proven basic functionality of TTCN has been retained, and in some
cases enhanced. TTCN-3includes the following essential characteristics:

the ability to specify dynamic concurrent testing configurations;

operations for synchronous and asynchronous communication;

the ability to specify encoding information and other attributes (including user extensibility);
the ability to specify data and signature templates with powerful matching mechanisms;
type and value parameterization;

the assignment and handling of test verdicts;

test suite parameterization and test case selection mechanisms;

combined use of TTCN-3 with ASN.1 (and potential use with other languages such asIDL);
well-defined syntax, interchange format and static semantics;

different presentation formats (e.g., tabular and graphical presentation formats);

aprecise execution algorithm (operational semantics).

4.1 The core language and presentation formats

Historically, TTCN has always been associated with conformance testing. In order to open the language to awider

range of testing applications in both the standards domain and the industrial domain the present document separates the
specification of TTCN-3into several parts. Thefirst part, defined in the present document, is the core language. The
second part, defined in Recommendation Z.141 [1], is the tabular presentation format, similar in appearance and
functionality to earlier versions of TTCN. Thethird part, defined in draft new Recommendation Z.142 [2] isthe

graphical presentation format.

The core language serves three purposes:
a) asageneralized text -based test language in its own right;
b) as a standardized interchange format of TTCN test suites between TTCN tools;
¢) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3isfully harmonized with ASN.1 which may optionally be used with TTCN-3 modules as an alternative data
type and value syntax. Use of ASN.1in TTCN-3 modulesis defined in annex E of the present document. The approach
used to combine ASN.1 and TTCN-3 could be applied to support the use of other type and value systems with TTCN-3.
However, the details of this are not defined in the present document.

ITU-T Z.140 (07/2001) — Prepublished version 13

TTCN-3 >

Core
ASN.1 Types) Tabular ¢)
& Values Language format
Other Types) Graphical i
& Values 2 format ¢ > i TTCN-3 U

-3 User

Other Types > Presentation The shaded boxes are not
& Valuesn formatn < > defined in this document

Figure 1: User's view of the core language and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (see annex B). It contains
minimal static semantics (provided in the body of the present document and in annex A) which do not restrict the use of
the language due to some underlying application domain or methodology. Functionality of previousversionsof TTCN,
such astest suite indexes, which can be achieved using proprietary toolsis not part of TTCN-3.

5 Basic language elements

The top-level unit of TTCN-3isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. M odules can have parameter liststo give aform of test suite parameterization similar to
the PICS and PIXIT parameterization mechanisms of TTCN-2.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
cases etc.

The control part of amodule calls the test cases and controls their execution. The control part may also declare (local)
variables etc. Program statements (such asi f -el se and do- whi | e) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

TTCN-3 has anumber of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays. As an option, ASN.1 types and values may be used with TTCN-3 by importation.

A special kind of data value called atemplate provides parameterization and matching mechanisms for specifying test
datato be sent or received over the test ports. The operations on these ports provide both asynchronous and
synchronous communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed astest cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and |ogging mechanisms are al so supported.

Finally, most TTCN-3 language elements may be assigned attributes such as encoding information and display
attributes. It is also possible to specify (non-standardized) user-defined attributes.

ITU-T Z.140 (07/2001) — Prepublished version 14

Table 1: Overview of TTCN-3 language elements

Language element Associated Specified in Specified in Specifiedin
keyword module definitions | module control functions/test
cases

TTCN-3 module definition module

Import of definitions from other module |import Yes

Grouping of definitions group Yes

Data type definitions type Yes

Communication port definitions port Yes

Test component definitions component Yes

Signature definitions signature Yes

External function/constant definitions external Yes

Constant definitions const Yes Yes Yes
Data/signature template definitions template Yes

Function definitions function Yes

Named alternative definitions named alt Yes

Test case definitions testcase Yes

Variable declarations var Yes Yes
Timer declarations timer Yes Yes

5.1

Definitions, instances and declarations

In the present document the term declaration is used in ageneral manner to cover making a static definition or creating
some kind of dynamic instantiation where anameis given to a TTCN-3 object. For example, types and constants are
defined and a statement such as calling afunction or declaring avariable is an instantiation. In both cases these actions
can be referred to as making a declaration.

5.2

Ordering of language elements

Generally, the order in which declarations can be made and the mixing of declarations with program statementsis
arbitrary. However, inside a statement block, such asabranch of ani f - el se statement, al declarations (if any), shall
be made at the beginning of the statement block only.

EXAMPLE:

/1 This is a legal mxing of TTCN-3 decl arations

;/ar MyVar Type MyVar2 : = 3;
const integer MyConst:= 1;
if (x > 10)
{

var integer MyVarl:= 1;

i\/VVarl:: Myvarl + 10;

5.2.1

Forward references

Definitions in the modul e definitions part may be made in any order and while forward references should be avoided
(for readability reasons) thisis not mandatory. For example, recursive elements, such as functionsthat call other
functions and modul e parameterization, may lead to unavoidable forward references.

Forward references are only allowed for declarationsin the module definitions part. Forward references shall never be
made inside the modul e control part, test case definitions, functions and named alternatives. This means forward
referencesto local variables, local timers and local constants shall never occur.

ITU-T Z.140 (07/2001) — Prepublished version

15

5.3 Parameterization

TTCN-3 supports both type parameterization and val ue parameterization according to the following limitations:

a)
i mport;

b)

language elements which cannot be parameterized are: const ,var, ti mer,control, group and

the language element nodul e allowsstatic value parameterization to support test suite parametersi.e., this

parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e, static at run-time). This meansthat, at run-time, module parameter values are globally visible but

not changeable;

c)

specia configuration typeaddr ess support static type and static value parameterizationi.e., this

parameterization shall be resolved at compile-time;

al user-defined t ype definitions (including the structured type definitions such asr ecor d, set etc.), and the

d) the language elementssi gnat ur e,t est case andf uncti on support dynamic value parameterization (i.e.,

this parameterization shall be resolvable at run-time);

€) named alternatives support dynamic value parameterization (i.e., this parameterization shall be resolvable at run-
time). Since named alternatives are not a scope unit, the defined formal parameters are simply substituted by the
given actual parameters when the (macro) expansion of thenaned al t isperformed.

A summary of which language elements can be parameterized and what can be passed to them as parametersisgivenin

table 2.
Table 2: Overview of parameterizable TTCN-3 language elements
Keyword Type Value Types of values allowed to appear in formal/actual
Parameterization | Parameterization parameter lists
module Static at start of run-|Values of: all basic types, all user-defined types and
time addr ess type.
type Static at compile- | Static at compile- [Values of: all basic types, all user-defined types and
time time addr ess type. Note: record of, set of, enumerated,
port, component and subtype definitions do not allow
parameterization.
template Dynamic at run-time[Values of: all basic types, all user-defined types, addr ess
type, conponent type andt enpl at e.
function Dynamic at run-time[Values of: all basic types, all user-defined types, addr ess
type, conponent type, port type,tenpl ate.andti ner.
testcase Dynamic at run-time[Values of: all basic types and of all user-defined types,
address typeandtenpl at e.
sighature Dynamic at run-time[Values of: all basic types, all user-defined types and
addr ess type and conponent type.
named alt Static macro Values of: all basic types, all user-defined types, addr ess
expansion type, conponent type, port type,tenpl ate andti ner.
NOTE: Examplesof syntax and specific use of parameterization with the different language elements are given in

the relevant clausesin the present document.

ITU-T Z.140 (07/2001) — Prepublished version

16

5.3.1 Parameter passing by reference and by value

By default, all parameters of basic types, basic string types, user-defined structured types, address type and component
type are passed by value. This may optionally be denoted by the keywordi n. To pass parameters of the mentioned
types by reference the keywordsout ori nout shall be used.

Timers and ports are always passed by reference and are identified by the keywordst i mer and por t . The keyword
i nout may optionally be usedto denote passing by reference.

53.1.1 Parameters passed by reference
Passing parameters by reference has the following limitations:

a) only theformal parameter liststof uncti on, si gnat ur e andt est case may contain pass-by-reference
parameters;

NOTE: There are further restrictions on how to use pass-by-reference parametersin signatures (see clause 22).
b) the actual parameters shall only be variables (e.g., hot constants or templates);
c) only value parameters (i.e., not type parameters) shall be passed by reference.

EXAMPLE:

function MyFunction(inout bool ean MyReferenceParameter){ ..};

/'l MyReferenceParaneter is passed by reference. The actual parameter can be read and set
/1 fromw thin the function

function MyFunction(out bool ean MyReferenceParameter){ ...};

/'l MyReferenceParaneter is passed by reference. The actual paranter can only be set
/1 fromw thin the function

5.3.1.2 Parameters passed by value

Actual parameters that are passed by value may be variables as well as constants, temp lates etc.

function MyFunction(in tenplate MyTenpl ateType MyVal ueParaneter){ ...};
/'l MyVal ueParaneter is passed by value, the in keyword is optional

5.3.2 Formal and actual parameter lists

The number of elements and the order in which they appear in an actual parameter list shall be the same as the number
of elements and their order in which they appear in the corresponding formal parameter list. Furthermore, the type of
each actual parameter shall be compatible with the type of each corresponding formal parameter.

EXAMPLE:

/1 A function definition with a formal parameter |ist
function MyFunction(integer Formal Parl, bool ean Formal Par2, bitstring Formal Par3) { ...}

/1 A function call with an actual paranmeter |ist
MyFunction(123, true,'1100'B);

5.3.3 Empty formal parameter list

If theformal parameter list of a parameterizable TTCN-3 language element that isfunction-like(i.e, f uncti on,
testcase,signature, named alt orexternal function)isempty thenthe empty parentheses shall be
included both in the declaration and in the invocation of that element. In all other cases the empty parentheses shall be
omitted.

ITU-T Z.140 (07/2001) — Prepublished version 17

EXAMPLE:

/1 A function definition with an enpty paraneter list shall be witten as
function MyFunction(){ ...}

/1 A record definition with an enpty paraneter list shall be witten as
type record MyRecord { ...}

534 Nested parameter lists

Generally, all parameterized entities specified as an actual parameter shall have their own parameters resolved in the
actual parameter list.

EXAMPLE:

/1 Gven the nessage definition
type record MyMessageType
{

i nteger fieldl,
charstring field2,
bool ean field3

}

/1 A nmessage tenplate m ght be
tenpl ate MyMessageType MyTenpl ate(i nteger MyVal ue) : =

fieldl : = MyVal ue,
field2 := pattern "abc*xyz",
field3 := true

}

/'l A testcase paraneterized with a tenplate m ght be
testcase TCOO1l(tenpl ate MyMessageType RxMsg) runs on PTCl system TS1

M/PCO. recei ve(RxMsQ) ;
}

/1 When the test case is called in the control part and the paraneterized tenplate is
/'l used as an actual paraneter, the actual parameters for tenplate nust be provided
control

TCO01(MyTenpl at e(7))

5.4 Scope rules

TTCN-3 provides five basic units of scope:
a) modules;
NOTE: There are additional scoping rulesfor groups (seeclause 7.3.1).
b) control part of amodule;
c) functions;
d) test cases;
e) statement blocks within control, functions and test cases.

Each unit of scope consists of (optional) declarations plus some form of (optional) functional description. All units of
scope, except modules, are hierarchical, with each level of hierarchy defining its own local scope. Declarationsin a
higher level of scope are visible to the lower levels (within the same hierarchy of scope). Declarationsin alower level
of scope are not visible to those in a higher scope.

ITU-T Z.140 (07/2001) — Prepublished version 18

EXAMPLE:

nodul e MyModul e

{ :
const integer MyConst := 0; // MyConst is visible to MyBehavi our A and MyBehavi ourB
functi on MyBehavi our A()
{ :
const integer A :=1; // The constant A is only visible to MyBehaviourA
}
function MyBehavi our B()
{ :
const integer B := 1; // The constant B is only visible to MyBehavi ourB
}
}

5.4.1 Scope and overloading of identifiers

TTCN-3 does not support overloading of identifiersi.e., al identifiersin the same scope hierarchy shall be unique. This
means that adeclaration in alower level of scope shall not re-use the same identifier as adeclarationin ahigher level of
scope (and inthe same scope hierarchy).

EXAMPLE:
nodul e MyModul e
{ :
const integer A := 1;
funct i on MyBehavi our A()
{ :
const integer A :=1; // |Is NOT allowed
if(.)
{ :
const boolean A := true; // Is NOT allowed
}
}
}

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/1 (assuming there is no declaration of A in nodule header)
function MyBehavi our A()

{ i:onst integer A := 1,
}

functi on MyBehavi our B()

{ éonst integer A := 1,
}

54.2 Scope of formal parameters

The scope of the formal parametersin a parameterized language element (e.g., in afunction call) shall be restricted to
the definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the normal scope rules (see clause 5.4). The rules of identifier overloading (see clause 5.4.1) shall also apply to
formal parameters.

55 Identifiers and keywords

TTCN-3identifiers are case sensitive and TTCN-3 keywords shall be written in all lowercase |etters (see annex A).

ITU-T Z.140 (07/2001) — Prepublished version 19

6

Types and values

TTCN-3 supports a number of predefined basic types. These basic typesinclude ones normally associated with a
programming language, such asi nt eger, bool ean and string types, aswell as some TTCN-3 specific ones such as
obj i dandverdi cttype. Structured types such asr ecor d types, set typesandenuner at ed types can be
constructed from these basic types.

Special types associated with configurations such asaddr ess, port andconmponent may be used to define the
architecture of the test system (see clause 21).

The TTCN-3types are summarized in table 3.

6.1

Table 3: Overview of TTCN-3 types

Class of type Keyword Sub-type
Basic types integer range, list
char range, list
universal char range, list
float list
boolean list
objid list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring list, length
universal charstring list, length
User-defined structured types record list
record of list
set list
set of list
enumerated list
union list
Special configuration types address
port
component

Basic types and values

TTCN-3 supports the following basic types:

a)

b)

c)

i nt eger : atype with distinguished values which are the positive and negative whole numbers, including zero.

Vaues of integer type shall be denoted by one or more digits; the first digit shall not be zero unlessthe valueis
0; the value zero shall be represented by a single zero.

char : atype whose distinguished values are characters from 1SO/IEC 646 [5].

Vaues of thetypechar may be given enclosed in double quotes (") or calculated using a predefined conversion
function with the positive integer value of their encoding as argument.

An order among the values of type char isdefined by the integer value of their encoding, i.e., therelational
operators ==, <, >,! =, >= and <= can be used to compare values of typechar .

uni ver sal char : atype whose distinguished values are single characters from 1SO/IEC 10646 [€].

Valuesof thetypeuni ver sal char may be given enclosed in double quotes (") or calculated using a
predefined conversion function with the positive integer value of their encoding as argument.

An order among the values of type char isdefined by the integer value of their encoding, i.e., the relational
operators ==, <, >,! =, >= and <= can be used to compare values of typeuni ver sal char.

ITU-T Z.140 (07/2001) — Prepublished version 20

d)

f)

9)

f | oat : atype to describe floating-point numbers.
Floating point numbers are represented as: <manti ssa>* <base> < Ponent

Where <mantissa> a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16) and
<exponent> apositive or negative integer.

The floating-point number representation is restricted to a base with the value of 10. Floating point values can be
expressed by using either:

the normal notation with adot in a sequence of numbers like, 1.23 (which represents 123*10°%), 2.783 (i.e.,
2783+10°) or -123.456789 (which represents-123456789+10°°); or

by two numbers separated by E where the first number specifies the mantissa and the second specifiesthe
exponent, for example 12.3E4 (which represents 12.3* 10%) or -12.3E-4 (which represents-12.3*10™%).

bool ean: atype consisting of two distinguished values.
Values of boolean type shall be denoted byt r ue andf al se.

obj i d: atypewhose distinguished values are the set of all object identifiers allocated in accordance with the
rulesof [7],[8], [9] and [10]. For example:

{itu-t(0) identified-organization(4) etsi(0)}
or aternatively {itu-t identified-organization etsi}
or aternatively { 04 0}
verdi cttype: atypefor use with test verdicts consisting of 4 distinguished values.

Valuesof ver di ct t ype shall bedenoted by pass,fail,i nconc,none anderror.

6.1.1 Basic string types and values

TTCN-3 supports the following basic string types:

NOTE: Thegeneral term string or string typein TTCN-3 referstobi t st ri ng, hexstri ng,octetstri ng,

a)

b)

charstring anduni versal charstring.
bi t st ri ng: atypewhose distinguished values are the ordered sequences of zero, one, or more hits.

Vauesof typebi t st ri ng shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded
by asingle quote (') and followed by the pair of characters'B. For example:

'01101'B

hexst ri ng: atype whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of typehexst r i ng shall be denoted by an arbitrary number (possibly zero) of the hexadecimal digits:
123456789ABCDEF

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation. For example:

'‘ABO1D'H

oct et st ri ng: atypewhose distinguished values are the ordered sequences of zero or a positive even number
of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Valuesof typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits.

ITU-T Z.140 (07/2001) — Prepublished version 21

123456789ABCDEF

preceded by asingle quote (') and followed by the pair of characters 'O; each hexadecimal digit isused to
denote the value of asemi-octet using a hexadecimal representation. For example:

'FF96'0

d) charstri ng: aretypeswhose distinguished values are zero, one, or more characters from ISO/IEC 646 [5].
The character string type preceded by the keyworduni ver sal denotes typeswhose distinguished values are
zero, one, or more characters from |SO/IEC 10646 [6].

Valuesof char stri ng typeanduni ver sal char stri ng type shall be denoted by an arbitrary number
(possibly zero) of characters from the relevant character set, preceded and followed by double quote (*).

In cases whereit is necessary to define strings that include the character double quote () the character is
represented by a pair of double quotes on the same line with no intervening space characters. For example,
""abcd"" representsthe literal string "abcd"”.

6.1.2 Accessing individual string elements

Individual elementsin astring type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements areindicated in table 4.

Indexing shall begin with the value zero (0). For example:

/'l Gven

MyBitString := '11110111' B;
/1 Then doi ng
MyBitString[4] := "'1'B;

/!l Results in the bitstring '11111111'B

6.2 User-defined sub-types and values

User-defined types shall be denoted by the keywordt ype. With user-defined typesit is possible to make sub-types
(such aslists, ranges and length restrictions) oni nt eger and the various string types.

6.2.1 Lists of values

TTCN-3 permits the specification of alist of distinguished values of any given type aslisted in table 3. The valuesin
thelist shall be of the base type and shall be atrue subset of the values defined by the base type. The subtype defined by
thislist restricts the allowed values of the subtype to those valuesin the list. For example:

type bitstring MyListOFBitStrings ('01'B, '10'B, '11'B);
6.2.2 Ranges

TTCN-3 permits the specification of arange of values of typei nt eger, char anduni versal char (or
derivations of these types). The subtype defined by this range comprises restricts the allowed values of the subtype to
the values in the range including the lower boundary and the upper boundary. For example:

type integer M/lntegerRange (0 .. 255);

6.2.2.1 Infinite ranges

In order to specify an infinite integer range, the keywordi nf i ni t y may be used instead of a value indicating that
thereisno lower or upper boundary. The upper boundary shall be greater than or equal to the lower boundary. For
example:

type integer MylntegerRange (-infinity .. -1); // Al negative integer nunbers

NOTE: The'value for infinity isimplementation dependent. Use of thisfeature may lead to portability problems.

ITU-T Z.140 (07/2001) — Prepublished version 22

6.2.2.2 Mixing lists and ranges

For valuesof typei nt eger, char anduni ver sal char (or derivations of these types) it is possible to mix lists
and ranges. For example:

type integer MylntegerRange (1, 2, 3, 10 .. 20, 99, 100);

6.2.3 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are of different
complexity depending on the string type with which they are used. In all cases, these boundaries shall evaluate to
non-negativei nt eger values (or derivedi nt eger values). For example:

type bitstring MyByte | ength(8); /1l Exactly length 8

type bitstring MyByte length(8 .. 8); /1 Exactly length 8

type bitstring MyNi bbl eOrByte |l ength(4 .. 8); // Mnimmlength 4, maxi mum | ength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keywordi nf i ni t y may also be used to indicate that thereis no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.3 Structured types and values

Thet ype keyword is also used to specify structured types such asr ecor d types, r ecor d of types, set types, set
of types, enuner at ed types and uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand initializer. For example:

const MyRecordType MyRecordVal ue: =

fieldl := '11001'B,
field2 := true,
field3 := "A string"
}
/Il O

const MyRecordType MyRecordVal ue:= {'11001'B, true, "A string"}

Itis not allowed to mix the two value notations in the same (immediate) context. For example:

/1 This is disallowed
const MyRecordType MyRecordVal ue: = { Ml ntegerValue, field2 := true, "A string"}

6.3.1 Record type and values

TTCN-3 supports ordered structured types known asr ecor d. The elements of arecord type may be any of the base
types or user-defined types such as other records, sets or arrays. The values of arecord shall be compatible with the
types of the record fields. The element identifiers are local to the record and shall be unique within the record. A
constant that is of record type shall contain no variables (including module parameters) asfield values, either directly or
indirectly.

type record MyRecordType

i nteger fieldl,
MyCQt her Struct field2 optional,
charstring field3

ITU-T Z.140 (07/2001) — Prepublished version 23

}

type record MyCGt herstruct Type
bitstring fieldl,
bool ean field2
}
Records may be defined with no fields (i.e., as empty records). For example:
type record M/EmptyRecord {}
A recor d valueisassigned on an individual element basis. For example:

var integer Ml ntegerValue:= 1;

var MyRecordType MyRecordVal ue: =

fieldl := Myl nteger Val ue,

field2 := MyQt her RecordVal ue,

field3 := "A string"
}
const MyQt her RecordType MyOQt her Recor dVal ue: =
{

fieldl := "'11001" B,

field2 := true

}
Or using an initializer. For example:

MyRecor dVal ue: = { Myl nt eger Val ue, {'11001'B, true}, "A string"};

For optional fieldsit allowed to omit the value using the omit parameter symbol. For example:

MyRecor dVal ue: = { Wyl nt egerValue, - , "A string"};
/1l Note that this is the same as writing, i.e., the value of field2 is undefined
MyRecor dVal ue. fieldl : = Myl nteger Val ue;
MyRecordVal ue.field3 := "A string"
6.3.1.1 Referencing nested record fields

Elements of nested records are referenced by Recor dl d. El enent | d pairs. For example:
MyVarl := MyRecordl. WEl enent 1;

/1 1f arecord is nested then the reference may look like this
MyVar2 := MyRecordl. WyEl enent 1. MyRecor d2. MyEl enent 2;

6.3.1.2 Optional elements in a record
Optional elementsinar ecor d shall be specified using the opt i onal keyword. For example:

type record MyMessageType
{

Fi el dTypel fiel d1,
Fi el dType2 field2 optional,

Fi el dTypeN fi el dN
}

6.3.2 Set type and values

TTCN-3 supports unordered structured types known asset . Set types and values are similar to records except that the

ordering of the set fieldsis not significant. For example:
type set MySet Type
{
i nteger fieldl,
charstring field2
}

Theinitializer notation for setting values shall not be used for values of set types.

ITU-T Z.140 (07/2001) — Prepublished version

24

6.3.2.1 Optional elements in a set

Optional elementsinaset shall be specified using theopt i onal keyword.

6.3.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered

array and an unordered array respectively.

Thel engt h keyword isused to restrict lengthsof r ecor d of andset of . For example:

type record of |ength(10) integer M/RecordOf Type; // is a record of a maxi numof 10 integers
type set of boolean MySet Of Type; // is an unlimted set of bool ean val ues

type record of length(10) charstring StringArray |ength(10);

/1 is a record of a maxi mum of 10 strings each with a maxi mum | ength of 10 characters

Thevaluenotationfor record of andset of isthesameasthevalue notation for arrays (see clause 6.4).

6.3.4 Enumerated type and values

TTCN-3 supports enumerated types. Enumerated types are used to model types that take only a distinct named set of
values. Operations on enumerated types shall only use the named identifiers and are restricted to assignment,
equivalence and ordering operators.

Each named value may optionally have an associated integer value, which is defined after the namein parenthesis.
These values are only used by the system to allow the use of relational operators. If no explicit integers are given the
ordering is assumed to start with zero. For example:

type enunerated MyEnunilype

Monday, Tuesday, Wednesday, Thursday, Friday
}
/1 A valid instantiation of MyEnumlype woul d be
var MyEnuniType Today := Monday;

var MyEnuniType Tonorrow : = Tuesday;
/1 and the statenent Today < Tonmorrow is true

6.3.5 Unions

TTCN-3 supportsuni on types. Union types are similar to records except that only one of the specified fields will ever
be present in an actual union value. Union typesare useful to model a structure which can take one of afinite number of
known types. For example:

type uni on MyUni onType
i nteger nunber,
charstring string
}
/1 A valid instantiation of MyUni onType woul d be

var MyUni onType age;
age. nunber := 34;

Theinitializer notation for setting values shall not be used for values of uni on types.

Theopti onal keyword shall not be used with union types.

ITU-T Z.140 (07/2001) — Prepublished version 25

6.4 Arrays

In common with many programming languages, arrays are not considered to be typesin TTCN-3. Instead, they may be
specified at the point of avariable declaration. For example:

var integer MyArray[3]; // Instantiates an integer array of 3 elements with the index 0 to 2

The values of array elements shall be compatible with the corresponding variable declaration. Values may be assigned
individually or all at once. For example;

MyArray[0]:= 10;
MyArray[1]:= 20;
MyArray[2] := 30;

/1l or using an initializer
MyArray: = {10, 20, 30};

Array indexes are expressions which shall evaluate to positivei nt eger values, including the value zero. By default,
indexing of TTCN-3 arrays shall start with the digit O (zero).

Array dimensions shall be specified using constant expressions which shall evaluate to apositivei nt eger value.
Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values. For example:

var integer MyArray[1l .. 5]; // Instantiates an integer array of 5 elenents
// with the index 1 to 5

MyArray[1] 10; // Lowest i ndex

MyArray[5] 50; // Highest index

Arrays of record of types allow the possibility to specify multi-dimensional arrays. For example:

/'l Gven

type record MyRecordType
i nteger fieldl,
MyQt her Struct field2,
charstring field3

}

/1 An array of MyRecordType could be

var MyRecordType MyRecordArray[10];

/1 A reference to a particular element would | ook like this
MyRecordArray[1].fieldl := 1;

6.5 Recursive types

Where applicable TTCN-3 type definitionsmay be recursive. The user, however, shall ensurethat all type recursionis
resolvable and that no infinite recursion occurs.

6.6 Type parameterization

Type parameterization allows dummy type identifiers which act as placeholders for any type. This meansthat a type can
be left open by the TTCN-3 specifier aslong asit is resolvable at compile-time.

NOTE: Thisisageneralization of the PDU meta-type concept of TTCN-2.

The actual typeisonly known when the type parameter is actually used. For example:
type record MyRecordType(MyMet aType)
{

bool ean fieldl,
MyMet aType field2 // MyMetaType is not of a particular type

}
var MyRecordType(integer) MyRecordVal ue : =

fieldl :
field2 :

true,
123 // MyMetaType is now of type integer

ITU-T Z.140 (07/2001) — Prepublished version 26

6.7 Type compatibility

TTCN-3isnot strongly typed but the language does require type compatability. Variables, constants, templates etc.
have compatible typesif they resolve to the same base type and, in the case of assignments, matching etc., no
sub-typing (e.g., ranges, length restrictions) is viol ated.

For example:

/1 G ven
type integer Mylnteger(1l .. 10)

var integer Xx;
var Myl nteger vy,

/1 Then

X :=20; // is a valid assignnment

y :=20; // is NOT a valid assignnent because 20 is not in the range of y

y :=5; // is a valid assignnent

Xx :=vy; I/l is a valid assignment, because the value of y is in the range of x

y :=Xx; [/l is NOT valid assignment, because the value of x is not in the range of y
x :=5; /] is a valid assignnent

y :=x; I/ is a valid assignnent, because the value of x is nowin the range of y

6.7.1 Type conversion

If it is necessary to convert values of one type to values of another type, where the types are not derived from the same
base type, then either one of the predefined conversion functions defined in annex D or a user defined function shall be
used. For example:

/1 To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring := int2hex(123, 4);

7 Modules

The principal building blocks of TTCN-3 are modules. For example, amodule may define afully executable test suite
or just alibrary. A module consists of a (optional) definitions part, and a (optional) module control part.

NOTE: Theterm test suiteis synonymous with acomplete TTCN-3 modul e containing test cases and a control
part.

7.1 Naming of modules

Module names are of the form of a TTCN-3identifier followed by an optional object identifier.

NOTE: Themoduleidentifier istheinformal text name of the module.

7.2 Parameterization of modules

Thenodul e parameter list defines a set of values that are supplied by the test environment at run-time. During test
execution these values shall be treated as constants. For example:

modul e MyPar anmet eri zedModul e(i nteger TS Parl, boolean TS Par2, hexstring TS Par3) { ...}

NOTE: Thisprovides functionality similar to TTCN-2 test suite parameters that provide PICS and PIXIT values
to the test suite.

ITU-T Z.140 (07/2001) — Prepublished version 27

7.2.1 Default values for module parameters

For cases where actual module parameter values are not provided by the test environment at run-time, it is allowed to
specify default values for module parameters. This shall be done by an assignment in the modul e parmeter list. For
example:

nodul e MyModul eDef aul t Paramet er (i nteger Parl := 1234, boolean Par2 := false) { ..}

7.3 Module definitions part

The modul e definitions part specifies the top-level definitions of the module. These definitions may be used elsewhere
in the module, including the control part. Those language elements which may be defined in a TTCN-3 module are
listed in table 1. The module definitions may be imported by other modules.

EXAMPLE:

modul e MyModul e
{ /1 This nmodul e contains definitions only

;:onst integer MyConstant := 1;
type record MyMessageType { ...}

function TestStep(){ ...}

}

Declarations of dynamic language elementssuch as var orti mer shall only be madein the control part, test cases or
functions.

NOTE: TTCN-3does not support the declaration of variablesin the module definitions part, only in the control
part. This means that global variables cannot be defined in TTCN-3.

7.3.1 Groups of definitions

In the module definitions part definitions can be collected in named groups. A group of declarations can be specified
wherever asingle declaration is allowed. Groups may be nested i.e., groups may contain other groups. Thisallowsthe
test suite specifier to structure, among other things, collections of test data or functions describing test behaviour.

Grouping is doneto aid readability and to add logical structure to the test suite if required. This meansthat all
identifiers of the declarationsin the set of groups (including any nested groups) at any given level of grouping shall be
unique. In other words, groups and nested groups have no scoping except in the context of any attributes given to the
group by an associated wi t h statement. In such cases, awi t h statement on an outer group isoverridden by awi t h
statement on an inner group.

EXAMPLE:

/'l A collection of definitions
group MyGroup
{

const integer MyConst:= 1;
iype record MyMessageType { ...}

/'l A group of test steps
group MyTest St eplLi brary
{

group MyGroupl
{

function MyTest Stepll() {
function MyTestStepl2() {

——

i‘unction MyTest Stepln() { ...}
}
group MyGroup2

function MyTestStep21() { ...}
function MyTest Step22() { ...}

i‘unction MyTest Step2n() { ...}
}

ITU-T Z.140 (07/2001) — Prepublished version 28

7.4 Module control part

The module control part describes the execution order (possibly repetitious) of the actual test cases. A test case shall be
defined in the modul e definitions part and called in the control part.

EXAMPLE:

modul e MyTest Suite
{ /1 This nmodul e contains definitions ...

'const integer MyConstant := 1;
type record MyMessageType { ...}
tenpl ate MyMessageType MyMessage := { ...}

functi on MyFunctionl() { ...}
function MyFunction2() { ...}

iestcase MyTest casel() runs on MyMICType { ...}
testcase MyTestcase2() runs on MyMICType { ...}

/1 ... and a control part so it is executable
control
{

var bool ean MyVariable; // Local control variable

M/TestCasel(); /'l sequential execution of test cases
MyTest Case2();

7.5 Importing from modules

It is possible to re-use definitions specified in different modules using thei npor t statement. TTCN-3 has no explicit
export construct thus, by default, all module definitions in the modul e definitions part may be imported. Ani npor t
statement can be used anywhere in the module definitions part. It shall not be used in the control part.

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported.

NOTE: If the module has global attributes they are associated to definitions without these attributes.

EXAMPLE:

modul e MyModul eA
{ /1 This nodul e contains definitions and inported definitions

6onst integer MyConstant := 1;
inmport all from MyModul eB; // Scope of the inported definitions is global to MyMydul eA
type record MWMessageType { ...}

funct i on MyBehavi our C()

{
const integer MyConstant := 2;
/'l inmport cannot be used here
}
;:ontrol
{ /'l inmport cannot be used here
}

ITU-T Z.140 (07/2001) — Prepublished version 29

7.5.1 Rules on using Import
On using import the following rules shall be applied:

a) only top-level definitionsin the module may be explicitly imported. Definitions which occur at alower scope
(e.g., local constants defined in afunction) shall not be imported;

b) by default, all definitions dependent on other definitionse.g., r ecor d types, are imported together with all the
definitions on which they depend. If it iswished not to import these dependenciesthe nonr ecur si ve
directive may be used,;

¢) groups of definitions can also be imported. However, groups are only used for structuring purposes and do not
have scope units. Therefore, it is allowed to import sub-groupsi.e., agroup which is defined within another
group.

7.5.2 Importing single definitions

Single definitions may be imported. For example:

import type MyType from MyModul eC;

7.5.3 Importing all definitions of a module

The entire contents of amodule definitions part (but not the actual module itself) may be imported, for example:

import all from MyModul e;

7.5.4 Importing groups
Groups may beimported, for example:
i mport group MyGroup from MyModul e;

Sub-groupsi.e., groups which are defined within another group are also imported by this statement.

7.5.5 Importing definitions of the same kind

Blocks of the same kind of definition may be imported, for example:

import all tenplate from MyModul e;

7.5.6 Recursive import of complex definitions

By default, recursive definitionsi.e., definitions that refer to other definitions, areimplicitly imported by thei npor t
statement. Examples of recursive definitionsarer ecor d types together with their component types or functions that
call other functions, for example:

import type MyType from MyModul eC;

All definitionsimplicitly imported are visible at the top-level of scope and can be used subsequent to the import
statement.

Note that local definitions within surrounding definitions e.g., local constant declarations within afunction will never be
visible.

ITU-T Z.140 (07/2001) — Prepublished version 30

EXAMPLE:

/1 G ven

modul e MyModul eA
{ :
function MyBehaviourB() { ...}
function MyBehavi our A()

M/Behavi ourB();

const integer Local Const:= 1000;

}

/1 Then

nodul e MyModul eB
{ :
i mport function MyBehavi our A from MyModul eA;

/1 W11l also inport and nmeke visible MyBehavi ourB. Constant Local Const will still
/'l be enbedded in MyBehavi ourA and will not be visible (outside of MyBehaviourA).

If definitions imported from one modul e depend on definitionsin afurther module then the definitions of the further

module areimported too i.e., import shall implicitly import dependent definitions from the third-party module. Thisis
dueto the rule that an imported definition is handled in the same manner as a definition that is defined in the module
itsalf.

If itiswished to inhibit recursive importsthenonr ecur si ve directive shall be used. For example:

import type MyType from MyModul eC nonrecursive;

7.5.7 Handling name clashes on import

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import e.g., import from different modules, import of groups or import of recursive
definitions. Name clashes shall be resolved by prefixing the imported definition (which causes the name clash) by the
identifier of the module from which it isimported. The prefix and theidentifier shall be separated by adot (.).

In cases where there are no ambiguities the prefixing need not always be present when the imported definitions are
used.

EXAMPLE:
nodul e MyModul eA
{ :
type bitstring MyTypeA;
inmport type MyTypeA from SomeModul eC; // Where MyTypeA is of type character string
i mport type MyTypeB from SoneModul eC; // \Where MyTypeB is of type character string
;:ontrol
{ :
var SoneModul eC. \yTypeA MyVarl := "Test String"; // Prefix nmust be used
var MyTypeA MyVar2 := '10110011'B; // This is the original MyTypeA
\'/ar MyTypeB MyVar3 := "Test String"; // Prefix need not be used ...
var SomeModul eC. WTypeB MyVar3 := "Test String"; // ..but it can be if w shed
}
}

NOTE: Definitions with the same name defined in different modul es are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype whichis

already defined locally, even with the same name, would lead to two different types being availableinthe

module.

ITU-T Z.140 (07/2001) — Prepublished version

31

7.5.8 Handling multiple references to the same definition

Theuseof i nport on single definitions, groups of definitions, definitions of the same kind etc. may lead to situations
where the same definition is referred to more than once. In such cases the definition shall be imported only once.

NOTE: The mechanismsto resolve such ambiguities e.g., overwriting and sending warningsto the user, are
outside the scope of the present document and should be provided by TTCN-3tools.

7.5.9 Import and module parameters

If an imported definition uses a module parameter then this parameter shall also be included in the module parameter
list of the importing module.

7.5.10 Import definitions from non-TTCN modules

The language keyword is used to denote cases where type definitions are imported from non-TTCN modules. For
example:

I mport type MyASN1Type from MyASN1Modul e | anguage "ASN. 1:1997";
By default, the language isTTCN-3. For example:
i mport type MyType from MyModul e;

/1 is the same as
i mport type MyType from MyModul e | anguage "TTCN-3";

8 Test configurations

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system.

TTCN Test systen
< >
MTC PTC,
‘ L | P, |———— T
+ Abstract Test System Interface v *
N N
Real Test System Interface

SUT

Figure 2: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) main test component (MTC). Test components that are not
MTCsare called parallel test components or PTCs. The MTC shall be created automatically at the start of each test case
execution. The behaviour defined in the body of the test case shall execute on this component. During execution of a
test case other components can be created dynamically by the explicit use of the cr eat e operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e., there is no explicit

hierarchical relationship among them and the termination of asingle PTC terminates neither other components nor the
MTC.

ITU-T Z.140 (07/2001) — Prepublished version 32

Communication is effected between the components within the test system and between the components and the test
system interface via communication ports.

Test component types and port types, denoted by the keywordsconponent and por t, shall be defined in the module

definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e andconnect operationswithin the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.2).

8.1 Port communication model

Test components can be connected with other components and with the test system interface. There are no restrictions
on the number of connections a component may have, but acomponent shall not connect to itself. One-to-many
connections are allowed.

Test components are connected viatheir portsi.e., connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port.

NOTE: While TTCN-3 portsareinfinitein principlein areal test system they may overflow. This should be
treated as atest case error (see clause 24.2.1).

>]]]]]L

Figure 3: The TTCN-3 communication port model

8.2 Abstract test system interface

TTCN-3isused to test implementations. The object being tested is known as the Implementation Under Test or [UT.
ThelUT may offer direct interfaces for testing or it may be part of system in which case the tested object isknown as a
System Under Test or SUT. Intheminimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in ageneral way to mean either SUT or IUT.

In areal test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface is associated with
each test case. A test system interface definition isidentical to acomponent definitioni.e., itisalist of al possible
communication ports through which the test case is connected to the SUT.

8.3 Defining communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being either message-based
or procedure-based or mixed. This shall be denoted by the keyword message or the keyword pr ocedur e within the
associated port type definition.

ITU-T Z.140 (07/2001) — Prepublished version 33

Ports are directional. The directions are specified by the keywordsi n (for thein direction), out (for the out direction)
andi nout (for both directions). Each port type definition shall have one or more lists indicating the allowed collection
of (message) types and/or procedures together with the allowed communication direction. For example:

/'l Message- based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/'l sent via and any integer value to be send and received over the port

type port MyMessagePort Type nessage

{

in MsgTypel, MsgType2;
out MsgType3;
i nout integer

}

/'l Procedure-based port which allows the renmote call of the proceduress Procl, Proc2 and Proc3.
/'l Note that Procl, Proc2 and Proc3 are defined as signatures
type port MyProcedurePort Type procedure

out Procl, Proc2, Proc3

}

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting from
expressions. Thus, thelist restricting what may be used on a message-based port issimply alist of type
names.

Using the keyword al | in one of the lists associated to a port type allows all types and/or all procedure signatures
defined in the module to be passed over that communication port. For example:
/'l Message-based port which allows any value of all built-in types and user-defined types to be
/1l transferred in both directions over this port
type port MyAI| MesssagesPort Type nessage
{

i nout al |

8.3.1 Mixed ports

It is possible to define a port as allowing both kinds of communication. Thisis denoted by the keywordni xed. This
means that the lists for mixed ports will also be mixed and include both, signatures and types. No separation is madein
the definition.

/1 M xed port, defining a message-based and a procedure-based port with the sanme nane. The in,
/1 out and inout lists are also m xed: MsgTypel, MsgType2, MsgType3 and integer refer to the
/1 message-based part of the m xed port and Procl, Proc2, Proc3, Proc4 and Proc5 refer to the
/'l procedure-based port.
type port MyM xedPort Type m xed
{

in MsgTypel, MsgType2, Procl, Proc2;

out MsgType3, Proc3, Proc4,

i nout i nteger, Proc5;
}

/1 M xed port, all types and all signatures defined in the nodule can be used at this port to
/'l comruni cate with either the SUT or other test conponents */

type port MyAl | M xedPort Type m xed
{

i nout al |

}

A mixed port inTTCN-3is defined as a shorthand notation for two ports, i.e., amessage-based port and a
procedure-based port with the same name. At run-time the distinction between the two portsis made by the
communication operations.

Operations used to control ports (seeclause21)i.e., st art ,st op andcl ear shall perform the operation on both
queues (in arbitrary order) if called with an identifier of a mixed port.

ITU-T Z.140 (07/2001) — Prepublished version A

8.4 Defining component types

Theconponent type defines which ports are associated with acomponent. These definitions shall be madein the
module definitions part. The port names in a corrponent definition are local to that component i.e., another component
may have ports with the same names. Ports of the same component shall all have unique names. However, this shall not
be taken to mean that there is any connection between the componentsover these ports.

EXAMPLE:
PCO2 PCO3
MyMTC MyPTC —
Il of MyMTCType [l of MyPTCTYPE |
PCO4
PCO1 PCO1

Figure 4: Typical components

type conponent MyMICType
{

port MyMessagePort TypePCOLl
}

type conponent MyPTCType
{
port MyMessagePort Type PCO1, PCO4;

port MyProcedurePort Type PCO2;
port MAI | MesssagesPort TypePCO3

8.4.1 Declaring local variables and timers in a component

It is possible to declare variables and timerslocal to a particular component. For example:
type conponent MyMICType
{
var integer MyLocal I nteger;

timer MyLocal Ti mer;
port MyMessagePort TypePCO1l

}

These declarations are visible to all functions that run on the component. This shall be explicitly stated using ther uns
on keyword (see clause 16).

Component variables and timers are associated with the component instance and follow the scope rules defined in
clause 5.1. Each new instance of a component will thus have its own set of variables and timers as specified in the
component definition (including any initial values, if stated).

8.4.2 Defining components with arrays of ports

It is possible to define arrays of portsin component type definitions (also see clause 21.9). For example:
type conponent My3pcoConmpType
{

port MyMessagel nterfaceType PCQ 3]
/'l Defines a conmponent type which has an array of 3 ports.

ITU-T Z.140 (07/2001) — Prepublished version 35

8.5 Addressing entities inside the SUT

An SUT may consist of several entities which have to be addressed individually. The address datatypeisatype for use
with port operations to address SUT entities. The actual datarepresentation of addr ess isresolved either by an
explicit type definition within the test suite or externally by thetest system (i.e. theaddr ess typeisleft asan open
type within the TTCN-3 specification). This allows abstract test casesto be specified independently of any real address
mechanism specific to the SUT.

Explicit SUT addresses shall only be generated inside a TTCN-3 moduleif the typeis defined inside the module. If the
typeis not defined inside the module explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the special valuenul | isavailableto indicate an undefined address, e.g., for the initialization of variables
of the address type.

EXAMPLE:

/'l Associates the type integer to the open type address
type integer address;

/) new address variable initialized with null
var address MySUTentity := null;

/'l receiving an address value and assigning it to variable MySUTentity
PCO. recei ve(address: *) -> value MySUTentity;

/) usage of the received address for sending tenplate MyResult
PCO. send(MyResult) to MySUTentity;

/) usage of the received address for receiving a confirmation tenplate
PCO. recei ve(MyConfirmation) from MySUTentity;

8.6 Component references

Component references are unique references to the test components created during the execution of atest case. This
unigue component reference is generated by the test system at the time when a component is created, i.e., a component
referenceistheresult of acr eat e operation (see clause 21.1). In addition component references are returned by the
predefined functionssyst em(returns the component reference to identify the ports of the test system interface), nt ¢
(returns the component reference of the MTC) andsel f (returns the component reference of the component in which
sel f iscalled).

Component references are used in the configuration operationsconnect ,map and st art (seeclause 21) to set-up
test configurationsand inthef romt o and sender parts of communication operations for addressing purposes (see
clause 22).

In addition, the special valuenul | isavailable to indicate an undefined component reference, e.g., for theinitialization
of variablesto handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

NOTE: A component reference includes component type information. This means, for example, that avariable
for handling component references mu st use the corresponding component type namein its declaration.

EXAMPLE:

/1 A conponent type definition

type conponent MyConpType {
port PortTypeOne PCO1;
port PortTypeTwo PCO2

}

/1 Declaring two variable for the handling of references to conmponents of type MyConpType
/1 and creating a conponent of this type

var MyConmpType MyConplnst := MyConpType. create;

ITU-T Z.140 (07/2001) — Prepublished version 36

/'l Usage of conponent references in configuration operations

/1 allways referring to the conponent created above

connect (sel f: M\yPCOL, MyConpl nst: PCO1);

map(MyConpl nst: PCO2, system Ext PCOL) ;

MyConmpl nst . start (M/Behavior(self));// self is passed as a paraneter to MyBehavi or

/'l Usage of conponent references in from and to- clauses
MyPCOL. recei ve from MyConpl nst ;

WPCOZ. receive(integer:*) -> sender MyConpl nst;

WPCOl. receive(MyTenpl ate) from MyConpl nst;

MDC02. send(i nteger:5) to MyConplnst;

The follow ng exanpl e explains the case of a one-to-many connection at a Port PCOl
where values of type ML can be received from several conponents of the different types

ConmpTypel, ConpType2 and ConmpType3 and where the sender has to be retrieved.
In this case the following scheme nmay be used:

~ — — —
o~ — — —

vér ML MyMessage, MyResult;

var MyConmpTypel Mylnstl := null;
var MyConpType2 Mylnst2 := null;
var MyConmpType3 Mylnst3 := null;

ait {
[] PCOL.receive(ML:*) from MyConpTypel -> val ue MyMessage sender Mylnstl {}
[] PCOL.receive(M.:*) from MyConpType2 -> val ue MyMessage sender Mylnst2 {}
[] PCOL.receive(ML:*) from MyConpType3 -> val ue MyMessage sender Mylnst3 {}

WResul t := MyMessageHandl i ng(MyMessage);// some result is retrieved froma function
f (Mylnstl !=

if (
if (Mylnst2!
if (MyInst3 !

null) {PCOL. send(MyResult) to Mylnst1};
null) {PCOL. send(MyResult) to Myl nst2};
null) {PCOL. send(MyResult) to Myl nst3};

8.7 Defining the test system interface

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection paints).

type conponent Myl SDNTest System nterface
{

port MyBchannel I nterfaceType B1;
port MyBchannel I nterfaceType B2;
port MyDchannel I nterfaceType D1

}

Generdly, acomponent type reference defining the test system interface is associated with every test case. The ports of
the test system interface are automatically instantiated together with the MTC when the test case execution starts
i.e., when thetest caseis called from the control part of the module.

The operation returning the address of the test system interfaceissyst em This can be used to address the ports of the
test system. For example:

map(MyNewConponent : Port 2, system PCOl1);

In the case wherethe MTC is the only component that isinstantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

ITU-T Z.140 (07/2001) — Prepublished version 37

9 Declaring constants

Constants can be declared and used in modul e headers, modul e control, test cases and functions. Constant definitions
are denoted by the keywordconst . The value of the constant shall be assigned at the point of declaration. For

example:

1:

const integer MyConstl : ;
true, MyConst3 := false;

const bool ean MyConst2 :

The assignment of the value to the constant may be done within the module or it may be done externally. The latter case
isan external constant declaration denoted by the keyword ext er nal . External constants shall resolve to avalue at
compile-time. For example:

external const integer MExternal Const;// external constant declaration

An external constant may have an arbitrary type but the type has to be known in the modulei.e., a base type, defined in
the module, or imported from some other module. The mapping of the type to the external representation of an external
constant is again outside the scope of the present document. The mechanism of how the value of an external constant is
passed into amodule is outside the scope of the present document.

10 Declaring variables

Variables are denoted by the keywordvar . Variables can be declared and used in modul e control, test cases and
functions. They shall not be declared or used in amodule header (i.e., global variables are not supported in TTCN-3). A
variable declaration may have an optional initial value assigned to it. For example:

1:

var integer MyVarl : ;
true, MyVar3 := false;

var bool ean MyVar?2 :

Use of uninitialized variables at runtime shall cause atest case error.

11 Declaring timers

Timers can be declared and used in module control, test cases and functions. Timers shall not be declared or used in the
modul e definitions part. A timer declaration may have an optional default duration value assigned to it. The timer shall
be started with this value if no other valueis specified. Thisvalue shall beof f | oat type wherethe base unitis
seconds. For example:

timer MyTimerl := 5E3;// declaration of the timer MyTinmerl with the default val ue of 5ns

timer MyTinmer2;// declaration of MyTiner2 without a default timer value i.e., a value has
/'l to be assigned when the timer is started

Thetimer operationsst art ,st op,read andt i meout may be used to control timers (see clause 23). For example:

/'l Uses of MyTimer2 m ght be
MyTi mer2.start(10); // 10 seconds
MyTi mer2.start(180); // 3 mnutes

11.1 Timers as parameters

Timers can only be passed by reference to functions and named alternatives. Timers passed into afunction or named alt
are known inside the behaviour definition of the function or named alternative.

A timer passed in as reference parameter can be used like any other timer, i.e., it needs not to be declared. A started
timer can also be passed into afunction or named alternative. The timer continuesits execution, i.e., it is not stopped
implicitly. Thereby, possible timeout events can be handled inside the function or named alternative to which the timer
is passed.

ITU-T Z.140 (07/2001) — Prepublished version 38

EXAMPLE:

/1l Function definition with a timer in the formal paraneter |ist
function MyBehaviour (timer MTiner)

MyTi mer.start;

12 Declaring messages

One of the key elements of TTCN-3isthe ability to send and receive complex messages over the communication ports
defined by the test configuration. These messages may be those explicitly concerned with testing the SUT or with the
internal co-ordination and control messages specific to the relevant test configuration.

NOTE: InTTCN-2these messages are the Abstract Service Primitives (ASPs), the Protocol Data Units (PDUs)
and co-ordination messages. The core language of TTCN-3is generic in the sense that it does not make
any syntactic or semantic distinctions of thiskind.

Complex messages may be defined as record types (see clause 6.3.1). For example:
type record MyMessageType

Fiel dTypel fieldl,
Fi el dType2 fiel d2,

Fi el dTypeN fi el dN
}

M essages can, of course, be sub-structured, for example:

/1 Information elenent type 1 (IETypel). Simlar declarations for |EType2 to | ETypeN
type record | ETypel

| EFi el dTypel iefieldl,
| EFi el dType2 iefield2,

| EFi el dTypeN i efi el dN
}

/1 A message containing information el enents
type record MyMessageType
{

| ETypelfiel di,
| EType2fiel d2,

i ETypeN fiel d3

12.1 Optional message fields

By default, all fieldsin a message shall be mandatory. Optional message fields shall be specified using theopt i onal
keyword. For example:

type record MyMessageType

Fi el dTypel fieldl,
Fi el dType2 field2 optional,

Fi el dTypeN fi el dN

ITU-T Z.140 (07/2001) — Prepublished version

39

13 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for synchronous communication. A procedure may either be
invoked inthe SUT (i.e., the test system performsthe call) or invoked in the test system (i.e., the SUT performsthe
cal).

For both procedures called from the SUT and procedures called from the test system the complete procedure
si gnat ur e shall be defined in the TTCN-3 module.

Withinthesi gnat ur e definition the parameter list may include parameter identifiers, parameter types and their
directioni.e, i n,out,ori nout). Note that the direction of the parametersis as seen by the called party rather than
the calling party. For example:
signature MyRempteProc (in integer Parl, out float Par2, inout integer Par3) return integer;
/1 This defines the renote procedure MyRenpteProc. MyRenoteProc returns an integer value and

/'l has three paraneters: one in parameter of type integer, one out paraneter of type float
/1 and one inout paranmeter of type integer

A procedurecal | will result in the called party performing either ar epl y (the normal case) or raising an exception.
The actions resulting from an accepted procedure call are defined by the receiving party (see clause 22).

13.1 Omitting actual parameters

Itisallowed to omit actual parameters from asignature actual parameter list. Thisisindicated by representing the
omitted actual parameter at its correct position by using the keyword omit. For example:

Par amet er Li st (Parl, omt, Par3) // Par2 is omtted

NOTE: Thisis often necessary when using procedure signatures in synchronous communication.

13.2 Specifying exceptions

Exceptions are represented in TTCN-3 as values of a specific type, eventemplates and matching mechanisms can be
used.

NOTE: Theconversion of exceptions generated by the SUT into the corresponding type istool and system
specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the signature definition. Thislist definesall the
possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by being represented by specific values of these types).

EXAMPLE:

signature MyRempteProc (in integer Parl, out float Par2, inout integer Par3) return integer
excepti on(Excepti onTypel, ExceptionType2);

/1 A call of MyRempteProc may raise exceptions of type ExceptionTypel or exceptions
/| of ExceptionType2

ITU-T Z.140 (07/2001) — Prepublished version 40

14 Declaring templates

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification.

Templates provide the following possibilities:
a) they are away to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
¢) they alow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3type or procedure signature. The type-
based templ ates are used for message-based communications and the signature templates are used in procedure-based
communications.

14.1 Declaring message templates

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructionsto build a message for sending or to match areceived message.

Templates may be specified for any TTCN-3type defined in table 3 except for the special types (por t
conponent, address).

/1 VWhen used in a receiving operation this tenplate will match any integer val ue
tenpl ate integer Mytenplate : = *;
/1 This tenplate will match only the integer values 1, 2 or 3

tenplate integer Mytenplate := (1, 2, 3);

However, it isanticipated that the most common use will be with records, as shown by the examples in the following
clauses.

14.1.1 Templates for sending messages

A template used in asend operation defines a complete set of field values comprising the message to be transmitted
over atest port. At thetime of the send operation, the template shall be fully defined i.e., all fields shall resolveto
actual values and no matching mechanisms shall be used in the template fields, neither directly nor indirectly.

EXAMPLE:

/1 Gven the nessage definition
type record MyMessageType
{

i nteger fieldl,
charstring field2,
bool ean field3

}

/1l a message tenplate could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 1,
field2 := "My string",
field3 := true

}

/1 and a correspondi ng send operation could be
MyPCO. send(My Tenpl at e) ;

NOTE: Templates may also be used for exceptionsif the corresponding type has been defined.

ITU-T Z.140 (07/2001) — Prepublished version 41

14.1.2 Templates for receiving messages

A templateusedinar ecei ve operation defines a data template against which an incoming message is to be matched.
Matching mechanisms, as defined in annex C, may be used in receive templates. No binding of the incoming valuesto
the template shall occur.

EXAMPLE:

/1 G ven the message definition
type record MyMessageType
{

i nteger fieldl,
charstring field2,
bool ean field3

}

/'l a message tenplate m ght be
tenpl ate MyMessageType MyTenpl ate: =
{

fieldl := 1,
field2 := pattern "abc*xyz",
field3 := true

}

/1 and a correspondi ng receive operation could be
MyPCO. recei ve(My Tenpl at e) ;

14.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

EXAMPLE:

/'l signature definition for a renmote procedure
signature RempteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/'l exanmple tenplates associted to defined procedure signature
tenpl ate RenoteProc Tenpl atel: =

Parl : =1,
Par2 : =2,
Par3 : =3
}
tenpl ate RenpteProc Tenpl ate2: =
Parl := 1,
Par2 = *,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate3: =
Parl := 1,
Par2 := *,
Par3 := *

ITU-T Z.140 (07/2001) — Prepublished version 42

14.2.1 Templates for calling procedures

Atemplateusedinacal | orrepl y operation defines acomplete set of field valuesfor al i n andi nout
parameters. At thetime of thecal | operationall i n andi nout parametersin the template shall resolve to actual

values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersissimply ignored, thereforeit is allowed to specify matching mechanismsfor these fields, or to

omit them (see annex C).

EXAMPLE:

/1 Valid call since all in and inout paraneters have a distinct value
MyPCO. cal | (Renot eProc: Tenpl atel) ;

/1 Valid call since all in and inout paraneters have a distinct value
MyPCO. cal | (Rempt ePr oc: Tenpl at e2) ;

/1 Invalid call since Par3 parameters has a matching attribute not a val ue
MyPCO. cal | (Rermpt ePr oc: Tenpl at e3) ;

/'l Tenpl ates never return values. In the case of Par2 and Par3 the values returned by the
/1 call must be retrived using an assignnent clause at the end of the call statenent

14.2.2 Templates for accepting procedure calls

A templateusedinaget cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex C, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Anyi n parameters shall be ignored in the matching process.

EXAMPLE:

/1 Valid getcall, it will match if Par2 == 2 and Par3 == 3
MyPCO. get cal | (Renot eProc: Tenpl atel);

/1 Valid getcall, it will match if Par3 == 3 and Any val ue of Par2
MyPCO. get cal | (Renpt eProc: Tenpl at e2) ;

/1 Valid getcall, it will match on Any value of Par3 and Par2
MyPCO. get cal | (Renot eProc: Tenpl at e3);

14.3 Template matching mechanisms

Generally, matching mechanisms will be used to replace values of single template fields or to replace eventhe entire
contents of atemplate. Some of the mechanisms may be used in combination.

M atching mechanisms and wildcards may also be used in-linein received eventsonly (i.e.recei ve,getcal |,
getrepl y and cat ch operations). They may appear in explicit values, for example:

MyPCO. r ecei ve(charstring: "abcxyz");
MyPCO. recei ve (integer:conplenent(1, 2, 3));

Thetypeidentifier is optional, for example:
MyPCO. recei ve("abcxyz");

However, the type of thein-line template shall be in the port list over which the templateis received. In the case where
thereisan ambiguity (e.g., through sub-typing) then the type name shall be included in the receive statement.

ITU-T Z.140 (07/2001) — Prepublished version 43

Matching mechanisms are arranged in four groups:
a) specific values (i.e., an expression that evaluates to a specific value);
b) special symbolsthat can be usedinstead of val ues:
(...): alist of values;
conpl ement (...): complement of alist of values,
omi t : valueis omitted;
?: wildcard for any value;
*: wildcard for any value or no value at all (i.e., an omitted value);
(lowert o upper): arange of integer values between and including the lower- and upper bounds.
c) specia symbolsthat can be usedinside values:
?: wildcard for any single element inastring, array, r ecord of orset of;

*: wildcard for any number of consecutive elementsinastring, array, record of orset of,orno
element at al (i.e., an omitted element).

d) special symbolswhich describe attributes of values:
| engt h:restrictions for strings and arrays,
i f present : for matching of optional field values (if not omitted).

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 5. Theleft-hand column of thistable lists all the TTCN-3 and ASN.1 equivalent types as defined in the

ITU-T Recommendation X.680 series [7], [8], [9] and [10] to which these matching mechanisms apply. A full

description of each matching mechanism can be found in annex C.

ITU-T Z.140 (07/2001) — Prepublished version %

Table 5: TTCN-3 Matching Mechanisms

Used with values of Value Instead of values Attributes
S \% C (0] A A R A A L |
p a o] m n n a n n e f
e | m i y y n y y n P
c u p t \% \% g E E g r
i e | \Y a a e | | t e
f L e a | | e e h s
i i m | u u m m R e
c s e u e e e e e n
\% t n e (@) (@) n n s t
a t r t t t
| e N (@] S r
u d 0 O i
e L n r c
| e N t
s *) o) i
t n o
e n
*)
boolean Yes Yes | Yes | Yes | Yes | Yes Yes
integer Yes Yes | Yes | Yes | Yes | Yes | Yes Yes
char Yes Yes | Yes | Yes | Yes | Yes | Yes Yes
universal char Yes Yes | Yes | Yes | Yes | Yes | Yes Yes
float Yes Yes | Yes | Yes | Yes | Yes Yes
bitstring Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
octetstring Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
hexstring Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
character strings Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
record Yes Yes | Yes | Yes [Yes | Yes Yes
record of Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
array Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
set Yes Yes | Yes | Yes | Yes | Yes Yes
set of Yes Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes
enumerated Yes Yes | Yes | Yes | Yes | Yes Yes
union Yes Yes | Yes | Yes | Yes | Yes Yes

14.4 Parameterization of templates

Templates for both sending and receiving operations can be parameterized. The formal parameters of atemplate can
include templates, functions and the special matching symbols. The rulesfor formal and actual parameter lists shall be
followed as defined in clause 5.3.

EXAMPLE:

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (integer MyFornal Param: =
{

fieldl : = MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as foll ows
pcol. send(MWy Tenpl ate(123));

ITU-T Z.140 (07/2001) — Prepublished version

14.4.1 Parameterization with matching attributes

To enable matching attributes to be passed as parameters the extrakeyword t enpl at e shall be added before the type
field. This makes the parameter atemplate and in effect extends the allowed parameters for the associated type to
include the appropriate set of matching attributes (see annex C) aswell asthe normal set of values. Template parameter
fields shall not be called by reference.

EXAMPLE:

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (tenplate integer MyFormal Param): =

{ fieldl : = MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows

pcol.receive(MyTenpl ate(?));

/1 O, if fieldl has be defined as being optional
pcol.recei ve(MyTenpl ate(omt));

14.5 Passing templates as parameters

Only functi on,testcase,nanmed alt andt enpl at e definitions can have templates as formal parameters.

EXAMPLE:

functi on MyBehavi our (tenplate MyMsgType MyFor mal Par amet er)
runs on MyConponent Type
{ .

pcol. recei ve(MyFor mal Paranmeter);

14.6 Modified templates

Normally atemplate will specify aset of base, or default, values or matching symbols for each and every field defined

in the appropriate definition. In cases where small changes are needed to specify anew templateit is possible to specify
amodified template. A modified template specifies modifications to particular fields of the original template, either
directly or indirectly.

Thenodi f i es keyword denotes the parent templ ate from which the new, or modified template shall be derived. This
parent template may be either the original template or amodified template.

The modifications occur in alinked fashion eventually tracing back to the original template. If atemplatefield and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used.

A modified template shall not refer to itself, either directly or indirectly i.e., recursive derivation is not allowed.

EXAMPLE:
/!l G ven
tenpl ate MyRecordType MyTenpl atel : =
{
fieldl := 123,
field2 := "A string",
field3 := true

}

/1 then writing
tenpl ate MyRecordType MyTenpl ate2 nodi fies MyTenpl atel : =
{

field2 :
field3 :

"A nmodified string",
omt // field3 nust be specified as optional in the corresponding record type

ITU-T Z.140 (07/2001) — Prepublished version 46

/'l is the same as writing
tenpl ate MyRecordType MyTenpl ate2 : =
{

fieldl := 123,
field2 := "A nodified string",
field3 := omt

14.6.1 Parameterization of modified templates

If abase templateis hasaformal parameter list, the following rules apply to all modified templates derived from that
base template, whether or not they are derived in one or several modification steps:

a) thederived template shall not omit parameters, however a derived template can have additional (appended)
parametersif wished;

b) theformal parameter list shall follow the template name for every modified template;

c) parameterized templatesin template fields shall not be modified or explicitly omitted in amodified template.

EXAMPLE:
/1 G ven
tenpl ate MyRecordType MyTenpl atel(integer Mypar):=
{
fieldl : = MyPar,
field2 := "A string",
field3 := true
}

/1 then a nodification could be
tenpl ate MyRecordType MyTenpl ate2(integer MyPar) nodifies MyTenplatel : =
{ /1l fieldl is paraneterized in Tenplatel
field2 := "A nodified string",
field3 := omt // field3 nust be specified as optional in the corresponding record type

14.6.2 In-line modified templates

Aswell as creating explicitly named modified constraints TTCN-3 allows the definition of in-line modified constraints.

EXAMPLE:
/1 G ven
tenpl ate MyMessageType Setup : =
{ fieldl := ,
field2 := "abc",
field3 := true
}

/1 Could be used to define an in-line nodified tenplate of Setup
pcol. send (modifies Setup := {fieldl 76});

14.7 Changing template fields

All changesto template fields shall only be done via parameterization or by in-line derived templates at the time of
performing a communication operation (e.g., send, r ecei ve,cal | ,get cal | etc.). The effects of these changes on
the value of the template field do not persist in the template subsequent to the corresponding communication event.

The notation of the kind MyTemplatel d.Fieldid shall not be used to set or retrieve values in templates in communication
events. The"->" symbol shall be used for this purpose (see clause 22).

ITU-T Z.140 (07/2001) — Prepublished version 47

14.8 Match Operation

The mat ch operation allows the val ue of avariable to be compared with atemplate. The operation returns a boolean

value. If the type of the template and variable are not compatible the operation returns false. If the types are compatible
the return value of the operation indicates whether the value of the variable conforms to the specified template.

tenpl ate integer LessThanlO0 := (1..10);

testcase TCO001()
runs on MyMICType

{ var integer RxVal ue
5bcn.receive(integer:?) -> val ue RxVal ue;
i f(mtch(RxValue, LessThanl10)) { ...}

) e

14.9 Value of Operation

Theval ueof operation allows the value specified within atemplate to be assigned to the fields of avariable. The
variable and template shall be type compatible (see 6.7) and each field of the template shall resolveto asingle value.

type record Exanpl eType
{

integer fieldl,

bool ean field2

}
tenpl ate Exanpl eType SetupTenplate : =
{

fieldl :
field2 :

1,
true

var Exanpl eType RxVal ue := val ueof (SetupTenpl ate);

15 Operators

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) string operators;

c) relational operators;
d) logical operators;

€) bitwise operators;
f) shift operators;

g) rotate operators.

These operators are listed in table 6.

ITU-T Z.140 (07/2001) — Prepublished version 48

Table 6: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal 1=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xor4b
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operatorsis shown in table 7. Within any row in thistable, the listed operators have equal

precedence. If more than one operator of equal precedence appearsin an expression, the operations are evaluated from
left to right. Parentheses may be used to group operandsin expressions, in which case a parenthesized expression has

the highest precedence for evaluation.

Table 7: Precedence of Operators

Priority Operator type

Operator

highest
Unary

Binary

Lowest

()
+, -, not, not4b

* [/, mod, rem
+, -

<<, >> <@, @>
<, >, <=, >=

ITU-T Z.140 (07/2001) — Prepublished version

49

15.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division and modulo.
Operands of these operators shall be of typei nt eger (including derivationsof i nt eger)orfl oat (including

derivationsof f | oat), except for nod which shall be used withi nt eger (including derivationsof i nt eger) types
only.

Withi nt eger typestheresult type of arithmetic operationsisi nt eger . With float types the result type of arithmetic
operationsisf | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

Theresult of performing the division operation (/) on two:

a) i nt eger valuesgivesthewholei nt eger valueresulting from dividing thefirsti nt eger by the second
(i.e, fractions are discarded);

b) fl oat valuesgivesthef | oat valueresulting from dividing thefirstf | oat by the second (i.e., fractions are
not discarded).

The operatorsr emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx rem y andx nod y computetherest that remainsfrom aninteger division of x by y. Therefore, they
are only defined for non-zero operandsy. For positivex andy, bothx rem y andx nmod y havethe same result but
for negative argumentsthey differ.

Formally, mod and r emare defined as follows:

X remy =x -y * (x/y)

Xx mod y = x rem|y| if x>=0
=0 i X <0 andx rem|y|] =0
=y + x rem|y]| if x <0 andx rem|y| <O

The following tableillustrates the difference between the mod and r em operator:

Table 8: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
xrem 3 0 -2 -1 0 1 2 0

15.2 String operators

The predefined relational operators perform concatenation of string types. The operands may be any string type values
that are compatible. The operation is a simple concatenation from left to right. No form of arithmetic additionis
implied. The result typeisthe compatible string type, for example:

'1111'B & '0000'B & '1111'B gives '111100001111'B

15.3 Relational operators

The predefined relational operators represent the relations of equality, lessthan, greater than, not equal to, greater than
or equal to and less than or equal to. Operands of equality (==) and non-equality (=) may be of an arbitrary type. All
other relational operators shall have operands only of typei nt eger (including derivativesof i nt eger)or f| oat
(including derivations of f | oat). In all casesthe two operands shall be of compatible type. The result type of these
operationsisbool ean.

ITU-T Z.140 (07/2001) — Prepublished version 50

15.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor .
Their operands shall be of type bool ean. The result type of thelogical operatorsisbool ean.

Thelogical not isthe unary operator that returnsthevaluet r ue if its operand was of valuef al se and returnsthe
valuef al se if the operand was of valuet r ue.

Thelogical and returnsthevaluet r ue if both itsoperands aret r ue; otherwiseit returnsthevaluef al se.

Thelogical or returnsthevaluet r ue if at least one of its operandsist r ue; it returnsthevaluef al se only if both
operandsaref al se.

Thelogical xor returnsthevaluet r ue if oneof its operandsist r ue; it returnsthe valuef al se if both operands are
fal se orif both operandsaret r ue.

15.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwiseand, bitwiseor and bitwisexor .
These operators are known asnot 4b, and4b, or 4b and xor 4b respectively.

NOTE: Toberead as"not for bit", "and for bit" etc.

Their operandsshall beof t ype bitstring,hexstring,octetstring. Theresulttype of the bitwise
operators shall be the same as that of the operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 bitis
settoOandaObitissetto 1. Thatis:

not4b '1'B gives '0'B
not4b '0'B gives '1'B
EXAMPLE

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b '01A5' O gives 'FE5A' O

The bitwiseand4b operator accepts two operands. For each corresponding bit position, the resulting valueisa 1 if both
bits are set to 1, otherwise the value for the resulting bit isO. That is:

'"1'B and4b '1'B gives '1'B
'1'B and4b '0'B gives '0'B
'"0'"B and4b '1'B gives '0'B
'0'B and4b '0'B gives '0'B
EXAMPLE:

'1001' B and4b ' 0101' B gi ves '0001' B

'"B'H and4b '5'H gives '1'H

"FB' O and4b '15'0O gives '11'0
The bitwise or 4b operator accepts two operands. For each corresponding bit position, the resulting valueis 0 if both
bits are set to 0, otherwise the value for theresulting bitis1. That is:

'"1'Bordb "1'B gives '1'B
"1'B or4db '0'B gives '1'B
'0'"Bordb '"1'B gives '1'B
'"0'"B or4db '0'B gives '0'B
EXAMPLE

'1001'B or4b '0101'B gives '1101'B
"9'"H or4b '5'H gives 'DH
"A9'O ordb 'F5'O gives 'FD O

ITU-T Z.140 (07/2001) — Prepublished version 51

The bitwise xor 4b operator accepts two operands. For each corresponding bit position, the resulting value is 0 if both
bitsare set to 0 or if both bits are set to 1, otherwise the value for the resulting bitis0. That is:

'1'B xor4b '1'B gives '0'B
"0'B xor4b '0'B gives '0'B
'0'"B xord4b '1'B gives '1'B
"1'B xor4b '0'B gives '1'B
EXAMPLE:

'1001' B xor4b '0101'B gives '1100'B
'"9'H xor4b '5'H gives 'CH
"39' 0O xor4b '15' O gives '2C O

15.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operators. Their left-hand operand shall
beoftype bitstring,hexstring,octetstringorinteger.Theirright hand operand shall be of type
i nt eger . Theresult type of these operators shall be the same as that of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left hand
operandis:

a) bitstringorinteger thentheshift unitappliedisl bit;
b) hexst ri ng thenthe shift unit appliedis 1 hexadecimal digit;
c) oct et stri ng thentheshift unit appliedis 1 octet.

The shift left (<<) operator accepts two operands. It shiftsthe left-hand operand by the number of shift unitsto the left
as specified by the right hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, azero ('O'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right hand side of the left operand.

NOTE 1. If theleft hand operand isof typei nt eger , then for each bit shifted to the left, thisis equivalent to
multiplying the left hand operand by two.

NOTE2: Anerror verdict shall be assigned if a system dependent overflow occurs when applying the shift left
operation to the left hand operand.

EXAMPLE:

'111001'B << 2 gives '100100'B

'12345'H << 2 gives '34500'H

'1122334455' O << (1+1) gives '3344550000' O
32 << 2 gives 128

-32 << 2 gives -128

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, azero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the left hand side of the left operand.

NOTE 1: If theleft hand operand is of typei nt eger , then for each bit shifted to theright, thisis equivalent to
doing integer division of the left hand operand by two (2).

NOTE2: Whentheleft operandis of typei nt eger and itsvalueis negative, when performing aright shift, the
sign bit shall be propagated.

EXAMPLE:

'111001'B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H

'1122334455' O >> (1+1) gives '0000112233'0
32 >> 2 gives 8

-32 >> 2 gives -8

ITU-T Z.140 (07/2001) — Prepublished version 52

15.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotateright (@) operators. Their left-hand operand
shall beof t ype bitstring,hexstring,octetstring,charstringor universal charstring.
Their right hand operand shall be of typei nt eger . The result type of these operators shall be the same as that of the
|eft operand.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left hand
operandis:

a) bi tstring thentherotate unit appliedis 1 bit;

b) hexstri ng thenthe rotate unit applied is 1 hexadecimal digit;

c) oct et stri ng thentherotate unit appliedis 1 octet;

d) charstringoruniversal charstring thentherotate unit applied isone character;

The rotate left (<@ operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the

left as specified by the right hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand fromits right-hand side.

EXAMPLE:

'101001'B <@2 gives '100110'B

"12345'H <@2 gives '34512'H

'1122334455' 0 <@ (1+2) gives '4455112233'0
"abcdefg" <@3 gives "defgabc"

Therotateright (@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the

right as specified by the right hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from itsleft-hand side.

EXAMPLE:

'100001'B @ 2 gives '0110001'B

'12345'H @ 2 gives '45123'H

'1122334455' 0 @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

16 Functions

Functions are used in TTCN-3 to express test behaviour or to structure computation in amodule, for example, to
calculate asingle value, to initialize a set of variables or to check some condition. Functions may return avalue. Thisis
denoted by ther et ur n keyword followed by atypeidentifier. If nor et ur n is specified then the functionisvoid. An
explicit keyword for void does not exist in TTCN-3. The keywordr et ur n, when used in the body of the function,
causes the function to terminate and to return a value compatible with the return type. For example:

/1 Definition of MyFunction which has no paraneters
function MyFunction() return integer

{

return 7; // return the integer value 7 when the function term nates

}

NOTE: The TTCN-3functions replace Test Suite Operations and Test Suite Procedural Definitionsin TTCN-2.
Informal functions may be declared as external functions with explanatory comments or by using an
empty formal function with comments.

ITU-T Z.140 (07/2001) — Prepublished version 53

A function may be defined within amodule or be declared as being defined externally (i.e., ext er nal). For an
external function only the function interface has to be provided in the TTCN-3 module. The realization of the external
function is outside the scope of the present document. External functions are not allowed to contain port operations.

external function MyFunction4() return integer;// External function w thout paraneters
/1 which returns an integer val ue

external function InitTestDevices(); // An external function which only has an
/1 effect outside the TTCN-3 nodul e

In amodule, the behaviour of afunction can be defined by using the program statements and operations defined in
clause 18. If afunction includes port operations the associated component type shall be referenced using ther uns on

keywordsin the function header to define the number, type and identifiers of the available ports. The one exception to
thisruleisif al ports used within the function are passed in as parameters.

If afunction includes port operations either all ports used within the function shall be passed in as parameters or an
associated component type shall be referenced usingr uns on in the function header to define the number, type and
identifiers of the available ports. For example:

function MyFunction() runs on MyConponent return integer

{

Instances of different component types may use the same function if they fulfil the following consistency rule:

"Let C1 and C2 be two component types and FUNC be a function which refersto Clinitsr uns on clause. An

instance of component type C2 may use FUNC if the type definition C2 includes the entire type definition of C1. This
means, C2 includes the same names to address ports of the same type as C1."

16.1 Parameterization of Functions

Functions may be parameterized. Therules for formal parameter lists shall be followed as defined in clause 5.3. For
example:

function MyFunction2(i nout integer MParl)
/1 MyFunction2 doesn't return a val ue

MyParl := 10 * MyPar1l;// but changes the value of MyPar1l which
/1l is passed in by refefernce

}
function MyFunction3() runs on MyPTCType
{

/'l MyFunction3 doesn't return a val ue, but
var integer MyVar := 5; /'l does make use of the port operation
PCOL. send(MyVar) ; /] send and therefore requires a runs on

/'l clause to resolve the port identifiers

} /'l by refernceing a conmponent type

16.2 Invoking functions

A function isinvoked by referring to its name and by the actual list of parameter. Functions that do not return values
can beinvoked directly. Functionsthat return values may be invoked inside expressions. The rulesfor actual parameter
lists shall befollowed as defined in clause 5.3.

MyVar := MyFunctiond();// The value returned by MyFunction4 is assigned to MyVar
/1 The types of the returned value and MyVar have to be the sane

MyFunction2(MyVar2); // MyFunction2 doesn't return a value and is called with the
/'l actual paraneter MyVar2, which nmay be passed in by reference

MyVar3 := MyFunction6(4)+ MyFunction7(M/Var3);// Functions used in expressions

ITU-T Z.140 (07/2001) — Prepublished version %]

Special restrictions apply to functions bound to test components using the st art operation. These restrictions are
described in clause 21.5.

16.3 Predefined functions
TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use.

Table 9: List of TTCN-3 predefined functions

Category Function Keyword

Conversion functions Convert integer value to char value i nt 2char
Convert char value to int value char 2i nt
Convert integer value to universal char value i nt 2uni char
Convert universal char value toint value uni char 2i nt
Convert bitstring value tointeger value bi t 2i nt
Convert hexstring value tointeger value hex2i nt
Convert octetstring value to Integer value oct 2i nt
Convert charstring value to integer value str2int
Convert integer value to bitstring value i nt 2bi t
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value i nt 2oct
Convert integer value to charstring value int2str

Length/size functions Return the length of a value of any string type | engt hof
Return the number of elements in arecord, record of, si zeof
template, set, set of or array

Presence/choice functions Determine if an optional field in arecord, record of, template,|i spresent
set or set of is present
Determine which choice has been made in a union type i schosen

When a predefined function is invoked:
1) the number of the actual parameters shall be the same as the number of the formal parameters; and
2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and
3) all variables appearing in the parameter list shall be bound.

The full description of predefined functionsisgiven in annex D.

17 Test cases

Test cases are aspecial kind of function. Their execution in the module control part isrelated to theexecut e
statement (see clause 26.1). The result of an executed test caseisalwaysavalue of typever di ct t ype. Every test
case shall contain one and only one MTC the type of which isreferenced in the header of the test case definition. The
behaviour defined in the test case body is the behaviour of the MTC.

When atest caseisinvoked the ports of the test system interface are instantiated, the MTC is created and the behaviour

specified in the test case definition is started on the MTC. All these actions shall be performed implicitly i.e., without
theexplicitcr eat e and st art operations.

To provide the information to allow these implicit operations to occur atest case definition has two parts:

a) interface part (mandatory): denoted by the keywordr uns on which references the required component type for
the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword sy st emwhich references the component type which

definesthe required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

ITU-T Z.140 (07/2001) — Prepublished version

EXAMPLE:

testcase MyTest CaseOne()

runs on MyM cTypel /'l defines the type of the MIC

system MyTest SysteniType // makes the port nanes of the TSI visible to the MIC
{

}

/'l or, a test case where only the MIC is instantiated
testcase MyTest CaseTwo() runs on MyM cType2
{

}

/'l The behavi our defined here executes on the nmtc when the test case invoked

/'l The behavi our defined here executes on the nmc when the test case invoked

18 Program statements and operations

The fundamental program elements of the control part of TTCN-3 modules and functions are basic program statements
such as expressions, assignments, loop constructs etc., behavioural statements such as sequential behaviour, alternative
behaviour, interleaving, defaults etc., and operations such assend, r ecei ve, cr eat e, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements).

Statement blocks are a mechanism to group statements. Statement blocks may be used in different scope units

i.e., module control, functions and test behaviours. The kind of statements that may be used in a block will depend on
the scope unit in which the block is used. For example, a statement block appearing in afunction shall only use those
program statements which may be used in functions.

General scoping rules are described in clause 5.4.

A statement block is syntactically equivalent to asingle statement, thus, wherever astatement is allowed in afunction a
block may appear. Thisimpliesthat blocks may be nested. Declarations, if any, shall be made at the beginning of the
block. These declarations are only visible inside the block and to nested sub-blocks.

The statementsin the block shall be executed in the order of their appearance. The specification of an empty statement
blocki.e., {},isallowed. An empty statement block implies that no actions are taken.

ITU-T Z.140 (07/2001) — Prepublished version 56

Table 10: Overview of TTCN-3 statements and operations

Statement Associated keyword or[Can be used in Can be used in
symbol module control | functions, test cases
and named alts
Basic program statements
Expressions (...) Yes Yes
Assignments = Yes Yes
Logging log Yes Yes
Label and Goto label / goto Yes Yes
If-else if (...){...}else{...} Yes Yes
For loop for (...){...} Yes Yes
While loop while (...) {...} Yes Yes
Do while loop do{...} while (...) Yes Yes
Stop execution stop Yes Yes
Behavioural program statements
Alternative behaviour alt{...} Yes (see note 1) Yes
Named alternative named alt {...} Yes (see note 1) Yes
Interleaved behaviour interleave {...} Yes (see note 1) Yes
Activate a default activate Yes (see note 1) Yes
Deactivate a default deactivate Yes (see note 1) Yes
Returning control return Yes
Configuration operations
Create parallel test component create Yes
Connect component to component connect Yes
Disconnect two components disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface unmap Yes
Get MTC address mtc Yes
Get test system interface address system Yes
Get own address self Yes
Start execution of test component start Yes
Stop execution of test component stop Yes
Check termination of a PTC running Yes
Wait for termination of a PTC done Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote entity [reply Yes
Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote entity |getcall Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received check Yes
Clear port clear Yes
Clear and give access to port start Yes
Stop access (receiving & sending) at port |stop Yes
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict verdict.set Yes
Get local verdict verdict.get Yes
SUT operations
Remote action to be done by the SUT [sut.action | | Yes
Execution of test cases
Execute test case l[execute | Yes | Yes(see note 2)

NOTE 1: Can be used in control with timer operations only.

NOTE 2: Can only be used in functions and named alternatives that are used in module control.

ITU-T Z.140 (07/2001) — Prepublished version

57

19 Basic program statements

Basic program statements are expressions, assignments, operations, loop constructs etc. All basic program statements
can be used in the control part of amodule and in TTCN-3 functions.

Table 11: Overview of TTCN-3 basic program statements

Basic program statements

Statement Associated keyword or symbol
Expressions (...)
Assignments =
Logging log
Label and Goto label / goto
If-else if (..){...}else{...}
For loop for(...){...}
While loop while (..){ ... }
Do while loop do{... }while(...)
Stop execution stop

19.1 Expressions

TTCN-3 allows the specification of expressions using the operators defined in clause 15. Expressions are built from
other (simple) expressions. Expressions may contain functions. The result of an expression shall be the value of a
specific type and the operators used shall be compatible with the type of the operands. For example:

(x +y - increment(z))*3;
19.1.1 Boolean expressions

A bool ean expression shall only containbool ean values and/or bool ean operators and/or relational operators
and shall evaluateto abool ean valueof eithert r ue or f al se. For example:

((A and B) or (not C) or (j<10));

19.2 Assignments

Values may be assigned to variables. Thisisindicated by the symbol ":=". During execution of an assignment the right-
hand side of the assignment shall evaluate to an element of the same type of the left-hand side. The effect of an
assignment is to bind the variable (which may also be the element of ar ecor d or set etc.) to the value of the
expression. The expression shall contain no unbound variables. All assignments occur in the order in which they appear,
that isleft to right processing. For example:

MyVariable := (x +y - increnment(z))*3;

19.3 The Log statement

Thel og statement provides the means to write a character string to some logging device associated with test control or
the test component in which the statement is used. For example:

log("Line 248 in PTC A");
/1l The string "Line 248 in PTC_A" is witten to sone |og device of the test system

NOTE: Itisoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

19.4 The Label statement

Thel abel statement allows the specification of labelsin test cases, functions, named alternatives and the control part
of amodule. Al abel statement can be used freely like other TTCN-3 behavioural program statements according to

ITU-T Z.140 (07/2001) — Prepublished version 58

the syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but, for example, not asfirst
statement of an alternativeinanal t ori nt er | eave statement (see clause 20.2.7).

19.5 The Goto statement

The got o statement can be used in functions, test cases, named alternatives and the control part of a TTCN module.
The got o statement performsajumpto al abel ortothe beginning of anal t statement in order to force repeated
behaviour (see clause 20.2.8).

19.6 The If-else statement

Thei f - el se statement, also known as the conditional statement, is used to denote branching in the control flow due
to bool ean expressions. Schematically the conditional looks as follows:

if (expressionj)

st at ement bl ock;
el se

st at ement bl ocka

Where st at enent bl ocky refersto ablock of statements.

EXAMPLE:
if (date == "1.1.2000") return { fail };
if (Myvar < 10) {

MyvVar := MyVar * 10;
log ("MWyVar < 10");

}
el se {

MyVar := MyVar/5;
}

A more complex scheme could be:

if (expressionj)
st at ement bl ock;
else if (expression))
st at ement bl ocky

else if (expressionp)
st at ement bl ockp,
el se
st at ement bl ockn+g

In such cases readability heavily depends on the formatting but formatting shall have no syntactic or semantic meaning.

19.7 The For statement

Thef or statement defines a counter loop. The value of the index variableisincreased, decreased or manipulated in
such amanner that after a certain nurmber of execution loops atermination criteriais reached.

Thef or statement containstwo assignmentsand abool ean expression. The first assignment is necessary to initialize
the index (or counter) variable of theloop. Thebool ean expression terminates the loop and the second assignment is
used to manipulate the index variable. For example:

for (j:=1; j<=10; j:=j+1) { ..}

Thetermination criterion of the loop shall be expressed by the bool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluatestot r ue, the execution continues with the statement which immediately follows

thef or loop.

ITU-T Z.140 (07/2001) — Prepublished version 59

Theindex variable of af or loop can be declared before being used in the for statement or can be declared and
initialisedinthef or statement header. If theindex variableisdeclared and initialised inthef or statement header, the
scope of theindex variableislimited to the loop body, i.e., it isonly visible inside the loop body. For example:

var integer j; /'l Declaration of integer variable j
for (j:=1; j<=10; j:=j+1) { ..} /'l Usage of variable j as index variable of the for |oop
for (var float i:=1.0; i<7.9; i:=i*1.35) { ...} /1 Index variable i is declared and

initialized
/1 in the for |oop header. Variable i only is
/1l visible in the | oop body.

19.8 The While statement

A whi | e loop isexecuted aslong as the loop condition holds. The loop condition shall be checked at the beginning of
each new loop iteration. If the loop condition does not hold, then the loop is exited and execution shall continue with the
statement, which immediately followsthewhi | e loop. For example:

while (j<10){ ...}

19.9 The Do-while statement

Thedo- whi | e loopisidentical to awhi | e loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado- whi | e loop the behaviour is executed at |east once before the loop
condition is evaluated for the first time. For example:

do { ...} while (j<10);

19.10 The Stop execution statement

The st op statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of amodule it terminates execution of the entire module. When used in afunction that is executing
behaviour it terminates the relevant test component.

20 Behavioural program statements

Behavioural program statements may be used in test cases, functions and module control, except for the return
statement which shall only be used in test cases and functions. Behavioural program statements specify the dynamic
behaviour of the test components over the communication ports. Test behaviour can be expressed, sequentially, as a set
of alternatives or combinations of both. An interleaving operator allows the specification of interleaved sequences or
alternatives.

Table 12: Overview of TTCN-3 behavioural program statements

Behavioural program statements

Statement Associated keyword or symbol
Alternative behaviour alt{...}
Named alternative named alt{... }
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate
Returning control return

ITU-T Z.140 (07/2001) — Prepublished version 60

20.1 Sequential behaviour

The simplest form of behaviour is aset of statementsthat are executed sequentialy, asillustrated below:

S1

s2 |::> S1; S2; S3:

S3

Figure 5: lllustration of sequential behaviour

Theindividual statementsin the sequence shall be separated by the delimiter ";". For example:

MyPort.send(Mynessage); MyTimer.start; |og("Done!");

20.2 Alternative behaviour

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated below:

S1
S1;
alt {[] S3; S6;
[1 s2;
alt { [] S4; S7;
[] S5; ss;
alt { [] S9;

[1 s10;
}

Figure 6: lllustration of alternative behaviour

Theal t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e., it isrelated to the use of the TTCN-3 operations
recei ve,trigger,getcall,getreply,catch,check,ti meout anddone. Theal t statement denotes a
set of possible eventsthat are to be matched against a particular snapshot (see clause 20.2.1).

NOTE: Theal t statement corresponds to the alternatives at the same level of indentation in TTCN-2. However,
there are three significant differences:
a) bool ean expressionsto disable alternatives can only be made in an alternative statement;
b) itisnot possibleto examine the port queue by using the bool ean expression and then to disable
an alternative;
¢) Itisnot possibleto call afunction asan alternativeintheal t statement, except in the case where
anelseguard (i.e., [el se]) isthelast choiceinthe alternative (see clause 20.2.3).

ITU-T Z.140 (07/2001) — Prepublished version 61

EXAMPLE:
/1 Use of nested alternative statenents

al t

{
[T L1.receive(DL_REL_COC: *) /1 UA or DM received; |ayer 2 released
verdi ct. set(pass);
TAC. st op;
TNOAC. start;
alt {
[T Lil.receive(DL_EST_IN) /1 SABME received
{ TNOAC. st op;
verdi ct. set (pass);
}
[T TNOAC. ti nmeout
{ L1. send(DEL_EST_RQ *);
TAC. start;
alt {
[] Ll.receive(DL_EST_CO *) // UA received; data |ink established
{ TAC. st op;
verdi ct. set (pass)
[1 TAC. tineout /'l no response
{verdict.set(inconc)}
[1] Ll.receive /1 1like OTHERW SE in TTCN-2
{verdict.set(inconc)}
} }
[T Ll.receive /1 1like OTHERW SE in TTCN-2
{verdict.set(inconc)}
}
[1] TAC tineout /'l no response
{verdict.set(inconc)}
[l Li1.receive /1 like OTHERW SE in TTCN-2

{verdict.set(inconc)}

/1 Use of alternative with Bool ean expressions (or guard)

alt {

[1] L1.receive(MyMessagel)
{verdict.set(fail)}

[x>1] L2.recei ve(MyMessage?2) /1 Bool ean guard/ expression
{verdict.set(pass)}

[x<=1] L2.receive(MMessage3) /1 Bool ean guard/ expression
{verdict.set(inconc)}

)

/'l Use of done in alternatives

alt {
[T MWPTC. done {
verdi ct. set (pass)

}
[] any port.receive {
goto alt
}

20.2.1 Execution of alternative behaviour

The alternative statementsin anal t statement are processed in their order of appearance. TTCN-3 operational
semantics (see annex B) assumethat the status of any of the events cannot change during the process of trying to match
one alternative in aset of alternatives. Thisimpliesthat snapshot semantics are used for received events and timeouts
i.e., each time around a set of alternatives a snapshot is taken of which events have been received and which timeouts
havefired. Only those identified in the snapshot can match on the next cycle through the alternatives.

NOTE 1. These semantics are exactly the same asfor TTCN-2.

ITU-T Z.140 (07/2001) — Prepublished version 62

NOTE2: Synchronousevents(e.g., cal |) block the loop until acall is completed.

20.2.2 Selecting/deselecting an alternative

If necessary, it is possible to enable/disable an alternative by means of abool ean expression placed betweenthe []'
brackets of the alternative. For example:

[MyVar ==3] PCO. recei ve(\yMessage) {}
The open and close square brackets [']' shall be present at the start of each alternative, even if they are empty. This not
only aidsreadability but also is necessary to syntactically distinguish one aternative from another.

20.2.3 Else branch in alternatives

If necessary, it is possible to define one branch in the alternative statement which is always taken if no other previously
defined alternative can be taken. If anel se branchisdefined all subsequently defined alternatives are redundant i.e.,
they can never be reached. For example:

alt {

[L1.receive(My Messagel)
{ verdict.set(fail);
My Conponent . st op
[x>1] L2.recei ve(MyMessage?2) /1 Bool ean guard/ expression
{ verdict. set(pass);
[x<=1] L2.receive(MMssage3) /1 Bool ean guard/ expression
{ verdict.set(inconc);
} .
[else] { MErrorHandling(); /1 else branch
verdict.set(fail);
My Conponent . st op;

It should be noted that defaults are always appended to the end of all alternatives. If anel se branch is defined, an
activated def aul t will never be entered.

NOTE: Itisalso possibletouseel se innamed aternatives.

20.2.4 Declaring named alternatives

Alternatives which are used in anumber of places can be defined in a named alternative denoted by the keyword pair
named al t . Named alternatives shall be defined globally in the module definitions. Wheninvoked anamed al t is
identical to the behaviour al t construct except that it has anidentifier and allows parameterization.

A naned al t when referenced has the same effect as a macro substitution. A named al t can bereferenced at any
place in abehaviour definition whereit isvalid to include anormal al t construct.

EXAMPLE:

/'l Definition of the nanmed alternatives nmacro
named alt Handl ePCO2()

{
[] PCO2.receive(DL_EST_IN)
{PCQ2. send(DL_EST_CO) }
[] PCO2.receive(DL_EST_CO) {}
/1 do nothing
}

/1 Using a naned alt in-line
testcase TCO01() runs on MyPTCtype

{ .

ITU-T Z.140 (07/2001) — Prepublished version 63

Handl ePCQO2() ; /1 Call named alt
}

/1 Which expands to
testcase TCO01() runs on MyPTCtype

{
alt {
[T PCO2.receive(DL_EST_IN)
{PCO2. send(DL_EST_CO)}
[T PCO2.receive(DL_EST_CO ({}
/1 do nothing

}

20.2.5 Expanding alternatives with named alternatives

In addition to direct in-line referencing it is a so possible to explicitly expand the alternatives specified in the named
al t construct using the expand statement. The expand statement can be placed at any position within an al t
statement and will insert the associated guards from thenamed al t at that position.

EXAMPLE:

/'l Using a named alt by expanding
testcase TC002()runs on MyPTCtype

{ .
alt {
[] PCOL.receive(DL_EST_IN)
{PCOL. send(DL_EST_CO) }
[] PCOL.receive(DL_EST_CO ({}
/1 do nothing
[expand] Handl ePCO2() // Expand named alt alternatives to specified alt statenent
}

/1 Which expands to
testcase TC002()runs on MyPTCtype

{

alt {

[] PCOL.receive(DL_EST_IN)
{PCOL1. send(DL_EST_CO) }

[] PCOL.receive(DL_EST_CO ({}
/1 do nothing

[] PCO2.receive(DL_EST_IN)
{PCQ2. send(DL_EST_CO)}

[] PCO2.receive(DL_EST_CO ({}
/1 do nothing

20.2.6 Parameterization of named alternatives

Named alternatives can be parameterized with types, values, functions and templates. Since named alternatives are not a
scope unit, the defined formal parameters are simply substituted by the given actual parameters when the macro
expansion is performed.

EXAMPLE:
named alt Handl eAnyPCO(MyPort T PCO)
{
[] PCO receive(DL_EST_IN)
{ PCO. send(DL_EST_CO) }
[] PCO receive(DL_EST_CO {}
/1 do nothing
}
testcase TCO01() runs on MyPTCtype
{

ITU-T Z.140 (07/2001) — Prepublished version 64

Handl eAnyPCO(PCQ2) ;

alt {
[expand] Handl eAnyPCO(PCQOL) ;
[expand] Handl eAnyPCO(PCQO2) ;

20.2.7 The Label statement in behaviour

Thel abel statement allows the specification of labelsin test cases, functions, named alternatives and the control part
of amodule. It can be used before or after any TTCN-3 statement but shall not be the first statement of an alternativein
analt orinterl eave statement.

EXAMPLE:

| abel MyLabel ;
/1 Defines the |abel MLabel

/1 The | abels L1, L2 and L3 are defined in the followi ng TTCN-3 code fragnent

Iébel L1; /1 Definition of l|label L1
al t{
[] PCOLl.receive(MSigl)

{ | abel L2; /1 Definition of |label L2

PCOL. send(MWy Si g2) ;
PCOL. recei ve(MySi g3)

}
[] PCO2.receive(MWSig4)
{ PCO2. send(MWy Si g5) ;
PCO2. send(MySi g6) ;

| abel L3; /1 Definition of |abel L3
PCO2.recei ve(WSi g7) ;
goto L1; /1 Jump to | abel L1

20.2.8 The Goto statement in behaviour

The got o statement can be used in functions, test cases, named alternatives and the control part of a TTCN module.
The got o statement performsajumpto al abel ortothe beginning of anal t statement in order to force repeated
behaviour.

There-evaluation of anal t statement can be achieved by either:

a) usinggot o <Labelld>wheretherelevant label statement should be placed immediately beforethe al t
keyword of the actual alternative that isto be jumped to; or

b) by usinggot o al t withintheal t statement which should be re-evaluated. In this case the keywordal t can
be seen asan implicit label for theal t statement within which the got o isused.

20.2.8.1 Restricting the use of Goto

The got o statement provides the possibility to jump freely, i.e., forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g., awhi | e loop) and to jump over several levels out of
nested compound statements (e.g., nested alternatives). However, the use of the got o statement shall be restricted by

the following rules:

a) Itisnot allowed tojump out of or into functions, test cases, named alternatives and the control part of aTTCN
module.

b) Itisnot alowed to jump into a sequence of statements defined in a compound statement (i.e., al t statement,
whi | e loop, for loop, i f -el se statement, do-whi | e loop andthei nt er | eave statement).

c) Asanexceptionto rulea) for named alternatives, it isallowed to usegot o al t inside anamed alternativein
order to forcethere-evaluation of anal t statement within which the named alternative may be expanded.

ITU-T Z.140 (07/2001) — Prepublished version 65

NOTE: Thisrule providesthe possibility to jump out of anamed alternative in arestricted manner to provide the
functionality to describe defaults.

d) Itisnot allowed to usethegot o statement within ani nt er | eave statement.

EXAMPLE:

/1 The followi ng TTCN-3 code fragnment includes

| abel L1,

MyVar := 2 * MVar,

if (MyVar < 2000) { goto L1; } /1 ... a junp backward to L1 and
MyVar2 : = Myfunction(MVar);

if (Myvar2 > WVar) { goto L2; } /1 ... a junp forward to L2,

PCOL. send(MyVar) ;
PCOL. recei ve -> val ue MyVar2;

| abel L2;
PCO2. send(i nteger: 21);
alt {
[] PCOL.receive
{ goto alt; } /1 ... a junp which forces the re-eval uation of

/1 the previous alt statenment
[] PCO2.receive(integer: 67)
{ | abel L3;
PCO2. send(MyVar) ;
alt {
[] PCOL.receive
{ goto alt; } // ... again a junp which forces the re-evaluation of the
/1l the previous alt statenent (not the sane as for the
/1l goto before),
[] PCO2.receive(integer: 90)
{ PCO2. send(i nteger: 33);
PCO2. recei ve(integer: 13);

goto L4; [l ... a junp forward out of two nested alt statenens,
}
[T PCO2.receive(MError)
{ goto L3; } /1 ... a junp backward out of the current alt statenent,
[T any port.receive
{ goto L2; } /1 ... a junp backward out of two nested alt statenents,
}
} .
[] any port.receive
{ goto L2; } /1 ... and a long junp backward out of an alt statement
}
| abel L4;

20.3 Interleaved behaviour

Control transfer statementsf or ,whi | e, do-whi | e,got o0,acti vat e,deacti vat e,st op,ret urn and (direct
and indirect) calls of user-defined functions, which include communication operations, shall not be used in

i nt er| eave statements. In addition, it is not allowed to guard branches of ani nt er | eave statement with Boolean
expressions (i.e., the'[]' shall aways be empty). Itisalso not allowed to expandi nt er | eave statements with named
alternatives or to specify el se branchesin interleaved behaviour.

Interleaved behaviour can always be replaced by an equivalent set of nested alternatives. The procedures for this
replacement are described in annex B.

Therulefor the evaluation of an interleaving statement is the following:

a) whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached or the interleaved sequence ends;

NOTE: Reception statements are TTCN-3 statements which may occur in sets of alternativesi.e., r ecei ve,
check,trigger,getcall,getreply,catchandti neout.Non-reception statements denote all
other non-control-transfer statements which can be used within the interleaving statement.

b) the evaluation then continues by taking the next snapshot.

The operational semantics of interleaving are fully defined in annex B.

ITU-T Z.140 (07/2001) — Prepublished version 66

EXAMPLE:
/1 The followi ng TTCN-3 code fragnent

interleave {
[] PCOLl.receive(MSigl)
{ PCOL. send(MWSi g2) ;
PCOL. recei ve(MySi g3) ;

}
[] PCO2.receive(MWSig4)
{ PCO2. send(MySi g5) ;
PCO2. send(My Si g6) ;
PCO2.recei ve(WSi g7) ;

/'l can be interpreted as a shorthand for

alt {
[] PCOL.receive(MWSigl)
{ PCOL. send(MWy Si g2) ;
alt {
[] PCOL.receive(MSig3)
{ PCO2. recei ve(MySi g4);
PCO2. send(My Si g5) ;
PCO2. send(MySi g6) ;
PCO2. recei ve(MySi g7)

}
[T PCO2.receive(MWSigd)
{ PCO2. send(My Si g5) ;
PCO2. send(My Si g6) ;
alt {
[] PCOL.receive(MSig3) {

PCQ2. recei ve(MWSi g7);

[1] PCO2.receive(MySig7) {
}

PCOL. recei ve(MySi g3) ;

}
}

}
[] PCO2.receive(MWSig4)
{ PCO2. send(MWy Si g5) ;
PCO2. send(My Si g6) ;
alt {
[T PCOL.receive(MWSigl)
{ PCOL. send(MWy Si g2) ;
alt {
[] PCOL.receive(MSig3)

{ PCO2.receive(MWSig7);

}
[T PCO2.receive(MWSig7)

{ PCOL. recei ve(MySi g3) ;

}
}

}
[] PCO2.receive(MSig7)
{ PCOL. recei ve(MWSi g1) ;
PCOL. send(My Si g2) ;
PCOL. r ecei ve(MWSi g3) ;

ITU-T Z.140 (07/2001) — Prepublished version

67

20.4 Default behaviour

Default behaviour can be seen as an extension to anal t statement or asingle receive operation whichisdefinedin a
special manner. A default behaviour shall be defined by specifying anamedal t and activated before it can be invoked
and executed.

Activation of adefault meansthat the alternatives defined in the relevant named alt are appended to the top-level of al
subsequent alternatives.

The default behaviour is also appended to any single (i.e., notinanal t statement) receiving operations, timeouts or
done statements. This is because these operations are conceptually the same as one single alternative. For example:

ivyPort .receive(MyMsg) ;

/'l 1s the same as

alt {
[1] MyPort.receive(MyMsg) {}

20.4.1 The Activate and Deactivate operations

A default behaviour is activated by using theact i vat e operation and deactivated by using thedeact i vat e
operation. An empty deact i vat e operation deactivates all active default behaviours.

In the case of multiple activation of multiple named alternativesthe al t elements shall be expanded in the order of
activation.

In the case where the argument to an activate operation isalist of named alternativestheal t elements shall be
expanded in the order indicated by thelist.

EXAMPLE:

named alt Defaultl() // naned alt definition

{
[T MWPort.check

{MyBehavi our 1()}

/1 inside behaviour definition
activate(Defaultl());

CL2.receive(MySetup);
al t{
[1] CL2.receive(MsSigl)
{CL2. send(MWySi g2) }

[1] CL2.receive(MWSig2)
{CL2. send(mySi gl)}
}
I/ This statenment deactivates the default behaviour Defaultl
deactivate(Defaultl);

/'l This statement deactivates all previously activated default behavi our
deactivate;

/'l Conceptually, after definition and activation the default alt is expanded to the end of
/1 any following alt or receive statenents

activate (Defaultl());

CL2.receive(MSetup);

ITU-T Z.140 (07/2001) — Prepublished version 68

CL2.receive(MWSigl)
{CL2. send(WySi g2) }
CL2.receive(WSig2)
{CL2. send(nmySi gl)}

/1 is equivalent to

alt{

20.5

CL2.receive(MySetup); // The single receive now becomes an alt in its own right

MyPor t . check
{ MyBehavi our 1()}

CL2.receive(MWSigl)
{CL2. send(MWSi g2)}
CL2.receive(MWSig2)
{CL2. send(mySi gl)}

MyPor t . check
{ MyBehavi our 1()}

The Return statement

Ther et ur n statement terminates execution of afunction and returns control to the point from which the function was
called. Ar et ur n statement may be optionally associated with areturn value. Usingr et ur n in atest case or control
isequivalenttost op.

EXAMPLE:

function MyFunction() return bool ean

{

if (date == "1.1.2000") { return false; }
/'l execution stops on the 1.1.2000 and returns false as a failure indication

return true; /1l true is returned

}

functi on MyBehavi our() return verdicttype

{

if (MyFunction()) { verdict.set(pass); } // use of MyFunction in an if statement
el se { verdict.set(inconc); }

return verdict.get; // explicit return of the verdict

ITU-T Z.140 (07/2001) — Prepublished version 69

21 Configuration operations

Configuration operations are used to set up and control test components. These operations shall only be used in TTCN-3
test cases and functions (i.e., not in the modul e control part).

Table 13: Overview of TTCN-3 configuration operations

Configuration operations

Statement Operation Name
Create parallel test component create
Connect one component to another component [connect
Disconnect two components disconnect
Map component port to test interface port map
Unmap port from test system interface unmap
Get MTC address mtc
Get test system interface address system
Get own address self
Start execution of test component start
Stop execution of test component stop
Check termination of a PTC running
Wait for termination of a PTC done

21.1 The Create operation

The MTC isthe only test component which is automatically created when atest case starts. All other test components
are created explicitly during test execution by cr eat e operations. A component is created with itsfull set of ports of
which the input queues are empty. Furthermore, if aportis defined to be of thetypei n ori nout itshall beina
listening state ready to receive traffic over the connection.

Since all components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it isinvoked.

/1 This exanple declares a variable of type address, which is used to store the reference of a
/!l nemy created conponent of type MyConponent Type which is the result of the create function.

vér MyConponenttype MyNewConponent;

WNewCorrponent = MyConponent Type. cr eat e;

Thecr eat e operation shall return the unique component reference of the newly created instance. The unique

reference to the component will typically be stored in avariable (see clause 8.6) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other component). The visibility of component references shall
follow the same scope rules as that of variables and in order to reference components outside their scope of creation the
component reference shall be passed as a parameter or asafield in a message.

ITU-T Z.140 (07/2001) — Prepublished version 70

21.2 The Connect and Map operations

The ports of atest component can be connected to other components or to the ports of the test system interface. In the

case of connections between two test componentsthe connect operation shall be used. When connecting a test

component to atest system interface the map operation shall be used. The connect operation directly connects one
port to another with thei n side connected to the out side and vice versa. The map operation on the other hand can be

seen purely as a name translation defining how communications streams should be referenced.

Test system Connected Ports

MTC ” [[11 <« PTC

>
]
autr I'N
aur I'N
Mapped Ports
Abstract Test System Interface aur ¢ | IN
O—CO——

Real Test System Interface

SUT

Figure 7: lllustration of the connect and map operations

With both theconnect operation and the map operation, the ports to be connected are identified by the component

references of the components to be connected and the names of the ports to be connected.

There aretwo operations for identifyingtheMTC i.e., nt c, and for identifying ports of the test system interfacei.e.,

syst em(see clause 8.6). Both these operations can be used for identifying and connecting ports.

Both theconnect and map operations can be called from any behaviour definition (function). However before either

operation is called the components to be connected shall have been created and their component references shall be

known together with the names of the relevant ports.

Both themap and connect operations allow the connection of a port to more than one other port. It is not allowed to

connect to a mapped port or to map to a connected port.

EXAMPLE:

/1 1t is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared

/1 in the corresponding port type and conponent type definitions
vér My Conponent Type MyNewConponent ;

WNewOonponent = MyConponent Type. creat e;

cbnnect (MyNewConponent : Port1, ntc:Port3);
map(MyNewConponent : Port 2, system PCO1) ;

/1 In this exanple a new conponent of type MyConponent Type is created and its reference stored
/1 in variable MyNewConponent. Afterwards in the connect operation, Portl of this new conponent
/1l is connected with Port3 of the MIC. By nmeans of the nap operation, Port2 of the new conponent

/1l is then connected to port PCOL of the test systeminterface

ITU-T Z.140 (07/2001) — Prepublished version

71

21.2.1 Consistent connections
For boththeconnect and nmap operations only consistent connections are allowed.
Assuming the following:
a) ports PORT1 and PORT2 are the portsto be connected,;
b) inlist-PORT1 definesthe messages or procedures of the in-direction of PORTZ,;
c) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1,
d) inlistPORT2 defines the messages or procedures of the in-direction of PORT2; and
e) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.

Theconnect operationisalowedif and only if:

- outlist-PORT11 inlis-PORT2and outlistPORT21 inlist-PORT1.

The map operation (assuming PORT2 isthe test system interface port) is allowed if and only if:

- outlist-PORT1i outlist-PORT2and inlist-PORT2[inlistPORT1.
In all other cases, the operations shall not be allowed.

Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made statically
at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and shall lead to atest
case error when failing.

21.3 The Disconnect and Unmap operations

Thedi sconnect andunmap operations are the opposite operations of connect and map. They perform the
disconnection (of previously connected) ports of test components and the unmapping of (previously mapped) ports of
test components and portsin the test system interface.

Both, thedi sconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A di sconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

EXAMPLE:

cbnnect (MyNewConponent : Port1, ntc: Port3);
map(MyNewConponent : Port 2, system PCO1);

di sconnect (MyNewConponent: Port1, ntc:Port3);// disconnect previously made connection
unmap(MyNewConponent : Port 2, system PQQL); // unmap previously made mappi ng

21.4 The MTC, System and Self operations

The component reference (see clause 8.6) has two operations, mt ¢ and sy st emwhich return the reference of the
master test component and the test system interface respectively. In addition, the operationsel f can be used to return
the reference of the component in which it is called. For example:

var MyConponent Type MyAddr ess;
MyAddress := self; // Store the current conmponent reference

The only operations allowed on component references are assignment and equivalence.

ITU-T Z.140 (07/2001) — Prepublished version 72

21.5 The Start test component operation

Once a component has been created and connected behaviour has to be bound to the component and the execution of its
behaviour hasto be started. Thisis done by using thest ar t operation (component creation does not start execution of

the component behaviour). The reason for the distinction betweencr eat e andst art isto allow connection
operations to be done before actually running the test component.

Thest art operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function. For example:

/] It is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/'l in the corresponding port type and conponent type definitions

vér My Conponent Type MyNewConponent ;
WNewOonponent := MyConponent Type. cr eat e;
cbnnect (MyNewConponent: Port1, ntc:Port3);
connect (MyNewConponent : Port 2, system PCO1);

WNewOonponent .start (MyConponent Behavi our ());

/1 In this exanple, a new conponent is first created, then connected to its environnent and lastly
/1 it is started by neans of the start operation. For identifying the conponent to be executed its
/1l reference is used

Thefollowing restrictions apply to afunction invoked inast art test component operation:
If this function has parametersthey shall only bei n parameters, i.e., value parameters.

Thisfunction shall either have ar uns on definition referencing the same component type as the newly created
component or shall passin all information needed from the component type definition as parameters.

Ports and timers can only be passed into this function if they refer to ports and timers in the component type
definition of the newly created component, i.e., ports and timers are local to component instances and shall not
be passed to other components.

NOTE: Theability to pass portsin as parameters allows the specification of generic functions that are not tied to
one specific component type.

21.6 The Stop test component operation

The st op test component statement explicitly stops the execution of the test component in which the stop is called. The
operation has no arguments. For example;

if (date == "1.1.2000") { stop; }// execution stops on the 1.1.2000

If the test conponent that is stopped isthe MTC all remaining PTCsthat are still running shall also be stopped and the
test case terminates.

NOTE: The concrete mechanism for stopping all remaining running PTCsis outside the scope of the present
document.

All resources shall be released when atest component terminates, either explicitly using the st op operation or through
reaching ar et ur n statement in the function that originally started the test component or implicitly when the
component reaches the end of its behaviour tree. Any variables storing a stopped component reference shall refer to
nothing.

Therulesfor the termination of test cases and the calculation of the final test verdict are described in clause 24.

ITU-T Z.140 (07/2001) — Prepublished version 73

21.7 The Running operation

Ther unni ng operation allows behaviour executing on atest component to ascertain whether behaviour running on a
different test component has completed. Ther unni ng operation is considered to be abool ean expression and, thus,
returnsabool ean valueto indicate whether the specified test component (or all test components) has terminated. In
contrast to the done operation, ther unni ng operation can be used freely inbool ean expressions. For example:

i f (PTCL.running) /1 usage of running in an if statement

/1 Do sonething

while (all conponent.running !=true) {// usage of running in a | oop condition
My Speci al Functi on()
}

21.8 The Done operation

Thedone operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed.

The done operation shall be used in the same manner as areceiving operation or at i meout operation. This means it
shall not be used in abool ean expression, but it can be used to determine an alternativein anal t statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
anal t statement with only one alternative, i.e., it has blocking semantics, and therefore provides the ability of passive
waiting for the termination of test components.

NOTE: TheTTCN-3done operation and the DONE operation TTCN-2 have identical semantics.

EXAMPLE
/'l Use of done in alternatives
alt {
[1] MWPTC. done {
verdi ct. set (pass)
}

[1] any port.receive {
goto alt
}

/'l the follow ng done as stand-al one statenent

all conponent. done

/1 has the follow ng meaning:

ait {
[1] all conponent.done {}
}

/'l and thus, blocks the execution until all parallel test components have term nated

ITU-T Z.140 (07/2001) — Prepublished version 74

21.9 Using component arrays

Thecr eat e,connect,start andst op operations do not work directly on arrays of components. Instead a

specific element of the array shall be provided as the parameter. For components the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the cr eat e operation.

/1l This exanple shows how to nodel the effect of creating, connecting and running arrays of
/'l conponents using a |loop and by storing the created conponent reference in an array of
/'l component references.

testcase MyTest Case() runs on MyMcType system MyTest System nterface
{

vér i nteger i;
var MyPTCTypel MyPtcType[11];

for (i:= 1, i<=10; i:=i+1)
{
MyPt cAddr esses[i] := MyPtcTypel.create;
connect (sel f: Pt cCoordi nati on, MyPtcAddresses[i]: M cCordi nation);

My Pt cAddr esses[i].start(MPtcBehaviour());

21.10 Use of Any and All with components

The keywordsany and al | may be used with configuration operations as indicated in table 14.

Table 14: Any and All with components

Operation Allowed Example
any all
create
start
running Yes but from Yes but from MTC |any component.running
MTC only only all component.running
done Yes but from Yes but from MTC [any component.done
MTC only only all component.done
stop

22 Communication operations

TTCN-3 supports message-based (asynchronous) and procedure-based (synchronous) communication (see clause 8.1).
Asynchronous communication is non-blocking on the send operation, asillustrated in figure 8 where processing in the
MTC continues immediately after the send operation occurs. The SUT isblocked onther ecei ve operation until it

receives a sent message.

send receive

MTC > SUT

Figure 8: lllustration of the asynchronous send and receive

Synchronous communication isblocking onthecal | operation, asillustrated in figure 9wherethecal | operation
blocks processing in the MTC until either ar epl y or exception isreceived fromthe SUT. Similar tother ecei ve,
theget cal | blocksthe SUT until the call isreceived.

ITU-T Z.140 (07/2001) — Prepublished version 75

call 1 get cal

_— P - |
I
MTC j
4+ -
getreply 2 reply or
catch exception rai se exception

Figure 9: lllustration of a complete synchronous call

Operations such assend andcal | are collectively known as communication operations. These operations shall only
be used in TTCN-3test cases and functions (i.e., not directly in the module control part). The communication
operations are divided into three groups:

a) acomponent sends amessage, calls aprocedure, or repliesto an accepted call or raises an exception. These
actions are collectively referred to assending operations,

b) acomponent receives amessage, accepts aprocedure call, receives areply for apreviously called procedure or
catches an exception. These actions are collectively referred to asreceiving operations,

c) control of accessto aport by doingacl ear,start orst op. These actions are collectively referred to as
controlling operations.

These operations can be used on the communication ports of atest component as summarized in table 15. In cases of
mixed ports all the operations are applicable.

Table 15: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Sending operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Receiving operations
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote entity getcall Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Check msg/call/exception/reply received check Yes Yes
Controlling operations
Clear port clear Yes Yes
Clear and give access to port start Yes Yes
Stop access (receiving & sending) to port |stop Yes Yes

22.1 Sending operations
The sending operations are:
a) send: send amessage asynchronously;
b) cal I : call aprocedure;
c) reply:reply to an accepted procedure call from the SUT; and

d) rai se: raisean exception in cases where aprocedure call isreceived.

ITU-T Z.140 (07/2001) — Prepublished version 76

22.1.1 General format of the sending operations

Sending operations consist of asend part and, in the case of the procedure-based cal | operation, aresponse and
exception handling part.

The send part:
specifies the port at which the specified operation shall take place;
defines the value of the information to be transmitted;

gives an (optional) address expression which uniquely identifies the communication partner in the case of aone-
to-many connection.

The port name, operation name and value shall be present in all sending operations. The identification of the
communication partner (denoted by thet o keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity shall be explicitly identified.

22.1.1.1 Response and exception handling

Response and exception handling is only needed in cases of synchronous communication. The response and exception
handling part of thecal | operation isoptional and isrequired for cases where the called procedure returns a value or

hasout ori nout parameterswhose values are needed within the calling component and for cases where the called
procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of get r epl y and cat ch operations to
provide the required functionality.

22.1.2 The Send operation

The send operation is used to place a value on an outgoing message port queue. The value may be specified by
referencing atemplate, avariable, or aconstant or can be defined in-line from an expression (which of course can be an
explicit value). When defining the value in-line the optional type field shall be used if thereis ambiguity of the type of
the value being sent.

The send operation shall only be used on message-based (or mixed) ports and the type of the value to be sent shall be
in thelist of outgoing types of the port type definition. For example:

MyPort.send(MyTenpl ate(5, WyVar));
/1 Sends the tenplate MyTenplate with the actual parameters 5 and MyVar via MyPort.

MyPort. send(integer:5);
/1 Sends the integer value 5

I'n cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
thet o keyword. For example:
MyPort.send("My string") to MyPartner;
/1 Sends the string "My string" to a conponent with a conmponent reference stored in the
/1l variable MyPartner.

MyPCO. send(MyVari abl e + YourVariable - 2) to MyPartner;
/1 Sends the result of the arithnetic expression to MyPartner.

22.2.1 The Call operation

Thecal | operation isused to specify that atest component calls a procedure in the SUT or in another test component.
Thecal | isablocking operation in that it shall wait until it receivesaresponse (i.e., ar epl y) or an exception from
the called entity. In other wordsthecal | operation worksin a synchronous manner.

NOTE: Thisiscomparable with the testing of server functionality i.e., the SUT isthe server and the component
playstheroleof aclient.

ITU-T Z.140 (07/2001) — Prepublished version 77

Thecal | operation shall only be used on procedure-based (or mixed) ports. The type definition of the port at which
the call operation takes place shall include the procedure nameinitsout ori nout listi.e, it must be allowed to call
this procedure at this port.

Thevalueof thecal | operationisasignature that may either be defined in the form of a signature template or be
defined in-line. For example:

signature MyProc (out integer MyParl, inout bool ean MyPar?2);

MyPort.call (MyProc: {MVar 1, MyVar 2});
/1 Calls the renote procedure MyProc at MYCL with the in and inout paraneters 5 and MyVar.
/1 Neither a return value nor an exception is expected fromthis call. If one (or both) of the
/1l two paranmeters is defined to be an inout parameter, its value will not be considered i.e.,
/1 it is not assigned to a variable.

/] The follow ng exanpl e explains the possibilities to assign values to in and inout paraneters
/1 on the call argument. The follow ng signature is assumed for the procedure to be call ed.
/1 Note: MyProc2 has no return value and no exceptions

signature MyProc2 (in integer A out integer B, inout integer C);

M/Port.call(l\/yProcz:{l, -, 3});
/'l Only values of in and inout parameters are specified The returned val ues of out and inout
/'l paraneters are not used after the call and, thus, not assigned to variables.

All'i nandi nout parameters of the signature shall have a specific valuei.e., the use of matching mechanisms such as
AnyValueis not allowed.

The signature arguments of thecal | operation are not used to retrieve variable namesfor out andi nout parameters.
The actual assignment of the procedure return value andout andi nout parameter valuesto variables shall explicitly
be madeintheresponse (get r epl y) and exception handling (cat ch) part of thecal | operation. Thisis denoted by
the keywordsval ue and par amrespectively. This allows the use of signaturetemplatesincal | operationsin the
same manner as templates can be used for types.

Ingeneral, acal | operation isassumed to have blocking-semantics. However, TTCN-3 al so supports non-blocking
calls. A call, which has no return val ues, is assumed to be a non-blocking call. Exceptions (if specified) raised by acall
without return values shall be caught within afollowingal t statement. In addition, it isalso possible to force
non-blocking semantics by the nowai t keyword (see clause 22.2.12).

I'n cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keywordt o. For example:

MyPort.call (MyProc: {MyVarl, MVar2}) to MyPartner;

/1 In this exanple the called party is explicitly identified by the conponent reference stored
/1 in the variable MyPartner.

22211 Handling responses to a Calll

The handling of the response to acall is done by means of theget r epl y operation (see clause 22.3.5). This operation
defines the alternative behaviour depending on the response that has been generated as aresult of thecal | operation.
For example:

MyPort.call (MyProc: {MyVarl, MVar2}) to MyPartner // Were { ...} is an inline tenplate
{

[1] Wwd .getreply(MyProc:{MWVarl, MWVar2}) {}
}

If needed, the return value of the called procedure shall be picked up explicitly intheget r epl y operation. Thisis
expressed using '->' and the (optional) keywordval ue. For example:

MyPort.call (MyProc:{MVarl, MWVar2}) to MyPartner

[T Wd .getreply(MyProc: {MyVarl, MVar2}) -> value MyResult {}

/'l A value shall be returned by MyProc which will be stored in the variable MyResult.

ITU-T Z.140 (07/2001) — Prepublished version 78

The signature arguments of thecal | operation are not used to retrieve variable namesfor out andi nout parameters.
The actual assignment of the procedure return value andout andi nout parameter valuesto variables shall explicitly
be made in the response (get r epl y) and exception handling (cat ch) part of thecal | operation. Thisis denoted by
the keywordsval ue and par amrespectively. This allows the use of signature templatesincal | operationsin the
same manner as templates can be used for types. For example:

MyPort.call (MyProc: {5, MyVvar}) to MyPartner
[IMWCl . getreply(MyProc: { MyVarl, MyVar2}) -> value MyResult param (M/Par1Var, M/Par2Var) {}

/1 In this exanple both paraneters of MyProc are specified as inout parameters and their val ues
/1l after the term nation of MyProc are assigned to MyPari1Var and MyPar 2Var.

22.2.1.2 Handling exceptions to a Call

The handling of exceptionsto acall isdone by means of the cat ch operation (see clause 22.3.6). This operation
defines the alternative behaviour depending on the exception (if any) that has been generated as aresult of thecal |
operation. For example:

signature MyProc3 (out integer MyParl, inout boolean MyPar2) return MyResultType
exception (ExceptionTypeOne, ExceptionTypeTwo, ExceptionTypeThree);

.// The follow ng call operation shows the getreply and exception handling nechani sm of the
/1 call operation

MyPort.call (MyProc3: {5, MyVvar}, 30E-3) to MyPartner
{

[T WC .getreply(MyProc3: {MyVarl, MVar2}) -> value M/Result param (M/Par1Var, M/Par2Var) {}
[T MWPort.catch(MyProc3, MyExcepti onOne)

{ /'l catch an exception
verdict.set(fail); /1l set the verdict and
stop /1l stop as result of the exception
[T WPort.catch(MyProc3, MyExceptionTwo) /1 catch a second exception
{verdict.set(inconc)} /] set the verdict and continue after

/1 the call as result of the
/1 second exception

[MyCondi tion] MyPort.catch(MyProc3, MyExceptionThree) {} // catch a third exception which
/1 may occur if MyCondition
/'l evalutates to true

[1] MPort.catch(timeout) {} // timeout exception i.e., the called party
/1 does not react in tinme, nothing is done

}
22.2.1.3 Handling timeout exceptions to the Call

Thecal | operation may optionally include atimeout. Thisis defined as an explicit value or constant of f | oat type
and defines the length of time after thecal | operation has started that at i meout exception shall be generated by the
test system. If no timeout value part is presentinthecal | operation not i neout exception shall be generated. For
example:

MyPort.call (MyProc: {5, MyVar}, 20E-3)
{

[l MPort.catch(timeout)
{
verdict.set(fail);
stop

}

/ This exanple shows a call with a tineout value of 20ns. This means if the called party does
/ not respond with a reply or exception within this time the test systemw |l automatically
/ generate a timeout exception. The handling of the timeout is done by nmeans of a catch
/ operation. |If the procedure conpletes without a tinmeout exception, execution will continue
/ with the statement followi ng the call operation.

~ i~ — — ~—

Using the keyword nowai t inthetimeout value part of acal | operation allows calling a procedure without waiting
either for atermination, aresponse, an exception raised by the called procedure or atimeout exception. For example:

MyPort.call (MyProc: {5, MyVar}, nowait);
/1 In this exanple the test conponent will continue execution without

ITU-T Z.140 (07/2001) — Prepublished version 79

/1 waiting for the term nation of MyProc.

In such cases a possibl e response or exception has to be removed from the queue by usingaget r epl y oracat ch
operation in asubsequental t statement.

22.2.2 The Reply operation

Ther epl y operation is used to reply to apreviously accepted call according to the procedure signature. Ar epl y
operation shall only be used at a procedure-based (or mixed) port. The type definition of the port shall include the name
of the procedure to which ther epl y operation belongs.

Thevalue part of ther epl y operation consists of asignature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line. All out andi nout parameters of the signature shall have a specific valuei.e., the use of matching
mechanisms such as AnyValue is not allowed. For example:

MyPort.reply(MyProc2:{ - ,5});

/'l Replies to an accepted call of MyProc2. The MyProc2 has no return value but two paraneters.
/1l The first parameter is an in paraneter i.e., its value will not be replied and therefore
/1 needs not to be specified. The second paraneter is either an out or an inout parameter. Its
/'l value is 5.

In cases of one-to-many connections the communication partner shall be specified explicitly and shall be unique. This
shall be denoted using thet o keyword. For example:

MyPort.reply(MyProc3:{ - ,5}) to MyPartner;
/'l This exanple is identical to previous one, but the reply is directed to a conponent with a
/'l conmponent reference stored in variable MyPartner

If avalueisto bereturned to the calling party this shall be explicitly stated using theval ue keyword.

MyPort.reply(MProc: {5, WVar} val ue 20);
/! Replies to an accepted call of MyProc. The return value of MyProc is 20 and it has two
/'l paraneters which are out or inout parameters. Their values are provided by 5 and MyVar.

22.2.3 The Raise operation

Ther ai se operation isused to raise an exception. An exception shall only be raised at a procedure-based (or mixed)
port. An exception is areaction to an accepted procedure call the result of which leads to an exceptional event. The type
of the exception shall be specified in the signature of the called procedure. The type definition of the port shall include
initslist of accepted procedure calls the name of the procedure to which the exception belongs.

NOTE: Therelation between an accepted call and ar ai se operation cannot always be checked statically. For
testing it isallowed to specify ar ai se operation without an associatedget cal | operation.

Thevalue part of ther ai se operation consists of the signature reference followed by the exception value. For
example:
MyPort.rai se(MySignature, MyVariable + YourVariable - 2);

/'l Raises an exception with a value which is the result of the arithmetic expression
/'l at MyPort

Exceptions are specified as atype. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optional typefield in the value
specification to ther ai se operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent. For example:

MyPort.rai se(MyProc, MyExceptionType:{5, MVar});
/] Raises an exception fromthe renote procedure defined by Myproc with the value defined
/'l by tenplate MyExceptionTenplate with the actual paraneters 5 and MyVar at port MPort

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keywordt o. For example:

MyPort.rai se(MySignature, "My string") to MyPartner;
/1l Raises a string exception with the value"My string" at MyPort to to a component with an
/| conponent reference stored in variable MyPartner

ITU-T Z.140 (07/2001) — Prepublished version 80

22.3 Receiving operations

Thereceiving operations are:
a) recei ve: receive an asynchronously sent message;
b) tri gger:trigger onthe reception of a specific message;
c) getcal | : accept aprocedurecall;
d) getrepl y: handling thereply to apreviously called procedure;
€) cat ch: catch an exception which has be raised as areaction to a call operation; and

f) check: check the top element of the in-queue of a particular port.

22.3.1 General format of the receiving operations

Receiving operation consists of areceive part and an assignment part.
Thereceive part:
a) specifiesthe port at which the operation shall take place;
b) defines amatching part which specifies the acceptable input which will match the statement;

c) givesan (optional) address expression which uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the f r omkeyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needsto be explicitly identified.

22.3.1.1 Making assignments on receiving operations

The assignment part in areceiving operation is optional. For message-based portsit isused when it isrequired to store
received messages. In the case of procedure-based portsit is used for storing thei n andi nout parameters of an

accepted call or for storing exceptions.

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | toavariable. Thisisuseful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, r epl y or exception must be sent back to the original sending
component.

22.3.2 The Receive operation

Ther ecei ve operation isused to receive avalue from an incoming message port queue. The value may be specified
by referencing atemplate, avariable, or a constant or can be defined in-line from an expression (which of course can be
an explicit value). When defining the value in-line the optional type field shall be used to avoid any ambiguity of the
type of the value being received. Ther ecei ve operation shall only be used on message-based (or mixed) ports and the
type of the value to be received shall be included in the list of incoming types of the port type definition.

Ther ecei ve operation removes the top message from the associated incoming port queueif, and only if, that top
message satisfies all the matching criteria associated with ther ecei ve operation. No binding of the incoming values
to the terms of the expression or to the template shall occur.

If the match is not successful, the top message shall not be removed from the port queuei.e., if ther ecei ve operation
is not successful the execution of the test case shall continue with the next alternative.

ITU-T Z.140 (07/2001) — Prepublished version 81

The matching criteriaare related to the type and val ue of the message to be received. The type and val ue of the message
to be received may either be derived from atemplate or be the value resulting from an expression (which of course can
be an explicit value).

MyPort.receive(MyTenpl ate(5, MyVar));
/1 Specifies the reception of a value which fulfils the conditions defined by the tenplate
/1 MyTenplate with actual paraneters 5 and MyVar.

MyPort.recei ve(A<B);
/'l Specifies the reception of a Bool ean value true or fal se depending on the outcone of A<B

An optional type field in the matching criteriato ther ecei ve operation shall be used to avoid any ambiguity of the
type of the value being received. For example:
MyPort.receive(integer: MyVar);
/'l Specifiess the reception of an integer val ue which has the same value as the variable M/Var
/1 at MyPort. The (optional) type identifier integer is not strictly necessary because the

/'l type is already given by the definition of MyVar. However, in conplex and long test cases
/'l such a type identifier may be used to inprove readability.

MyPort.receive(MyVar);
/1 Is an alternative to the previous exanple.

If the match is successful, the value removed from the port queue can be stored in a variable and the address of the
component that sent the message, can be retrieved and stored in avariable. Thisis denoted by the symbol '->' and the
keyword val ue. For example:

MyPort.receive(MyType: *) from MyPartner -> value MyVar;

/1 Specifies the reception of an arbitrary value of MyType (from a conponent with an address

/] stored in variable M/Partner) which afterwards is assigned to the variable M/Var. M/Var has
/1 to be of the type MyType.

In the case of one-to-many connectionsther ecei ve operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword.
MyPort.receive(charstring: "Hello")from MyPart ner;

/1 Specifies the reception of the charstring "Hello" froma conponent with a conponent reference
/] or address stored in the variable MyPartner.

It isalso possible to retrieve the component reference or address of the sender of amessage. Thisis denoted by the

keyword sender . For example:
MyPort.receive(MyTenpl ate: {5, MyVarOne}) -> value MyVarTwo sender MyPart ner;
/'l Specifies the reception of a value which fulfils the conditions defined by the tenplate
/1 MyTenplate with actual paraneters 5 and MyVarOne. After reception the value is assigned to
/1 the variable MyVarTwo. The reference of the sender component is retrieved by call operation
/1 and assigned to variable MyPartner.

MyPort.receive(A<B) -> sender MyPartner;
/] Specifies the reception of a Bool ean val ue of true or fal se depending on the outcone of A<B.

/1 The conponent reference of the sender conponent is retrieved by call operation and assi gned
/1 to variable MyPartner.

22.3.2.1 Receive any message

A r ecei ve operation with no argument list for the type and val ue matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if all other matching criteriaare fulfilled.

NOTE: Thisisequivalent to the TTCN-2 OTHERWISE statement.
A message received by ReceiveAnyMessage shall not be assigned to avariable.
EXAMPLE:

MyPort.receive;
/!l Renmoves the top value from MyPort. MyPort.

MyPort.receive from MyPart ner;
/'l Rermoves the top value fromCL1 if it is a message fromthe conponent with the
addressreference

MyPort.receive -> sender MySender Var;

ITU-T Z.140 (07/2001) — Prepublished version 82

/! Rermoves the top value from CL1, but renenbers the sending instance by storing its reference
/1l in MySender Var

22.3.2.2 Receive on any port
Tor ecei ve amessage on any port use the any keyword. For example:

any port.receive(MMssage);
22.3.3 The Trigger operation

Thetri gger operation filters messages with certain matching criteriafrom a stream of received messages on a given
incoming port. Thet r i gger operation shall only be used on message-based (or mixed) ports and the type of the value
to be received shall beincluded in the list of incoming types of the port type definition. All messages that do not fulfil
the matching criteriashall be removed from the queue without any further action i.e., the trigger operation waits for the
next message on that queue. If a message meets the matching criteria, thet r i gger operation behavesin the same
manner as ar ecei ve operation. For example:

MyPort.trigger(MyType: *);
/1 Specifies that the operation will trigger on the reception of the first nmessage observed of
/'l the type MyType with an arbitrary value at port MyPort.

Thetri gger operation requiresthe port name, matching criteriafor type and value, an optional f r omrestriction
(i.e., selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

EXAMPLE:

MyPort.trigger(MType:*) from MyPartnner;

/'l Specifies that the operation will trigger on the reception of the first nessage observed of
/1 the type MyType with an arbitrary value at port M/CL coming froma conponent with a reference
/1 identical to the one stored in the variable MyPartner.

MyPort.trigger(MType:*) from MyPartner -> value MyRecMessage;

/1 This exanple is alnpst identical to the previous exanple. The addition is that the nessage
/] which triggers i.e., all matching criteria are met, is stored in the variabl e MyRecMessage.
MyPort.trigger(MType:*) -> sender MyPartner;

/1 Specifies that the operation will trigger on the reception of the first nmessage observed of
/1 the type MyType with an arbitrary value at MyPort. The reference of the sender conponent
/1 of this nessage will be stored in the variable MyPartner.

MyPort.trigger(integer:*) -> value MyVar sender MyPartner;

/1 Specifies that the operation will trigger on the reception of an arbitrary integer value

/1 which afterwards is stored in the variable MyVar and the reference of the sender conponent of
/'l this message will be stored in the variable MyPartner.

22.3.3.1 Trigger on any message

A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning isidentical
to the meaning of receive any message. A message received by Trigger OnAnyMessage shall not be assigned to a
variable.

EXAMPLE:
MyPort.trigger;
MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySender Var;

22.3.3.2 Trigger on any port

Totrigger onamessage at any port use the any keyword. For example:

any port.trigger

ITU-T Z.140 (07/2001) — Prepublished version 83

22.3.4 The Getcall operation

Theget cal | operationisused to specify that atest component accepts acall from the SUT, or another test
component. Theget cal | operation shall only be used on procedure-based (or mixed) ports and the signature of the
procedure call to be accepted shall beincluded in thelist of allowed incoming procedures of the port type definition.

MyPort. getcal | (MyProc(5, MVar));
/1 W1l accept a call of MyProc at MyCL with the in or inout parameters 5 and val ue of M/Var.

Theget cal | operation shall remove thetop call from theincoming port queue, if, and only if, the matching criteria
associated totheget cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteriafor the signature may either be specified in-line or be
derived from a signature templ ate.

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted using the f r omkeyword.

MyPort.getcal |l (MyProc: {5, MyVar}) from MyPartnner;
/1 WIIl accept a call of MyProc at My/CL (with the in or inout paraneters 5 and val ue of MyVar)
/1 froma peer entity with the address or conponent reference stored in variable MyPartner.

The assignment part of theget cal | operation comprisesthe optional assignment of i n andi nout parameter values
to variables and the retrieval and assignment of the address of the calling component to avariable.

The keyword par amis used to retrieve the parameter values of acall. For example:

MyPort.getcall (MyProc: {5, MyVar}) from MyPartner -> param (MPar1lVar, MPar2Var);

/1 Both parneters of MyProc are inout parameters and that their values are assigned

/1 to MyParilVar and MyPar2Var. The identification of paraneters defined in the procedure
/1 signature and the names in the list of variable names follow ng the param keyword in the
/| accept operation above is done by the order in the list

The keywordsender isused when it isrequired to retrieve the address of the sender (e.g., for addressing ar epl y or
exception to the calling party in aone-to-many configuration).

MyPort.getcall (MyProc: {5, MyVar}) -> sender MySender Var;
/1 WII accept a call of M/Proc at M/CL with the in or inout paraneters 5 and M/Var. The calling
/1 party is retrieved by the accept operation and stored in MySenderVar. This allows to handl e
/1 call of the same procedure from several conponents at the same port in the same manner.
/1 MySenderVar can be used to reply or raise an exception to the calling conponent.

The signature argument of theget cal | operation shall not be used to passin variable namesfori n andi nout
parameters. The assignment of i n andi nout parameter valuesto variables shall be made in the assignment part of the
get cal | operation. Thisallowsthe use of signature templatesinget cal | operationsin the same manner as
templates are used for types.

Thefollowingget cal | operations show the possibilities to use matching attributes and omit optional parts, which
may be of no importance for the test specification.

EXAMPLE:
MyPort.getcall (MyProc: {5, MyVar}) -> param(MyParlVar, MPar2Var) sender MySender Var;
MyPort.getcall (MyProc: {5, *}) -> param(MPar1lVar, MyPar2Var);

MyPort.getcall (MyProc:{*, MWVar}) -> param - , MyPar2Var);
/'l Value of the first inout paraneter is not inmportant or not used

/1 The follow ng exanples shall explain the possibilities to assign in and inout paraneter
/1 values to variables. The followi ng signature is assuned for the procedure to be called

signature MyProc2(in integer A, integer B, integer C, out integer D, integer E inout integer F);
/'l MyProc2 has no return value and no exceptions

MyPort.getcal |l (MyProc2:{*, *, 3, - , - , *}) ->

paramMyVar | nl, MyVarln2, MWVarln3, - , - ,MVarlnoutl);
/1 The in paraneters A, B and C are assigned to the variables MyVarlnl, MyVarln2 and MyVarl n3
/1 the inout paramaneter F is assigned to variable MyVarlnoutl. The out paraneters D and E need
/1 not to be considered in the assignment part of the accept operation.

ITU-T Z.140 (07/2001) — Prepublished version &

MyPort.getcal |l (MyProc2: {*, *, *, - , - , *}) -> param M/Varlnl:=A, M/Varln2: =B, M/Var | n3: =C,
MyVar | nout 1: =F) ;
/1 Alternative notation for the value assignnent of in and inout paraneter to variables. Note,

/1 the names in the assignment list refer to the names used in the signature of MyProc2
MyPort.getcall (MyProc2: {1, 2, 3, - , - ,*}) -> paramMyVarl nout1l: =F);
/1 Only the inout parameter value is needed for the further test case execution

22.34.1 Accepting any call

A get cal | operation with no argument list for the signature matching criteriawill remove the call on the top of the
incoming port queue (if any) if all other matching criteriaare fulfilled. Parameters of calls accepted by AcceptAnyCall
shall not be assigned to avariable.

EXAMPLE:

MyPort . getcall;
/1 Rermoves the top call from MyPort.

MyPort.getcall from MyPartner;

/'l Removes the top call fromCL1 if the calling party is an entity with an address or conponent
/'l reference stored in the variable MyPartner.

MyPort.getcall -> sender MySender Var;

/1 Rermoves the top call from CL1, but renenbers the calling party by storing its address or
/1 conponent reference in MySender Var

22.3.4.2 Getcall on any port
Toget cal | onany port isdenoted by the any keyword. For example:

any port.getcall (MyProc)

22.3.5 The Getreply operation

Theget r epl y operation is used to handle replies from a previously called procedure. A get r epl y operation shall
only be used at a procedure-based (or mixed) port. For example:
MyPort. getrepl y(MyProc: {5, MyVar} val ue 20);

/1 Accepts a reply of procedure MyProc where the returned value is 20 and the values of the two
/1 out or inout paranmeters is 5 and the value of MyVar.

MyPort.getreply(MyProc2:{ - , 5});
/'l Accepts a reply from WProc2. MyProc2 has no return value but two paranmeters. The first
/] paraneter is an in paraneter i.e., its value will not be replied and therefore will not be

/1l considered for matching. The second paraneter is either an out or an inout paraneter. Its
/1 value has to be 5.

It may either be used intheget r epl y and exception part of acall, for example:
MyPort.call (MyProc) to MyPeer
{ [1 WPort.getreply(MyProc:*) {}
) [1 WPort.catch {}
or withinanal t statement, for example:
MyPort.call (MyProc, nowait) to MyPeer;
al t
{ [T MWyPort.getreply(MyProc:*) {}
}

If usedinanal t statement theget cal | should cover cases where the response of a previously called procedure
arrivestoo latei.e., atimeout exception has been raised.

ITU-T Z.140 (07/2001) — Prepublished version 85

Aswith other receiving operations matching mechanisms are allowed intheget r epl y operation in order to
distinguish between replies from apreviously called procedure which either differ in the returned value and/or the value
of out andi nout parameters.

MyPort. getreply(MyProcl:{*, MVar});
/1 In this exanple there is no restriction on the returned value and the value of the

/1l first paraneter.

MyPort.getrepl y(MyProcl: {*, *});
/1 The getreply operation will match with any reply from MProcl with any returned val ue. The
/'l stars are inline tenplate definitions for MyProcl and the return type of MyProcl.

In cases of one-to-many connectionsthe get r epl y operation allows to distinguish between different communication
partners by using af r omclause.

MyPort.getreply(MyProc2:{ - ,5}) from MyPartner;
/1 The reply is only accepeted if it is froma conponent with the reference specified in the
/1 variable MyPartnner

The optional assignment part of theget r epl y operation allowsto assign values of out andi nout parameters and
returned values to variables.

EXAMPLE:

MyPort.getreply(MyProcl:{*, *} value *) -> value MyReturnVal ue param MyPar1, MyPar 2);
/1 After acceptance, the returned value is assigned to variable M/ReturnValue and the val ue
/1 of the two out or inout parameters is assigned to the variables MyParl and MyPar 2.

MyPort.getreply(MyProcl:{*, *} value *) -> value M/ReturnVal ue paran{ - , M/Par2) sender M/Sender;
/1 The value of the first parameter is not considered for the further test execution and
/1 the address or conponent reference of the entity fromwhich the response has been received
/'l is stored in the variable MySender.

/1 The followi ng exanpl es descri be some possibilities to assign out and inout parareter val ues
/1 to variables. The followi ng signature is assuned for the procedure which has been called

signature MyProc2(in integer A, integer B, integer C, out integer D, integer E inout integer F);
/1 Note: MyProc2 has no return value and no exceptions

MyPort.getrepl y(MProc2:*) -> paranm(- , - -, MyvarQutl, MWyVvarQut2, - , MyVarlnoutl);
/1 The in paraneters D and E are assigned to the vari ables MyVarQut1l and MyVarQut2 the inout
/'l paramaneter F is assigned to variable MyVarlnnout 1.

MyPort. getrepl y(MyProc2:*) -> param MyVarQut1l: =D, MyVar Qut2: =E, MyVarl noutl: =F);

/1 Alternative notation for the value assignnent of in and inout paraneter to variables. Note,
/1 the nanes in the assignnment list refer to the names used in the signature of MyProc2
MyPort.getreply(MyProc2:{ - , - , -, 3, *, *}) -> param MyVarlnout1l: =F);

/1 Only the inout paranmeter value is needed for the further test case execution

22.35.1 Get any reply from any call

A get r epl y operation with no argument list for the signature matching criteriashall remove ar epl y message on the

top of theincoming port queue (if any) if all other matching criteriaare fulfilled. Parameters or return values of
responses accepted by GetAnyReply shall not be assigned to avariable.

EXAMPLE:

MyPort. getreply;
/'l Rermoves the top response from MyPort.

MyPort.getreply from MyPart ner;

/'l Renpves the top response fromCL1 if the responding party is an entity with the address
/'l or conponent reference stored in variable MyPartner.

MyPort.getreply -> sender MySender Var;

/'l Rermoves the top response from CL1, but renmenmbers the responding party by storing it
/1 in the variable MySender Var

22.35.2 Get a reply on any port

To get areply on any port use the any keyword. For example:

ITU-T Z.140 (07/2001) — Prepublished version 86

any port.getreply(Mproc)

22.3.6 The Catch operation

Thecat ch operation is used to catch exceptions raised by a peer entity asareaction to aprocedure call. Thecat ch

operation shall only be used at procedure-based (or mixed) ports. The type of the caught exception shall be specified in
the signature for the procedure which raised the exception.

MySyncPort.catch(MSi gnature, integer: MVar);

/1 Specifiess the catch of an exception raised by a procedure with a signature Mysignature at
/1l port MySyncPort. The exception is an integer value which has the sane value as the variable
/1 MyVar. The (optional) type identifier integer is not strictly necessary because the type is
/1 already given by the definition of MyVar. However, in conplex and |ong test cases such a type
/1l identifier may be used to inprove readability.

MySyncPort.catch(MSignature, MVar);
/1 Is an alternative to the previous exanple.

MySyncPort . catch(MSignature, A<B);
/'l Catches a Bool ean exception of true or false depending on the outcone of A<B raised by a
/'l procedure with a signhature MySignature at port MySyncPort.

The cat ch operation may be part of the accepting part of acall or be used to determine an aternativein anal t
statement. If the cat ch operation is used inthe accepting part of acal | operation, the information about port name
and signature reference to indicate the procedure which rose the exception is redundant, because thisinformation
followsfromthecal | operation. However, for readability reasons (e.g., in case of complex cal | statements) this
information shall be repeated.

Exceptions are specified as types and thus can be treated like messages e.g., templates can be used to distinguish
between different values of the same exception type.

MySyncPort.catch(MSignature, MyTenplate: {5, MVar});

/] Catches an exception raised by a procedure with a signature Mysignature at port MySyncPort
/1 which fulfils the conditions defined by the tenplate MyTenplate with actual paraneters 5
/'l and MyVar.

The cat ch operation requires the port name, matching criteriafor type and value, an optional f r omrestriction (i.e.,
selection of communication partner) and an optional assignment of the matching exception andsender component to
variables. For example:

MySyncPort . catch(MSignature, charstring:"Hello")from MyPartner;
/1 Catches the I A5 string "Hello" raised by a procedure with a signature Mysignature at port
/'l MySyncPort froman entity with an address or conponent reference stored in MyPartner.

MySyncPort.catch(MSignature, MyType:*) from MyPartner -> value MVar;

/1 Catches an exception with an arbitrary value of MyType (raised by a procedure with a
/1l signature Mysignature at port MySyncPort from a conmponent with a reference stored in
/1 the variable MyPartner) which afterwards is assigned to the variable M/Var. M/Var has to be
/1 of the type MyType.

MySyncPort.catch(MSignature, MyTenplate (5, MyVarOne)) -> value MyVar Two sender M/Partner;
/1 Catches an exception raised by a procedure with a signature Mysignature with a val ue which
/1 fulfils the conditions defined by the tenplate MyTenplate with actual paranmeters 5 and
/1 MyVarOne. Afterwards the exception is assigned to MyVarTwo. The address or reference of the
/'l sender entity is retrieved by the catch operation and assigned to MyPartner.

22.3.6.1 The Timeout exception

Thereisonespecial t i meout exception which is caught by thecat ch operation. Thet i meout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time.
For example:

MyPort.catch(timeout); // Catches a timeout exception.

Catchingt i meout exceptions shall be restricted to the exception handling part of acall. No further matching criteria
(including af r ompart) and no assignment part is allowed for acat ch operation that handlesat i neout exception.

ITU-T Z.140 (07/2001) — Prepublished version 87

22.3.6.2 Catch any exception

A cat ch operation with no argument list allows any valid exception to be caught. The most general caseis without
using the f r omkeyword and without an assignment part. This statement will also catch thet i meout exception. For
example:

MyPort . catch;
MyPort.catch from MyPart ner;

MyPort.catch -> sender MySender Var;

22.3.6.3 Catch on any port
To cat ch an exception on any port use the any keyword. For example;

any port.catch(tinmeout)

22.3.7 The Check operation

Thecheck operation is ageneric operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation has to
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

The receiving operationsr ecei ve,get cal | ,get r epl y and cat ch together with their matching and assignment
parts, are used by the check operation to define the condition which has to be checked and to extract the value or
values of its parametersif required.

MyAsyncPort . check(receive(integer: 5));
/1 WIIl check for an integer value of 5 as top nmessage in the asynchronous port MyAsyncPort.

MyPort. check(getcall (MyProc: {5, MyVar}) from MyPartner);
/1 W1l check for a a call of M/Proc at M\CL (with the in or inout paraneters 5 and My/Var) from
/] a peer entity with the address or conponent reference stored in the variable MyPartner.

MyPort. check(getreply(MyProc: {5, MVar} value 20));
/'l Checks for a reply from procedure MyProc at MyPort where the returned value is 20 and
/1l the values of the two out or inout parameters is 5 and the value of MVar.

MySyncPort.check(catch(MSignature, MyTenplate (5, MVar)));

/1 Checks for an exception raised by a procedure with a signature Mysignature at port M/SyncPort
/1 which fulfils the conditions defined by the tenplate MyTenplate with actual paraneters 5
/'l and MyVar.

It isthe top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
queue is empty the check operation fails. If the queue is not empty, a copy of the top element is made and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving function failsi.e., the matching criteriaare not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e., the next alternative to the check operationis
evaluated. The check operation is successful if the receiving function is successful.

Using the check operation in awrong manner, e.g., check for an exception at a message-based port shall cause atest
case error.

NOTE: Inmost cases the correct usage of the check operation can be checked statically, i.e., before compilation.

EXAMPLE:

MyPort.check(getrepl y(MyProcl: {*, MVar} value *) -> value MyReturnVal ue param MyParl));
/1 In this exanple the returned value is assigned to variable MyReturnVal ue and the val ue of
/'l the first out or inout paraneter is assigned to variable MyPar1l.

MyPort.check(getcall (MyProc: {5, MyVar}) from MyPartner -> param (MPar1Var, MPar2Var));
/1 In this exanple both paraneters of MyProc are considered to be inout paraneters and that
/'l their values are assigned to MyParlVar and MyPar2Var.

MyPort.check(getcall (MyProc:{5, MyVar}) -> sender MySender Var);
/1 WII accept a call of M/Proc at M/CL with the in or inout paraneters 5 and M/Var. The calling

ITU-T Z.140 (07/2001) — Prepublished version 88

/1l party is retrieved and stored in MySender Var.
22.3.7.1 The Check any operation

A check operation with no argument list allows to check whether something waits for processing in an incoming port
queue. The CheckAny operation allows to distinguish between different senders (in case of one-to-many connections)
by using af r omclause and to retrieve the sender by using a shorthand assignment part with a sender clause.

EXAMPLE:
MyPor t . check;
MyPort. check(from MyPartner);

MyPort. check(-> sender MySender Var);

22.4 Controlling communication ports

TTCN-3 operations for controlling message-based, procedure-based and mixed ports are:
cl ear : remove the contents of an incoming port queue;
st art : start listening at and give accessto a port;

st op: stop listening and disallow sending operations at a port.

22.4.1 The Clear port operation

Thecl ear operation removes the contents of the incoming queue of the named port. If the port queue is already empty
then this operation shall have no action.

MyPort.clear; // clears port MyPort

22.4.2 The Start port operation

If aport is defined as allowing receiving operations such asr ecei ve,get cal | etc., thest art operation clearsthe

incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such assend, cal | ,r ai se etc., areaso alowed to be performed at that port. For
example:

MyPort.start; // starts MyPort

By default, all ports of acomponent shall be started when a component starts execution.

22.4.3 The Stop port operation

If aport is defined as allowing receiving operations such asr ecei ve,get cal | thest art operationst op
operation causes listening at the named port to cease. If the port is defined to allow sending operationsthenst op port
disallows the operations such assend, cal | , r ai se etc., to be performed. For example:

MyPort . st op; /'l stops MyPort

ITU-T Z.140 (07/2001) — Prepublished version 89

22.5 Use of any and all with ports

The keywordsany and al | may be used with configuration operations as indicated in table 16.

Table 16: Any and All with ports

Operation Allowed Example
any all

Recei ve comruni cation operations (receive, yes any port.receive
trigger, getcall, getreply, catch, check)
connect / map

Start yes all port.start
St op yes all port.stop
Cl ear yes all port.clear

23 Timer operations

TTCN-3 supports anumber of timer operations. These operations may be used in test cases, functions and in module
control.

Table 17: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer Start
Stop timer Stop
Read elapsed time Read
Check if timer running running
Timeout event timeout

23.1 The Start timer operation

Thest art timer operation isused to indicate that atimer should start running. Timer values shall be of typef | oat .
For example:

MyTi merl.start; /1 MyTinmerl is started with the default duration
MyTimer2.start(20E-3);// MyTimer2 is started with a duration of 20ms

The optional timer value parameter shall be used if no default durationisgiven, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of thetimer, any later st ar t operations for thistimer, which do not specify aduration, shall use the default
duration. The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

23.2 The Stop timer operation

The st op operation is used to stop arunning timer and to remove it from the list of running timers. A stopped timer
becomes inactive and its elapsed time is set to the float value zero (0.0). If thetimer name on the st op operation is
al |, then al running (i.e., active) timers are stopped. For example:

MyTi mer 1. st op; /'l stops MyTimerl
all tinmer.stop; /1l stops all running tiners

Stopping an inactive timer isavalid operation, although it does not have any effect.

ITU-T Z.140 (07/2001) — Prepublished version)

23.3 The Read timer operation

Ther ead operation is used to retrieve the time that has elapsed since the specified timer was started and to store it into
the specified variable. Thisvariable shall be of typef | oat . For example:

var float Myvar
MyVar := MyTimerl.read; // assign to M/Var the time that has el apsed since MTinmerl was started

Applying ther ead operation on an inactive timer will return the value zero.

23.4 The Running timer operation

Ther unni ng operation is used to check whether or not atimer isrunning (i.e., that it has been started and has neither
timed out nor been cancelled). The operation returnsthe valuet r ue if thetimer isrunning, f al se otherwise. For
example:

if (MyTinmerl.running) { ...}

23.5 The Timeout event

Thet i meout operation denotes the timeout of apreviously started timer. Thet i meout operation can be used in
aternatives together withr ecei ve andget cal | ,getrepl y,cat ch and ot her ti meout operations.

EXAMPLE:

MyTimerl.timeout; // checks for the timeout of the previously started tinmer MyTinerl

Theany keyword isused toindicatethet i meout of any timer (rather than an explicitly named timer) started within
the scope of the timeout. For example:

any tiner.timeout; // checks for the tinmeout of any previously started tiner

23.6 Use of any and all with timers

The keywordsany and al | may be used with timer operations asindicated in table 18.

Table 18: Any and All with Timers

Operation Allowed Example
any all
start
stop yes All timer.stop
read
running yes if (any timer.running) {...}
timeout yes Any timer.timeout

24 Test verdict operations

Verdict operations allow to set and retrieve verdicts using theget and set operations respectively. These operations
shall only be used in test cases and functions.

Table 19: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict Verdict.set
Get local verdict Verdict.get

ITU-T Z.140 (07/2001) — Prepublished version 91

Each test component of the active configuration shall maintain it's own local verdict. The local verdict isan object
which is created for each test component at the time of itsinstantiation. It is used to track the individual verdict in each
test component (i.e., inthe MTC and in each and every PTC).

NOTE: Unlike TTCN-2 assigning afinal verdict does not halt execution of the test component in which the
behaviour is executing. If required, this shall be explicitly done using the st op statement.
24.1 Test case verdict

Additionally thereisaglobal verdict that is updated when each test component (i.e., the MTC and each and every PTC)
terminates execution. Thisverdict isnot accessibletotheget andset operations. The value of thisverdict shall be
returned by the test case when it terminates execution. If the returned verdict is not explicitly saved in the control part
(e.g., assigned to avariable) then it islost.

Verdict returned
by thetest case | V
when it terminates

AAA

Mrc PTCL [PTGy [v

Figure 10: Illustration of the relationship between verdicts

NOTE: TTCN-3does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.
24.2 Verdict values and overwriting rules
The verdict can have five different values: pass,f ai | ,i nconc,none anderr or i.e., the distinguished values of

thever di ctt ype (seeclause6.1).

NOTE: i nconc means an inconclusive verdict.

Theset operation shall only be used with thevaluespass,fai |l ,i nconc andnone. For example:

verdi ct. set(pass);
verdict.set(inconc);

The value of thelocal verdict may beretrieved using theget operation. For example:
MyResult := verdict. get;

/1 Where MyResult is a variable of type verdicttype

When atest component isinstantiated, itslocal verdict object is created and set to the value none.

When changing the value of the verdict (i.e., using the set operation) the effect of this change shall follow the
overwriting ruleslisted in table 20. Thetest case verdict isimplicitly set on the termination of atest component. The
effect of thisimplicit operation shall also follow the overwriting ruleslisted in table 20.

Table 20: Overwriting rules for the verdict

Current Value of New verdict assignment value
Verdict pass inconc fail none
none pass inconc fail none
pass pass inconc fail pass
inconc inconc inconc fail inconc
fail fail Fail fail fail

ITU-T Z.140 (07/2001) — Prepublished version

92

EXAMPLE:

verdict.set(pass); // the local verdict is set to pass

until this line is executed which will result in the value
of the local verdict being overwritten to fai
When the ptc term nates the test case verdict is set to fai

verdict.set(fail): /
: /
/

~— —

24.2.1 Error verdict

Theer ror verdictisspecial inthat it is set by the test system to indicate that atest case (i.e., run-time) error has
occurred. It shall not be set by the set operation. No other verdict value can overrideaner r or verdict. This means
that aner r or verdict can only be aresult of anexecut e test case operation.

25 SUT operations

In some testing situations where there may be no explicit interface to the SUT and it may be necessary that the SUT
should be made to initiate certain actions (e.g., send a message to the test system).

This action may defined as astring, for example:
sut.action("Send MyTenplate on lower PCO');// Informal description of the SUT action

or as areference to atemplate which specifies the structure of the message to be sent by the SUT, for example:

sut.action(MyTenplate); // This is equivalent to the TTCN-2 | MPLICIT SEND st at enent .

In both casesthere is no specification of what is doneto or by the SUT to trigger this action, only an informal
specification of the required reaction itself.

SUT actions can be specified in test cases, functions, named alternatives and module control.

26 Module control part

Test cases are defined in the module definitions and executed in the module control. All variables, timers etc. (if any)
defined in the control part of amodule shall be passed into the test case by parameterization if they are to be used in the
behaviour definition of that test casei.e., TTCN-3 does not support global variables of any kind.

At the start of each test case the test configuration shall be reset. Thismeansthat all cr eat e,connect , etc.
operations that may have been performed in a previoustest case are not 'visible' to the new test case.

26.1 Execution of test cases

A test caseiscalled using anexecut e statement. Astheresult of the execution of atest case atest verdict of either
none,pass,i nconcl usi ve,fail orerror shal bereturned and may be assigned to avariable for further
processing.

Optionally, theexecut e statement allows supervision of atest case by means of atimer duration. If the test case does
not end within this duration, the result of the test case execution shall be an error verdict and the test system shall
terminate the test case.

EXAMPLE:

execut e(MyTest Casel()); executes MyTest Casel, without storing the
returned test verdict and without tinme
supervi si on

~—~
~—~

MyVerdi ct := execute(MTestCase2()); executes MyTest Case2 and stores the resulting

verdict in variable MyVerdict

~~
-~

ITU-T Z.140 (07/2001) — Prepublished version 93

MyVerdi ct := execute(MTest Case3(), 5E-3); executes MyTest Case3 and stores the resulting
verdict in variable M/Verdict. If the test case
does not termnate within 5ms, MyVerdict will

get the value 'error'

~—~
~—~

26.2 Termination of test cases

A test case terminates with the termination of the MTC. After the termination of the MTC all running parallel test
components shall be terminated by the means of testing (i.e., test system).

NOTE1: The concrete mechanism for stopping all PTCsistool specific and therefore outside the scope of the
present document.

Thefinal verdict of atest caseis calculated based on the final local verdicts of the different test components according
to the rules defined in clause 24. The actual local verdict of atest component becomesitsfinal local verdict when the
test component terminatesitself or is stopped by the means of testing (i.e., test system).

NOTE2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, theMTC
should ensurethat all PTCs have stopped (by means of the done statement) before it stops itself.

26.3 Controlling execution of test cases

Program statements, limited to those defined in table 11, may be used in the control part of a module to specify such
things as the order in which the tests are to be executed or the number of times atest case may be run. For example:

nodul e MyTest Suite

{ :
control
{ :
/1 Do this test 10 tines
count : =0;
while (count < 10)
{ execute (MySinpl eTest Casel());
count := count+1;
}
}
}

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: Thisdoes not preclude the possihility that certain tools may wish to override this default ordering to alow
auser or tool to select adifferent execution order.

Test casesreturn asingle value of typever di ctt ype soitispossibleto control the order of execution depending on
the outcome of atest case. For example:

if (MySinpleTestCase() == pass) { log("Success!") }

26.4 Test case selection

Boolean expressions may be used to select and desel ect which test cases are to be executed. Thisincludes, of course, the
use of functionsthat return abool ean value.

NOTE: Thisisequivalent to the TTCN-2 named test selection expressions.

EXAMPLE:

nodul e MyTest Suite
{ :
control
i.f (MySel ecti onExpressionl())
{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

ITU-T Z.140 (07/2001) — Prepublished version A

}

if (MySel ecti onExpression2())

{ execut e(MySi npl eTest Case4());
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Case6());

}

Another way to execute test cases as agroup isto collect them in afunction and execute that function from the module
control. For example:

function MyTest CaseG oupl()

{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}

function MyTest CaseGroup2()

{ execut e(MySi npl eTest Case4());
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Case6());

)

;:ontrol
{ if (MySel ecti onExpressionl()) { MyTest CaseGroupl(); }
if (MySelectionExpressionl()) { MyTest CaseG oup2(); }

26.5 Use of timers in control

Timers may be used to control execution of test cases. This may be done using an explicit timeout in the execute
statement. For example:

MyReturnVal := execute (MyTestCase(), 7E-3); // variable of verdicttype
/1 Where the return verdict will be error if the TestCase does not conplete execution
[l within 7ms

Thetimer operations may also be used. For example:

/'l Exampl e of the use of the running tiner operation
while (T1l.running or x<10)// Where Tl is a previously started tiner
{ execut e(MyTest Case());
X = X+1,;
}

/'l Exanmple of the use of the start and tineout operations
timer T1 := 1,

éxecut e(MyTest Casel());

Tl.start,;

T1.timeout;// Pause before executing the next test case
execut e(MyTest Case2());

ITU-T Z.140 (07/2001) — Prepublished version 95

27 Specifying attributes

Attributes can be associated with TTCN-3 language elements by means of thewi t h statement. The syntax for the
argument of thewi t h statement (i.e., the actual attributes) is simply defined as afree text string.

There are three kinds of attributes:

a) di spl ay: allowsthe specification of display attributes related to specific presentation formats;
b) encode: allowsreferencesto specific encoding rules;

c) ext ensi on: alowsthe specification of user-defined attributes.

27.1 Display attributes

All TTCN-3language elements can have di spl ay attributesto specify how particular language elements should be
displayed in, for example, a graphical format.

Specia attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in draft new Recommendation Z.141 [1].

Special attribute strings related to the display attributes for the graphical presentation format can be found in draft new
Recommendation Z.142 [2].

Other di spl ay attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardised the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

27.2 Encoding attributes

Encoding rules define how a particular value, template etc. is encoded and transmitted, usually as ahit stream, over a
communication por t . TTCN-3 does not have a default encoding mechanism. This means that encoding rules or

encoding directives are defined in some external manner to TTCN-3.

Theencode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3type definitions (and to atype definitions only).

Special attribute strings related to ASN.1 encoding attributes can be found in annex E.

The manner in which the actual encoding rules are defined (e.g., prose, functions etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level isthe entire module, the next
level isagroup of types and the lowest is an individual type:

a) nodul e: encoding appliesto all types defined in the module, including TTCN-3 base types;
b) gr oup: encoding appliesto agroup of user-defined type definitions;

c) type: encoding appliesto asingle user-defined type;

d) fi el d: encoding appliestoafieldinar ecord orset type;

EXAMPLE:
modul e MyTTCNnmodul e
{ :
inmport type MyRecord from MySecondModul e with {encode "MyRule 1"}

/1 Al instances of MyRecord will be encoded according to MyRule 1

fype charstring MType;// Normally encoded according to the global rule

ITU-T Z.140 (07/2001) — Prepublished version 9%

group MyRecords

{ :
type record MyPDUl
{

i nt eger fieldl, /1 fieldl will be encoded according to Rule 3
bool ean field2, /1 field2 will be encoded according to Rule 3
Mytype field3 1 fi | be encoded according to Rule 2

with {encode (fieldl, field2) "Rule 3"}
with {encode "Rule 2"}

with {encode "d obal encoding rule"}

27.2.1 Invalid encodings

If it isdesired to specify invalid encoding rules then these shall be specified in areferenceable source external to the
module in the same way that valid encoding rules are referenced.

27.3 Extension attributes

All TTCN-3 language elements can have ext ensi on attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

27.4 Scope of attributes

A wi t h statement always associates attributes to single language elements. It is also possible to associate attributesto a
number of language elements by associating awi t h statement to the surrounding scope unit or gr oup of language
elements.

Thewi t h statement follows the scoping rules as defined in clause 5.4, i.e., awi t h statement that is placed inside the
scope of another wi t h statement shall override the outermostwi t h. This shall also apply to the use of thewi t h
statement with groups. Care should be taken when the overwriting schemeis used in combination with referencesto
single definitions. The general ruleisthat attributes shall be assigned and overwritten according to the order of their
occurrence.

EXAMPLE:

/1 MyPDUlL will be displayed as PDU
type record MyPDU1 { ...} with { display "PDU'}

/1 MyPDU2 will be displayed as PDU with the application specific extension attribute MyRul e
type record MyPDU2 { ...}
with

di spl ay "PDU";
ext ensi on "MyRul e"

}

/1 The follow ng group definition ...
group MyPDUs ({

type record WPDU3 { ...}

type record WPDU4 { ...}

}
with {display "PDU'} // Al types of group MyPDUs wi |l be displayed as PDU

/1 is identical to
group MyPDUs ({
type record MyPDU3 { ...}

with { display "PDU"}
type record WPDU4 { ...} with

{ display "PDU"}

/1 Exanple of the use of the overwriting scheme of the with statenent
group MyPDUs
{

ITU-T Z.140 (07/2001) — Prepublished version 97

type record MyPDUL { ...}
type record MyPDU2 { ...}

group MySpeci al PDUs
{

type record MyPDU3 { ...}
type record MyPDU4 { ...}

}
with {extension "MySpecial Rule"} // MyPDU3 and MyPDU4 will have the application
/1 specific extension attribute MySpeci al Rul e

I3
with
. . .
di splay "PDU"; /'l Al'l types of group MPDUs will be displayed as PDU and
extension "M/Rule";// (if not overwitten) have the extension attribute M/Rul e
}

/'l is identical to ..
group MyPDUs
{

type record MWPDUL { ...} wit
type record WPDU2 { ...} wit
group MySpeci al PDUs {
type record MyPDU3 { ...} with {display "PDU"'; extension "MSpecial Rule" }
type record MyPDU4 { ...} with {display "PDU"; extension "MSpecial Rul e" }

di splay "PDU"; extension "MyRule" }

h {
h {display "PDU'; extension "MRule" }

}
27.5 Overwriting rules for attributes

An attribute definition in alower scope unit will override a general attribute definition in a higher scope. For example:

type record MyRecordA
{

} With {encode "Rul eA"}

/1 In the foll owing, MyRecordA is encoded according to Rul eA and not according to Rul eB
type record MyRecordB
{ .

field MRecordA
} with {encode "Rul eB"}

An attribute definition in alower scope can be overwritten in ahigher scope by using theover ri de directive. For
example:

type record MyRecordA

} With {encode "Rul eA"}

/1 In the followi ng, MyRecordA is encoded according to Rul eB
type record MyRecordB

fi el dA MyRecor dA
} with {encode override "Rul eB"}

Theoverride directive forces all contained types at all lower scopes to be forced to the specified attribute.

27.6 Changing attributes of imported language elements

In general, alanguage element isimported together with its attributes. In some cases these attributes may have to be
changed when importing the language element e.g., atype may be displayed in one module as ASP, then it is imported
by another module where it should be displayed as PDU. For such casesit is allowed to change attributes on the import
statement.

EXAMPLE:

I mport type MyType from MyModule with {display "ASP"} // MyType will be displayed as ASP
I mport group MyGroup from MyModule with

{

di splay "ASP"; /1 By default all types will be displayed as ASP.
extension "MyRul e"

ITU-T Z.140 (07/2001) — Prepublished version 98

ITU-T Z.140 (07/2001) — Prepublished version

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3:;

Table A.1: The Syntactic Metanotation

n= is defined to be

abc xyz abc followed by xyz

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

Ab the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

A.1.2 Statement terminator symbols

In general all TTCN-3 language constructs (i.e., definitions, declarations, statements and operations) are terminated
with a semi-colon (;). The semi-colon isoptional if the language construct ends with aright-hand curly brace (}) or the
following symbol is aright-hand curly brace (}), i.e., the language construct is the last statement in a statement block.

A.1.3 Identifiers

TTCN-3identifiers are case sensitive and may only contain lowercase |etters (a-z) uppercase letters (A -Z) and numeric
digits (0-9). Use of the underscore (_) symbol isalso allowed. An identifier shall begin with aletter (i.e., not anumber
and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification.

Block comments shall be opened by the symbol pair /* and closed by the symbol pair */. For example:

/* This is a block conment
spread over two lines */

Block comments shall not be nested.
/* This is not /* a legal */ comment */
Line comments shall be opened by the symbol pair // and closed by a<newline>. For example:

/1 This is a line coment
/1l spread over two lines

Line comments may follow TTCN-3 program statements but they shall not be embedded in a statement. For example:

ITU-T Z.140 (07/2001) — Prepublished version 100

/1 The following is not |egal
const // This is MyConst integer MyConst := 1;

/1 The followi ng is |egal
const integer MyConst :=1; // This is MyConst

A.1.5 TTCN-3 terminals
TTCN-3termina symbols and reserved words are listed in table A.2 and table A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { }
Begin/end list symbols ()
Alternative symbols []

To symbol (in a range) .

Line comments and Block comments [* * I
Line/statement terminator symbol ;

Arithmetic operator symbols + | -
String concatenation operator symbol &
Equivalence operator symbols I= == >= <=
String enclosure symbols " '
Wildcard/matching symbols 7 *
Assignment symbol =
Communication operation assignment ->

Bitstring, hexstring and Octetstring values B HO
Float exponent E

Thefollowing lists the special identifiers reserved for the predefined functions defined in annex D:

i nt2char, char2int, int2unichar, unichar2int, bit2int, hex2int, int2bit, int2hex,
oct2int, str2int, |lengthof, sizeof, ischosen, ispresent

ITU-T Z.140 (07/2001) — Prepublished version

i nt 2oct,

int2str,

101

Table A.3: List of TTCN-3 terminals which are reserved words

action fail named sel f
activate fal se none send
addr ess fl oat nonr ecur si ve sender
al | f or not set
al t from not 4b si gnature
and function nowai t start
and4b nul | stop
any get sut
getcal | objid system
bitstring getreply octetstring
bool ean got o of tenpl ate
group om t t est case
cal | on ti meout
catch hexstring opti onal timer
char or to
charstring i f or4b trigger
check i fpresent out true
cl ear i npor t override type
conpl enent in
conponent i nconc par am uni on
connect infinity pass uni ver sal
const i nout pattern unmap
control i nt eger port
create interl eave procedure val ue
val ueof
deactivate | abel raise var
di sconnect | anguage read verdi ct
di spl ay I ength receive verdi cttype
do | og record
done rem whi |l e
nap r epeat with
el se mat ch reply
encode nmessage return xor
enuner at ed m xed runni ng xor 4b
error nod runs
exception nodi fi es
execut e nmodul e
expand nc
extension
ext ernal

The TTCN-3terminalslisted in table A .3 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be
written in all lowercase | etters.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.1 TTCN Module

1. TTCN3Modul e ::= TTCN3Modul eKeyword TTCN3Modul el d [Modul ePar Li st]
Begi nChar
[Modul eDef i nitionsPart]
[Modul eCont rol Part]
EndChar
[WthStatenment] [Sem Col on]
TTCN3Modul eKeyword :: = "nmpdul e"
TTCN3Modul el d ::= Modul eldentifier [Definitiveldentifier]
Modul el dentifier ::= ldentifier
Definitiveldentifier ::= Dot ObjectldentifierKeyword "{" DefinitiveObjldConponentList "}"
DefinitiveObjldConmponentList ::= {DefinitiveObjldConponent}+
DefinitiveObjldConmponent ::= NameForm |
DefinitiveNunmber Form |
Def i ni ti veNameAndNunmber For m
Def i nitiveNunmber Form :: = Nunber
Definiti veNaneAndNunmber Form :: = ldentifier " (" DefinitiveNunberForm?")"

~NO O~ WN

© 0

ITU-T Z.140 (07/2001) — Prepublished version 102

10. Modul eParList ::= "(" Mdul ePar {"," Modul ePar} ")"
11. Modul ePar ::= [InParKeyword] Modul ePar Type Modul eParldentifier
[Assi gnment Char Const ant Expr essi on]
/* STATI C SEMANTI CS - The Val ue of the Constant Expression shall be of the same type as the stated
type for the Parameter */
12. Modul ePar Type ::= Type
13. Modul eParldentifier ::= ldentifier

A.1.6.2 Module Definitions Part

14. Modul eDef i nitionsPart Modul eDefi ni ti onsLi st
15. Modul eDef i ni tionsLi st {Modul eDefinition [Sem Col on]}+
16. Modul eDefinition ::= (TypeDef |

Const Def |

Tenpl at eDef |

Functi onDef |

Si gnat ur eDef |

Test caseDef |

NamedAl t Def |

| mport Def |

GroupDef |

Ext Functi onDef |

Ext Const Def) [W thStat ement]

A.1.6.2.1 Typedef Definitions

17. TypeDef ::= TypeDef Keyword TypeDef Body
18. TypeDef Body ::= StructuredTypeDef | SubTypeDef
19. TypeDef Keyword ::= "type"
20. StructuredTypeDef ::= RecordDef | UnionDef | SetDef | RecordOf Def | SetOf Def | EnumDef |
Port Def | Conponent Def
21. RecordDef ::= RecordKeyword Struct Def Body
22. RecordKeyword ::= "record"
23. StructDefBody ::= (StructTypeldentifier [StructDefFormal ParList] | AddressKeyword)
Begi nChar
[StructFiel dDef {"," StructFiel dDef}]
EndChar
24. StructTypeldentifier ::= Identifier
25. Struct Def Formal ParList ::= "(" StructDef Formal Par {"," StructDef Forml Par} ")"
26. Struct Def Formal Par ::= Fornal Val uePar | Fornmal TypePar
/* STATI C SEMANTI CS - Fornmal Val uePar shall resolve to an in paraneter */
27. StructFieldDef ::= Type StructFieldldentifier [ArrayDef] [SubTypeSpec] [Opti onal Keyword]
28. StructFieldldentifier ::= ldentifier
29. Optional Keyword ::= "optional"
30. UnionDef ::= Uni onKeyword Uni onDef Body
31. Uni onKeyword ::= "union"
32. Uni onDef Body ::= (StructTypeldentifier [StructDefFornal ParList] | AddressKeyword)
Begi nChar
Uni onFi el dDef {"," UnionFi el dDef}
EndChar
33. UnionFiel dDef ::= Type StructFieldldentifier [ArrayDef] [SubTypeSpec]
34. SetDef ::= SetKeyword StructDef Body
35. SetKeyword ::= "set"
36. RecordOf Def ::= RecordKeyword Of Keyword [StringLength] Struct Of Def Body
37. OfKeyword ::= "of"
38. StructOf Def Body ::= Type (StructTypeldentifier | AddressKeyword) [SubTypeSpec]
39. Set Of Def ::= SetKeyword Of Keyword [StringLength] Struct Of Def Body
40. EnunmDef ::= EnunKeyword (EnumTypeldentifier | AddressKeyword)
Begi nChar
NanmedVal ueli st
EndChar
41. EnunkKeyword ::= "enuner at ed"
42. Enunmlypeldentifier ::= Identifier
43. NanmedVal uelLi st ::= NanedValue {"," NanedVal ue}
44. NanedVal ue ::= NanedVal ueldentifier ["(" Number ")"]
45. NanedVal uel dentifier ::= ldentifier
46. SubTypeDef ::= Type (SubTypeldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
47. SubTypeldentifier ::= ldentifier
48. SubTypeSpec ::= All owedVal ues | StringLength
/* STATI C SEMANTICS - The val ues shall be of the same type as the field being subtyped */
49. All owedValues ::= "(" ValueOrRange {"," Val ueOr Range} ")"
50. Val ueOr Range ::= | nteger RangeDef | Singl eConst Expression

/* STATI C SEMANTI CS - IntergerRangeDef production shall only be used with integer based types */
51. Integer RangeDef ::= LowerBound ".." UpperBound

52. StringLength ::= LengthKeyword "(" SingleConstExpression [".." UpperBound] ")"

/* STATIC SEMANTICS - StringLength shall only be used with String types or to limt set of and
record of */

53. Lengt hKeyword ::= "l ength"

ITU-T Z.140 (07/2001) — Prepublished version 103

54. PortType ::= [G obal Modul eld Dot] PortTypeldentifier

55. PortDef ::= PortKeyword Port DefBody
56. PortDefBody ::= PortTypeldentifier PortDefAttribs
57. PortKeyword ::= "port"
58. PortTypeldentifier ::= Identifier
59. PortDefAttribs ::= MessageAttribs | ProcedureAttribs | M xedAttribs
60. MessageAttribs ::= MessageKeyword
Begi nChar
{Messagelist [Sem Col on]}+
EndChar
61. MessagelList ::= Direction All O TypelLi st
62. Direction ::= InParKeyword | OutParKeyword | |nQutParKeyword
63. MessageKeyword ::= "nessage"
64. All OrTypeList ::= Al Keyword | TypelLi st
65. All Keyword ::= "all"
66. TypeList ::= Type {"," Type}
67. ProcedureAttribs ::= ProcedureKeyword
Begi nChar
{ProcedurelList [Sem Colon]}+
EndChar
68. ProcedureKeyword ::= "procedure"
69. ProcedureList ::= Direction AllOrSignaturelList
70. Al OrSignatureList ::= Al Keyword | SignaturelList
71. SignatureList ::= Signature {"," Signature}
72. M xedAttribs ::= M xedKeyword
Begi nChar
{M xedLi st [Sem Colon]}+
EndChar
73. M xedKeyword ::= "m xed"
74. M xedList ::= Direction ProcOrTypelLi st
75. ProcOrTypeList ::= All Keyword | (ProcOrType {"," ProcOrType})
76. ProcOrType ::= Sighature | Type
77. Conponent Def ::= Conponent Keyword Conponent Typel dentifier
Begi nChar
[Conponent Def Li st]
EndChar
78. Conponent Keyword ::= "conponent"
79. Conponent Type ::= [G obal Mbdul el d Dot] Conponent Typel dentifier
80. Conponent Typeldentifier ::= ldentifier
81. Conponent Def Li st ::= {Conmponent El enent Def [Sem Col on] } +
82. Conponent El enent Def ::= Portlnstance | Varlnstance | Timerlnstance | Const Def
83. Portlnstance ::= PortKeyword PortType PortElenent {"," PortEl ement}
84. PortElenment ::= Portldentifier [ArrayDef]
85. Portldentifier ::= Identifier
A.1.6.2.2 Constant Definitions
86. Const Def ::= ConstKeyword Type ConstLi st
87. ConstlList ::= SingleConstDef {"," SingleConstDef}
88. SingleConstDef ::= Constldentifier [ArrayDef] AssignnentChar Constant Expression

/* STATI C SEMANTI CS - The Val ue of the Constant Expression shall be of the sane type as the stated
type for the constant */

89. Const Keyword ::= "const"
90. Constldentifier ::= ldentifier
A.1.6.2.3 Template Definitions
91. Tenpl ateDef ::= Tenpl at eKeyword BaseTenpl ate [DerivedDef]
Assi gnment Char Tenpl at eBody
92. BaseTenplate ::= (Type | Signature) Tenplateldentifier ["(" TenplateFormal ParList ")"]
93. Tenpl at eKeyword ::= "tenpl ate"
94. Tenplateldentifier ::= Identifier
95. DerivedDef ::= ModifiesKeyword Tenpl at eRef
96. ModifiesKeyword ::= "nodifies"
97. Tenpl at eFormal Par Li st ::= Tenpl at eFormal Par {"," Tenpl at eFor mal Par}
98. Tenpl at eFor mal Par ::= Formal Val uePar |

For mal Tenpl at ePar
/* STATI C SEMANTI CS - For nal Val uePar shall resolve to an in paraneter */

99. Tenpl ateBody ::= Sinpl eSpec | FieldSpeclList |
ArrayVal ueOrAttrib
100. SinpleSpec ::= SingleValueOrAttrib
/* STATI C SEMANTICS - Si npl eSpec shall not be used for constructed types */
101. FieldSpecList ::= "{"[FieldSpec {"," FieldSpec}] "}"
102. FieldSpec ::= FieldReference Assignnent Char Tenpl at eBody
103. FieldReference ::= RecordRef | ArrayOrBitRef | ParRef
104. RecordRef ::= StructFieldldentifier
105. ParRef ::= SignatureParldentifier

ITU-T Z.140 (07/2001) — Prepublished version 104

/* OPERATI ONAL SEMANTI CS - SignatureParldentifier shall be a fornal paraneter Identifier fromthe
associ ated signature definition */

106. SignatureParldentifier ::= ValueParldentifier

107. ArrayOrBitRef ::="[" FieldOrBitNumber "]"

/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and ASN.1 SET OF and
SEQUENCE OF and TTCN record, record of, set and set Identifier of. The sane notation can be used for
a Bit reference inside an ASN.1 or TTCN bitstring type */

108. Fi el dOrBi t Nunber ::= Singl eExpression
[* STATI C SEMANTICS - Singl eExpression will resolve to a value of integer type */
109. SingleValueOrAttrib ::= MatchingSynbol [ExtraMatchingAttributes] |

Si ngl eExpressi on [ExtraMatchi ngAttri butes] |

Tenpl at eRef W t hPar Li st
/* STATIC SEMANTI C - Variableldentifier (accessed via singl eExpression) may only be used in inline
tenplate definitions to reference variables in the current scope */

110. ArrayVal ueOrAttrib ::= "{" ArrayEl ement SpecList "}"

111. ArrayEl ement SpecLi st ::= ArrayEl ement Spec {"," ArrayEl enent Spec}

112. ArrayEl ement Spec ::= Not UsedSymbol | Tenpl at eBody

113. Not UsedSynbol ::= Dash

114. MatchingSymbol ::= Conplenent | Omit | AnyValue | AnyOrOmt | Val uelist |

I ntegerRange | BitStringMatch | HexStringMatch |
Octet StringMatch | CharStringMatch

115. ExtraMatchingAttributes ::= LengthMatch | |fPresentMatch

116. BitStringwatch ::= """ {BinOrMatch} "'" B

117. BinOrMatch ::= Bin | AnyValue | AnyOrOmit

118. HexStringwatch ::= """ {HexOrMatch} "'" H

119. HexOrMatch ::= Hex | AnyValue | AnyOrOmit

120. OctetStringMatch ::= """ {OctOrMatch} "'" O

121. OctOrMatch ::= Oct | AnyValue | AnyOrOmit

122. CharStringMatch ::= PatternKeyword CharStringPattern {StringOp CharStringPattern}

/* STATIC SEMANTICS - all CharStringPatterns shall resolve to the same character or character string
type */

123. CharStringPattern ::= CharStringValue | Tenpl at eRef Wt hPar Li st

124. PatternKeyword ::= "pattern"

125. Conpl enment ::= Conpl enent Keyword (Singl eConst Expression | Val uelLi st)
126. Conpl ement Keyword ::= "conpl ement"”

127. Omt ::= OmtKeyword

128. OmitKeyword ::= "omit"

129. AnyVvalue ::= "?"

"

130. AnyOrOm t

131. Val ueli st "(" SingleConstExpression {"," SingleConstExpression}+ ")"

132. LengthMatch ::= StringLength

133. IfPresentMatch ::= | fPresent Keyword

134. |fPresentKeyword ::= "ifpresent"”

135. IntegerRange ::= "(" LowerBound ".." UpperBound ")"

136. Lower Bound ::= SingleConstExpression | Mnus |nfinityKeyword

137. UpperBound ::= Singl eConst Expression | InfinityKeyword

138. InfinityKeyword ::= "infinity"

139. Tenpl atel nstance ::= InLineTenpl ate

140. Tenpl ateRefWthParList ::= [d obal Modul eld Dot] Tenpl ateldentifier [TenplateActual ParList] |
Tenpl at ePar I dentifier

141. Tenpl ateRef ::= [d obal Modul eld Dot] Tenpl ateldentifier | Tenpl ateParldentifier

142. InLineTenplate ::= [(Type | Signature) Colon] [DerivedDef AssignnentChar] Tenpl at eBody

/* STATIC SEMANTICS - The type field may only be onmitted when the type is inplicitly unanbi gous */

143. Tenpl at eActual ParList ::= "(" Tenpl ateActual Par {"," Tenpl ateActual Par} ")"

144. Tenpl at eActual Par ::= Tenpl atel nstance

/* STATI C SEMANTICS - When the corresponding formal parameter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore Singl eExpressions */

145. Tenpl ateOps ::= MatchOp | Val ueof Op

146. MatchOp ::= MatchKeyword "(" Expression "," Tenpl atelnstance")"

/* STATIC SEMANTICS - The type of the value returned by the expression shall be the same as the
tenplate type and each field of the tenplate shall resolve to a single value */

147. Mat chKeyword ::= "match"

148. Val ueof Op ::= Val ueof Keyword " (" Tenpl at el nstance")"

149. Val ueof Keyword ::= "val ueof"

A.1.6.2.4 Function Definitions

150. FunctionDef ::= FunctionKeyword Functionldentifier
"("[FunctionFormal ParList] ")" [RunsOnSpec] [ReturnType]
Begi nChar
Functi onBody
EndChar

151. FunctionKeyword ::= "function"

152. Functionldentifier ::= ldentifier

153. FunctionFormal ParLi st ::= FunctionFormal Par {"," FunctionFormal Par}

154. FunctionFormal Par ::= Formal Val uePar |

For mal Ti mer Par |
For mal Tenpl at ePar |

ITU-T Z.140 (07/2001) — Prepublished version 105

For mal Port Par

155. ReturnType ::= ReturnKeyword Type

156. ReturnKeyword ::= "return"

157. RunsOnSpec ::= RunsKeyword OnKeyword (ConponentType | MICKeywor d)
158. RunsKeyword ::= "runs"

159. OnKeyword ::= "on"

160. MICKeyword ::= "ntc"

161. FunctionBody ::= [FunctionStatement O Def Li st]

162. FunctionStatement OrDef List ::= {FunctionStatement OrDef [Sem Col on]}+
163. FunctionStatement OrDef ::= FunctionLocal Def |

Functi onLocal I nst |
Functi onSt at ement

164. FunctionLocal Inst ::= Varlnstance |
Ti mer I nst ance
165. FunctionLocal Def ::= Const Def
166. FunctionStatement ::= ConfigurationStatenments |

Ti mer St atement s |

Communi cati onSt atements |
Basi cSt at enents |

Behavi our St at ement s |
Verdi ct Statenents |

SUTSt at enent s

167. Functionlnstance ::= FunctionRef " (" [FunctionActual ParList] ")"
168. FunctionRef ::= [d obal Mbdul eld Dot] Functionldentifier
169. FunctionActual ParList ::= FunctionActual Par {"," FunctionActual Par}
170. FunctionActual Par ::= TimerRef |

Tenpl at el nst ance |

Port |

Conmponent Ref
/* STATI C SEMANTICS - When the corresponding formal parameter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore SingleExpressions i.e. eqgivelent to the
Expressi on production */

A.1.6.2.5 Signature Definitions

171. SignatureDef ::= SignatureKeyword Signatureldentifier
"("[SignatureFormal ParList] ")" [ReturnType]
[Excepti onSpec]

172. SignatureKeyword ::= "signature"
173. Signatureldentifier ::= ldentifier
174. SignatureFormal ParList ::= SignatureFormal Par {"," SignatureFormal Par}
175. SignatureFormal Par ::= Formal Val uePar
176. ExceptionSpec ::= ExceptionKeyword " (" ExceptionTypeList ")"
177. ExceptionKeyword ::= "exception"
178. ExceptionTypeList ::= Type {"," Type}
179. Signature ::= [G obal Mobdul eld Dot] Signatureldentifier
A.1.6.2.6 Testcase Definitions
180. TestcaseDef ::= TestcaseKeyword Testcasel dentifier
"("[TestcaseFormal ParList] ")" ConfigSpec
Begi nChar
Functi onBody
EndChar
181. TestcaseKeyword ::= "testcase"
182. Testcaseldentifier ::= ldentifier
183. TestcaseFormal ParList ::= TestcaseFormal Par {"," TestcaseFormal Par}
184. TestcaseFormal Par ::= Fornmal Val uePar
For mal Tenpl at ePar
185. ConfigSpec ::= RunsOnSpec [SystenSpec]
186. SystenSpec ::= SystenKeyword Conponent Type
187. SystenKeyword ::= "systemn
188. Testcasel nstance ::= ExecuteKeyword "(" TestcaseRef "(" [TestcaseActual ParList] ")" [","
Ti mer Val ue] ")
189. ExecuteKeyword ::= "execute"
190. TestcaseRef ::= [G obal Mbdul eld Dot] Testcaseldentifier
191. TestcaseActual ParList ::= TestcaseActual Par {"," TestcaseActual Par}

192. TestcaseActual Par ::=

Tenpl at el nst ance
/* STATI C SEMANTICS - When the corresponding formal parameter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore SingleExpressions i.e. equivalent to the
Expressi on production */

A.1.6.2.7 NamedAlt Definitions

193. NanedAl t Def ::= NanmedKeyword AltKeyword NamedAltldentifier
"(" [NamedAl t For mal ParList] ")"
Begi nChar

ITU-T Z.140 (07/2001) — Prepublished version 106

Al t Guar dLi st EndChar

194. NanedKeyword ::= "naned"

195. NanedAltldentifier ::= ldentifier

196. NanedAl t For mal ParLi st ::= NamedAl t Formal Par {"," NamedAl t For mal Par}
197. NanedAl t For mal Par ::= Fornmal Val uePar |

For mal Ti mer Par |
For mal Tenpl at ePar |
For mal Port Par

198. NanedAltlnstance ::= NanedAltRef "(" [NanmedAltActual ParList]")"
199. NanedAltRef ::= [d obal Modul eld Dot] NanedAltldentifier
200. NanmedAl t Act ual ParLi st ::= NanedAl t Actual Par {"," NanedAl t Actual Par}
201. NanedAl t Actual Par ::=

Ti mer Ref |

Tenpl at el nst ance |

Port |

Component Ref
/* STATI C SEMANTICS - When the corresponding formal parameter is not of tenplate type the
Tenpl at el nst ance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expressi on production */

A.1.6.2.8 Import Definitions

202. I nportDef ::= InportKeyword | nport Spec
203. InportKeyword ::= "inmport"
204. | nportSpec ::= InportAll Spec |

| mport Gr oupSpec |

| mpor t TypeDef Spec |

| mport Tenpl at eSpec |
| mpor t Const Spec |

| mport Test caseSpec |
| mpor t NanedAl t Spec |
| mport Functi onSpec |
| mport Si gnat ur eSpec

205. InportAll Spec ::= All Keyword [Def Keyword] | nmportFronSpec
206. | nportFromSpec ::= FromKeyword Modul el d [NonRecursi veKeywor d]
207. Modul eld ::= d obal Mbdul el d [LanguageSpec]

/* STATI C SEMANTI CS - LanguageSpec may only be omitted if the referenced nodul e contains TTCN-3
notation */

208. LanguageKeyword ::= "l anguage"

209. LanguageSpec ::= LanguageKeyword FreeText

210. G obal Modul eld ::= Modul eldentifier [Dot ObjectldentifierValue]
211. DefKeyword ::= TypeDef Keyword |

Const Keyword |

Tenpl at eKeyword |

Test caseKeyword |
Functi onKeyword |

Si gnat ur eKeyword |
NamedKeywor d Al t Keyword

212. NonRecursiveKeyword ::= "nonrecursive"

213. Inport GroupSpec ::= GroupKeyword G oupldentifier {"," Groupldentifier} |nportFronmSpec
214. I nport TypeDef Spec ::= TypeDef Keyword TypeDefldentifier {"," TypeDefldentifier} |nportFronSpec
215. TypeDefldentifier ::= StructTypeldentifier |

EnuniTypel dentifier |

Port Typel dentifier |
Component Typel dentifier |
SubTypel dentifier

216. I nportTenpl at eSpec ::= Tenpl ateKeyword Tenpl ateldentifier {"," Tenplateldentifier}

| mport Fr omSpec

217. I nport Const Spec ::= ConstKeyword Constldentifier {"," Constldentifier} |nportFronmSpec
218. I nportTestcaseSpec ::= TestcaseKeyword Testcaseldentifier {"," Testcaseldentifier}

| mpor t Fr omSpec

219. I nportFunctionSpec ::= FunctionKeyword Functionldentifier {"," Functionldentifier}

| mpor t Fr omSpec

220. I nportSignatureSpec ::= SignatureKeyword Signatureldentifier {"," Signatureldentifier}
| mpor t Fr omSpec

221. | nport NamedAl t Spec ::= NanedKeyword AltKeyword NamedAltldentifier {"," NanmedAltldentifier}

| mpor t Fr omSpec
A.1.6.2.9 Group Definitions

222. GroupDef ::= GroupKeyword Groupldentifier
Begi nChar
[Modul eDef i nitionsPart]
EndGr oupChar

223. GroupKeyword ::= "group"
224. EndGroupChar ::= "}"
225. Groupldentifier ::= ldentifier

ITU-T Z.140 (07/2001) — Prepublished version 107

A.1.6.2.10 External Function Definitions

226. Ext FunctionDef ::= ExtKeyword FunctionKeyword ExtFunctionldentifier
"("[FunctionFormal ParList] ")" [ReturnType]
227. ExtKeyword ::= "external"
228. ExtFunctionldentifier ::= Identifier
A.1.6.2.11 External Constant Definitions
229. Ext ConstDef ::= ExtKeyword Const Keyword Type Ext Constldentifier
230. ExtConstldentifier ::= ldentifier
A.1.6.3 Control Part
231. Modul eControl Part ::= Control Keyword
Begi nChar
Modul eCont r ol Body
EndChar
[WthStatenent] [Sem Col on]
232. Control Keyword ::= "control"
233. Modul eControl Body ::= [Control Statenent Or Def Li st]
234. Control Statement OrDefList ::= {Control Statement OrDef [Sem Col on]}+
235. Control Statenent OrDef ::= FunctionLocal | nst |

Control Statement |
Functi onLocal Def
236. Control Statenment ::= TinmerStatenments |
Basi cSt at enents |
Behavi our St at ement s |
SUTSt at enent s

A.1.6.3.1 Variable Instantiation

237. Varlnstance ::= VarKeyword Type VarlLi st
238. VarlList ::= SingleVarlnstance {"," SingleVarlnstance}
239. SingleVarlnstance ::= Varldentifier [ArrayDef] [AssignmentChar Varlnitial Val ue]
240. Varlnitial Value ::= Expression
241. VarKeyword ::= "var"
242. Varldentifier ::= Identifier
243. VariableRef ::= (Varldentifier | ValueParldentifier) [ExtendedFi el dReference]
A.1.6.3.2 Timer Instantiation
244. Timerlnstance ::= TinmerKeyword Tinerldentifier [ArrayDef]
[Assi gnment Char Ti mer Val ue]
245. TimerKeyword ::= "timer"
246. Tinmerldentifier ::= ldentifier
247. TimerVal ue ::= SingleExpression
[/ * STATI C SEMANTI CS - Singl eExpression shall resolve to a value of type float */
248. TimerRef ::= Tinerldentifier [ArrayOrBitRef]|

TimerParldentifier [ArrayOrBit Ref]

A.1.6.3.3 Component Operations

249. ConfigurationStatements ::= Connect Statenent |
MapSt at ement |
Di sconnect St at enent |
UnmapSt at enent |
DoneSt at ement |
St art TCSt at ement |
St opTCSt at ement

250. ConfigurationOps ::= CreateOp | SelfOp | SystemOp | MICOp | Runni ngOp
251. CreateOp ::= Conponent Type Dot CreateKeyword

252. SystenOp ::= "systent

253. SelfOp ::= "self"

254. MICOp ::= MICKeyword

255. DoneStatenent ::= Conmponentld Dot DoneKeyword

256. Conponentld ::= Conponentldentifier | (AnyKeyword | All Keyword) Conponent Keyword
257. DoneKeyword ::= "done"

258. RunningOp ::= Conponentld Dot Runni ngKeywor d

259. Runni ngKeyword ::= "runni ng"

260. CreateKeyword ::= "create"

261. Connect Statenment ::= Connect Keyword Port Spec

262. Connect Keyword ::= "connect"

263. PortSpec ::= "(" PortRef "," PortRef ")"

264. PortRef ::= ConponentRef Colon Port

265. Conponent Ref ::= Conponentldentifier | SystenOp | SelfOp | MICOp

266. DisconnectStatenent ::= Disconnect Keyword Port Spec

ITU-T Z.140 (07/2001) — Prepublished version

267. DisconnectKeyword ::= "di sconnect"

268. MapStatenent ::= MapKeyword Port Spec

269. MapKeyword ::= "map"

270. UnmapStatenment ::= UnmapKeyword Port Spec

271. UnmapKeyword ::= "unmap"

272. StartTCStatement ::= Conponentldentifier Dot StartKeyword "(" Functionlnstance ")"

[* STATIC SEMANTICS - The Function instance may only have in paranmeters */

273. StartKeyword ::= "start"

274. StopTCStatenment ::= StopKeyword

275. Conponentldentifier ::= VariableRef | Functionlnstance

/* STATI C SEMANTI CS - The variable associated with Vari abl eRef or the Return type associated with
Functi onl nstance shall be of conponent type */

A.1.6.3.4 Port Operations

276. Port ::= (Portldentifier | PortParldentifier) [ArrayOrBitRef]

277. CommunicationStatenents ::= SendStatenent | Call Statenment | ReplyStatenment | RaiseStatenent |
Recei veStatenent | TriggerStatenent | GetCall Statenment |
Get Repl yStatement | CatchStatenent | CheckStatenment |
Cl earStatement | StartStatenment | StopStatenent

278. SendStatenent ::= Port Dot PortSendOp

279. PortSendOp ::= SendOpKeyword " (" SendParameter ")" [ToCl ause]
280. SendOpKeyword ::= "send"

281. SendParaneter ::= Tenpl atel nstance

282. ToCl ause ::= ToKeyword AddressRef

283. ToKeyword ::= "to"

284. AddressRef ::= VariableRef | Functionlnstance

/* STATI C SEMANTI CS - Vari abl eRef and Functionlnstance return shall be of address or conponent type
*/

285. Call St at ement Port Dot PortCall Op [PortcCall Body]

286. PortCall Op ::= Call OpKeyword "(" Call Paraneters ")" [ToCl ause]
287. Cal |l OpKeyword ::= "call"
288. Call Paranmeters ::= Tenplatelnstance ["," Call Ti mer Val ue]
/* STATIC SEMANTICS - only out parameters nay be omted or specified with a natching attribute */
289. Call TimerValue ::= TimerValue | NowaitKeyword
/* STATI C SEMANTICS - Val ue shall be of type float */
290. Nowait Keyword ::= "nowait"
291. PortCal | Body ::= Begi nChar
Cal | BodySt at enent Li st
EndChar
292. Cal | BodyStatementList ::= {Call BodyStatenent [Sem Colon]}+
293. Cal |l BodyStatenment ::= Call BodyGuard StatenentBl ock
294. Cal | BodyGuard ::= AltGuardChar Cal |l BodyOps
295. Cal | BodyOps ::= GetReplyStatenent | CatchStatenent
296. ReplyStatenent ::= Port Dot PortReplyOp
297. PortReplyOp ::= ReplyKeyword " (" Tenpl atel nstance [ReplyValue]")" [ToCl ause]
298. ReplyKeyword ::= "reply"
299. ReplyValue ::= Val ueKeyword Expression
300. RaiseStatenent ::= Port Dot PortRai seOp
301. PortRaiseOp ::= RaiseKeyword "(" Signature "," Tenplatelnstance ")" [ToCl ause]
302. Rai seKeyword ::= "raise"
303. ReceiveStatement ::= PortOrAny Dot PortReceiveOp
304. PortOrAny ::= Port | AnyKeyword Port Keyword
305. PortReceiveOp ::= ReceiveOpKeyword ["(" ReceiveParaneter ")"] [FronCl ause] [PortRedirect]

/* STATI C SEMANTI CS - The PortRedirect option may only be present if the ReceiveParaneter option is
al so present */

306. Recei veOpKeyword ::= "receive"

307. ReceiveParaneter ::= Tenpl atel nstance

308. FronCl ause ::= FronKeyword AddressRef

309. FronKeyword ::= "front

310. PortRedirect ::= PortRedirectSynbol (ValueSpec [SenderSpec] | Sender Spec)
311. PortRedirectSynbol ::= "->"

312. Val ueSpec ::= Val ueKeyword Vari abl eRef

313. Val ueKeyword ::= "val ue"

314. Sender Spec ::= Sender Keyword Vari abl eRef

/* STATIC SEMANTICS - Variable ref shall be of address or conponent type */

315. Sender Keyword ::= "sender"

316. TriggerStatement ::= PortOrAny Dot PortTriggerOp

317. PortTriggerOp ::= Trigger OpKeyword ["(" ReceiveParanmeter ")"] [FronCl ause] [PortRedirect]
/* STATI C SEMANTI CS - The PortRedirect option may only be present if the ReceiveParaneter option is
al so present */

318. Trigger OpKeyword ::= "trigger"
319. GetCall Statenent ::= PortOrAny Dot PortGetCall Op
320. PortGetCallOp ::= GetCall OpKeyword ["(" ReceiveParaneter ")"] [FronCl ause]

[Port Redi rect Wt hPar an

/* STATI C SEMANTI CS - The Port Redirect WthParam option may only be present if the Recei veParaneter
option is also present */

321. GetCall OpKeyword ::= "getcall"

ITU-T Z.140 (07/2001) — Prepublished version 108

322. PortRedirectWthParam ::= PortRedirect Synbol Redirect Spec
323. RedirectSpec ::= ValueSpec [ParaSpec] [SenderSpec] |

Par aSpec [Sender Spec] |

Sender Spec

324. ParaSpec ::= ParaKeyword ParaAssi gnnent Li st

325. ParaKeyword ::= "parant

326. ParaAssignnentlist ::= "(" (AssignnmentlList | VariablelList) ")"

327. AssignnentlList ::= Variabl eAssignment {"," Variabl eAssi gnnent}

328. Vari abl eAssignment ::= Variabl eRef Assi gnnment Char Paraneterldentifier

/* éTATI C SEMANTICS - The paraneterldentifiers shall be fromthe correspondi ng signature definition
*/
329. Paraneterldentifier ::= ValueParldentifier |

Ti mer Par | dentifier |

Tenpl at ePar |l dentifier |

Port Parldentifier

330. VariableList ::= VariableEntry {"," Variabl eEntry}

331. VariableEntry ::= Variabl eRef | NotUsedSynbol

332. GetReplyStatement ::= PortOrAny Dot Port Get Repl yOp

333. PortGetReplyOp ::= Get Repl yOpKeyword [" (" ReceiveParaneter [Val ueMatchSpec] ")"]

[FromCl ause] [PortRedirectWthParam
[* STATI C SEMANTI CS - The PortRedirect WthParam opti on nmay only be present if the Recei veParaneter
option is also present */

334. Get Repl yOpKeyword ::= "getreply"
335. Val ueMat chSpec ::= Val ueKeyword Tenpl at el nstance
336. CheckStatenment ::= PortOrAny Dot Port CheckOp
337. Port CheckOp ::= CheckOpKeyword ["(" CheckParanmeter ")"]
338. CheckOpKeyword ::= "check"
339. CheckParanmeter ::= PortReceiveOp | PortGetCall Op | PortGetReplyOp | PortCatchOp |
[FronCl ause] [PortRedirectSynmbol Sender Spec]
340. CatchStatenent ::= PortOrAny Dot Port CatchOp
341. PortCatchOp ::= CatchOpKeyword ["("CatchOpParanmeter ")"] [FronCl ause] [PortRedirect]

/* STATI C SEMANTI CS - The PortRedirect option may only be present if the CatchQpParaneter option is
al so present */

342. CatchOpKeyword ::= "catch"

343. CatchOpParaneter ::= Signature "," Tenplatelnstance | Ti neoutKeyword
344. ClearStatenent ::= PortOrAll Dot PortClearOp

345. PortOrAll ::= Port | All Keyword PortKeyword

346. PortClearOp ::= Cl ear OpKeyword

347. Cl ear OpKeyword ::= "clear"

348. StartStatenent ::= PortOrAll Dot PortStartOp

349. PortStartOp ::= StartKeyword

350. StopStatenent ::= PortOrAll Dot Port StopOp

351. PortStopOp ::= StopKeyword

352. StopKeyword ::= "stop"

353. AnyKeyword ::= "any"

A.1.6.3.5 Timer Operations

354. TinmerStatenents ::= StartTinmerStatenent | StopTi merStatenent | Tineout Statenment
355. TinmerOps ::= ReadTinerOp | RunningTi ner Op

356. StartTimerStatenment ::= TinerRef Dot StartKeyword ["(" TinmerValue ")"]
357. StopTimerStatement ::= TinmerRefOrAll Dot StopKeyword

358. TimerRefOrAll ::= TimerRef | All Keyword Ti ner Keyword

359. ReadTinerOp ::= TimerRef Dot ReadKeyword

360. ReadKeyword ::= "read"

361. RunningTimerOp ::= TinerRef Or Any Dot Runni ngKeyword

362. TinmeoutStatenent ::= TimerRefOrAny Dot Ti neout Keyword

363. TimerRefOrAny ::= TimerRef | AnyKeyword Ti mer Keyword

364. Ti meout Keyword ::= "timeout"

A.1.6.4 Type

365. Type ::= PredefinedType | ReferencedType

366. PredefinedType ::= BitStringKeyword |

Bool eanKeywor d |
Char Stri ngKeyword |
Uni ver sal Char String |
Char Keyword |
Uni ver sal Char |
I nt eger Keyword |
Cctet StringKeyword |
Obj ectldentifierKeyword |
HexStri ngKeyword |
Ver di ct Keyword |
Fl oat Keyword |
Addr essKeywor d
367. BitStringKeyword ::= "bitstring"
368. Bool eanKeyword ::= "bool ean"

ITU-T Z.140 (07/2001) — Prepublished version 110

369. IntegerKeyword ::= "integer"

370. OctetStringKeyword ::= "octetstring"

371. ObjectldentifierKeyword ::= "objid"

372. HexStringKeyword ::= "hexstring"

373. VerdictKeyword ::= "verdict"

374. Float Keyword ::= "float"

375. AddressKeyword ::= "address"

376. CharStringKeyword ::= "charstring"

377. Universal CharString ::= Universal Keyword Char Stri ngKeyword
378. Universal Keyword ::= "universal"

379. CharKeyword ::= "char"

380. Universal Char ::= Universal Keyword Char Keyword

381. ReferencedType ::= [G obal Mbdul el d Dot] TypeReference [ExtendedFi el dRef er ence]
382. TypeReference ::= StructTypeldentifier[TypeActual ParList] |

EnuniTypel dentifier |
SubTypel dentifier |
TypePar |l dentifier |
Component Typel denti fi er

383. TypeActual ParList ::= "(" TypeActual Par {"," TypeActual Par} ")"
384. TypeActual Par ::= Singl eConst Expression | Type

A.1.6.4.1 Array Types

385. ArrayDef ::= {"[" ArrayBounds [".." ArrayBounds] "]"}+

386. ArrayBounds ::= Singl eConst Expression

/* STATIC SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

A.1.6.5 Value

387. Value ::= PredefinedValue | ReferencedVal ue
388. PredefinedValue ::= BitStringVal ue |
Bool eanVal ue |
Char Stri ngVal ue |
I nt eger Val ue |
Oct et StringVal ue |
Obj ectl dentifierValue |
HexStringVal ue |
Ver di ct Val ue |
Enumer at edVal ue |
Fl oat Val ue |
Addr essVal ue

389. BitStringValue ::= Bstring
390. Bool eanValue ::= "true" | false
391. IntegerValue ::= Nunber
392. COctetStringValue ::= Ostring
393. ObjectldentifierValue ::= ObjectldentifierKeyword "{" ObjldConponentlList "}"
/* STATI C SEMANTI CS - ReferencedVal ue shall be of type object Identifer */
394. Obj I dComponent Li st ::= {ObjldConmponent}+
395. Obj I dConponent ::= NameForm |
Nunber For m |
NanmeAndNumber For m
396. Nunber Form ::= Nunber | ReferencedVal ue
/* STATI C SEMANTI CS - referencedVal ue shall be of type integer and have a non negative Val ue */
397. NameAndNunber Form ::= ldentifier NunberForm
398. NameForm ::= Identifier
399. HexStringValue ::= Hstring
400. VerdictValue ::= "pass" | fail | inconc | none | error
401. EnuneratedVal ue ::= NanmedVal uel dentifier
402. CharStringValue ::= Cstring | Quadruple | ReferencedVal ue
/* STATI C SEMANTI CS - ReferencedVal ue shall resolve to a string type */
403. Quadruple ::="(" Goup "," Plane "," Row "," Cell ")"
404. Group ::= Number
405. Pl ane ::= Nunber
406. Row ::= Nunber
407. Cell ::= Number
408. Fl oatValue ::= Fl oat Dot Notation | Float ENotation
409. Fl oat Dot Notation ::= Number Dot Deci mal Nunber
410. Fl oatENotation ::= Nunmber [Dot Deci mal Nunber] Exponential [M nus] Nunber
411. Exponential ::=E
412. ReferencedVal ue ::= Val ueRef erence [ExtendedFi el dRef erence]
413. Val ueReference ::= [d obal Modul eld Dot] Constldentifier |

Ext Const Il dentifier |
Val uePar | dentifier |
Modul ePar | denti fier |
Varldentifier

414. Nunmber ::= (NonZeroNum {Nunm}) | O
415. NonZeroNum::= 1| 2| 3| 4| 5| 6| 7| 8] 9
416. Deci mal Number ::= {Num}

ITU-T Z.140 (07/2001) — Prepublished version 111

417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.

430.

447.
448.
449,
450.
451.
452.

453.
454,
455.
456.
457.
458.
459.
460.

461.

Al

462.

ITU

Num ::= 0 | NonZer oNum

Bstring ::= """ {Bin} B

Bin::=0] 1

Hstring ::= """ {Hex} H

Hex ::= Num| A| B| C| D| E| Fl a| b | c| d| e]| f

Ostring ::="'" {Oct} "'" O

Cct ::= Hex Hex

Cstring ::= """ {Char}

Char ::= /* REFERENCE - A character defined by the relevant CharacterString type */
Identifier ::= Al pha{ Al phaNum | Underscore}

Al pha ::= Upper Al pha | Lower Al pha

Al phaNum ::= Al pha | Num

UpperAlpha ::=A| B| C| D| E| F| G| H| I | J]|] K| L] M| NJ] O] P| Q| R|] S| T
V]| W| X|] Y] Z

LowerAlpha ::=a | b | c| d]|] e| f | g] h]i|]jl k]!l] m|n]Jo|lplaqglTr]s]|Tt]
v iwl|l x| y]| z

Ext endedAl phaNum :: = /* REFERENCE - A character fromany character set defined in | SO |EC 10646
FreeText ::= """ {ExtendedAl phaNun} """

Addressvalue ::= "null"

.6.6 Parameterisation

| nPar Keyword ::= "in"

CQut Par Keyword ::= "out"

| nCut Par Keyword ::= "inout"

For mal Val uePar ::= [(InParKeyword | |nQutParKeyword | QutParKeyword)] Type Val ueParldentifier
Val ueParldentifier ::= Identifier

For mal TypePar ::= [InParKeyword] TypeParldentifier

TypeParldentifier ::= ldentifier

Formal Port Par ::= [InQut Par Keyword] PortTypeldentifier PortParldentifier
PortParldentifier ::= Identifier

Formal Ti mer Par ::= [l nOut Par Keyword] Ti nmer Keyword Ti merParldentifier
TimerParldentifier ::= Identifier

For mal Tenpl at ePar ::= [| nPar Keyword] Tenpl ateKeyword Type Tenpl at ePar | dentifier

Tenpl ateParldentifier ::= ldentifier

.6.7 With Statement

WthStatenment ::= WthKeyword WthAttribLi st

Wt hKeyword ::= "with"

WthAttribList ::="{" MultiWthAttrib "}"

Multi WthAttrib ::= {SingleWthAttrib [Sem Col on]}+

SingleWthAttrib ::= Attri bKeyword [OverrideKeyword] [AttribQualifier] AttribSpec
Attri bKeyword ::= EncodeKeyword |

Di spl ayKeyword |
Ext ensi onKeywor d

EncodeKeyword ::= "encode"

Di spl ayKeyword ::= "display"

Ext ensi onKeyword ::= "extension"

OverrideKeyword ::= "override"

AttribQualifier ::="(" DefOrFieldRefList ")"

Def Or Fi el dRef List ::= DefOrFieldRef {"," DefOrFieldRef}
Def Or Fi el dRef ::= DefinitionRef | FieldReference
DefinitionRef ::= StructTypeldentifier |

EnunTypel dentifier |
Port Typel dentifier |
Conponent Typel dentifier |
SubTypel dentifier |
Constldentifier |
Tenpl atel dentifier |
NamedAl t I dentifier |
Testcaseldentifier |
Functionldentifier |
Si gnatureldentifier
AttribSpec ::= FreeText

.6.8 Behaviour Statements

Behavi our St at enents ::= Testcasel nstance
Functi onl nstance |
Ret urnSt at ement |
Al t Construct |
I nterl eavedConstruct |
Label St at enent |
Got oSt at ement |
Activat eSt at enent |

-T Z.140 (07/2001) — Prepublished version 112

Deacti vat eSt at ement |

NamedAl t | nst ance
/* STATI C SEMANTI CS - Testcasel nstance shall not be called fromw thin an existing executing
testcase or function chain called froma testcase i.e. testcases can only be instantiated fromthe
control part or fromfunctions directly called fromthe control part */

463. VerdictStatements ::= SetlLocal Verdi ct
464. VerdictOps ::= GetlLocal Verdi ct
465. SetlLocal Verdict ::= SetVerdictKeyword "(" SingleExpression ")"

/* STATI C SEMANTI CS - Singl eExpression shall resolve to a value of type verdict */
/* STATIC SEMANTI CS - The SetLocal Verdict shall not be used to assign the Value error */

466. SetVerdictKeyword ::= Verdict Keyword Dot Set Keyword

467. CetlLocal Verdict ::= VerdictKeyword Dot GetKeyword

468. Get Keyword ::= "get"

469. SUTStatenments ::= SUTAction "(" (FreeText | Tenpl ateRefWthParList) ")"
470. SUTAction ::= SUTKeyword Dot Acti onKeyword

471. SUTKeyword ::= "sut"

472. ActionKeyword ::= "action"

473. ReturnStatenent ::= ReturnKeyword [Expression]

474. Al tConstruct ::= AltKeyword Begi nChar AltGuardLi st EndChar

475. AltKeyword ::= "alt"

476. AltGuardList ::= {AltGuardEl ement [Sem Colon]}+ [ElseStatenent [Sem Col on]]
477. Al tGuardEl enent ::= GuardStatenent | ExpandStat ement

478. CGuardStatement ::= AltGuardChar GuardOp StatenmentBl ock

479. ExpandStatenent ::= "["ExpandKeyword "]" NanmedAltlnstance

480. El seSt at ement = "["El seKeyword "]" StatenentBl ock

481. ExpandKeyword ::= "expand"

482. AltGuardChar ::= "[" [Bool eanExpression] "]"

483. CGuardOp ::= TinmeoutStatement | ReceiveStatenent | TriggerStatement | GetCall Statement |

CatchStatement | CheckStatement | Get ReplyStatement | DoneStatenent
/* STATIC SEMANTICS - GuardOp used within the module control part. Shall only contain the
ti meout St at ement */

484. Statenment Bl ock ::= Begi nChar [FunctionStatenment O DeflList] EndChar

485. InterleavedConstruct ::= InterleavedKeyword Begi nChar |nterleavedGuardLi st EndChar
486. Interl eavedKeyword ::= "interl eave"

487. InterleavedGuardList ::= {Interl eavedGuar dEl ement [Sem Col on]}+

488. Interl eavedGuardEl ement ::= Interl eavedGuard Interl eavedAction

489. InterleavedGuard ::= "[" "]" GuardOp

490. InterleavedAction ::= StatenentBl ock

/* STATIC SEMANTI CS - The StatenmentBl ock may not contain |oop statenments, goto, activate,
deactivate, stop, return or calls to functions */

491. Label Statenent ::= Label Keyword Label I dentifier

492. Label Keyword ::= "I abel "

493. Labelldentifier ::= Identifier

494. CotoStatenment ::= GotoKeyword (Labelldentifier | AltKeyword)

/* STATIC SEMANTICS - The AltKeyword option nmay only be used within an ALT construct */
495. CGot oKeyword ::= "goto"

496. ActivateStatenent ::= ActivateKeyword "(" NamedAltList ")"

497. ActivateKeyword ::= "activate"

498. NanmedAltList ::= NamedAltlnstance {"," NamedAltlnstance}

499. DeactivateStatenent ::= DeactivateKeyword ["(" NanedAltReflList ")"]

500. DeactivateKeyword ::= "deactivate"

501. NanmedAl t RefLi st ::= NamedAltRef {"," NamedAlt Ref}

A.1.6.9 Basic Statements

502. BasicStatenents ::= Assignnent | LogStatement | LoopConstruct | Conditional Construct
503. Expression ::= Singl eExpression | ConpoundExpression

/* STATI C SEMANTI CS - Expression shall not contain Configuration or verdict operations within the
nmodul e control part */

504. ConpoundExpression ::= Fiel dExpressionList | ArrayExpression

505. Fi el dExpressionLi st "{" Fiel dExpressi onSpec {"," Fiel dExpressi onSpec} "}"

506. Fi el dExpressionSpec ::= Fiel dRef erence Assi gnment Char Expression

507. ArrayExpression ::= "{" [ArrayEl ement ExpressionList] "}"

508. ArrayEl enent Expressi onLi st ::= NotUsedOr Expression {"," NotUsedOr Expression}
509. Not UsedOr Expression ::= Expression | NotUsedSynbol

510. Constant Expression ::= Singl eConst Expression | ConpoundConst Expressi on

511. Singl eConst Expression ::= Singl eExpression

/* STATI C SEMANTI CS - Singl eConst Expression shall not contain Variables or Mdul e paraneters and
shall resolve to a constant Value at conpile tine */

512. Bool eanExpression ::= Singl eExpression

/* STATI C SEMANTI CS - Bool eanExpression shall resolve to a Value of type Bool ean */

513. ConpoundConst Expression ::= Fi el dConst Expressi onLi st | ArrayConst Expression

514. Fi el dConst ExpressionList ::= "{" Fiel dConst Expressi onSpec {"," Fi el dConst Expressi onSpec} "}"
515. Fi el dConst Expressi onSpec :: = Fi el dRef erence Assi gnment Char Const ant Expressi on

516. ArrayConst Expression ::= "{" [ArrayEl enent Const ExpressionList] "}"

517. ArrayEl enent Const Expressi onLi st ::= Constant Expression {"," Constant Expressi on}

518. Assignnent ::= VariableRef ":=" Expression

ITU-T Z.140 (07/2001) — Prepublished version 113

/* OPERATI ONAL SEMANTI CS - The Expression on the RHS of Assignment shall evaluate to an explicit
Val ue of the type of the LHS. */

519. Singl eExpression ::= Sinpl eExpression {BitOp Sinpl eExpression}

/* OPERATI ONAL SEMANTICS - |If both Sinpl eExpressions and the BitQOp exist then the S npl eExpressions
shall evaluate to specific values of conpatible types */

520. Si npl eExpression ::= SubExpression [Rel Op SubExpression]

/* OPERATI ONAL SEMANTICS - |f both SubExpressions and the Rel O exist then the SubExpressions shall
eval uate to specific values of conpatible types. */

/* OPERATI ONAL SEMANTICS - If RelOp is "<" | ">" | ">=" | "<=" then each SubExpression shall
evaluate to a specific integer, Enunerated or float Value (these values can beTTCN or ASN. 1 val ues)
*/

521. SubExpression ::= Product [ShiftOp Product]

/* OPERATI ONAL SEMANTI CS - Each Product shall resolve to a specific Value. |f nore than one Product
exi sts the right-hand operand shall be of type integer and if the shift op is '<<' or '>> then the
| eft-hand operand shall resolve to either bitstring, hexstring, octetstring or integer type. If the
shift opis '"<@ or '@' then the |left-hand operand shall be of type bitstring, hexstring,
charstring or universal charstring */

522. Product ::= Term {AddOp Term}

/* OPERATI ONAL SEMANTI CS - Each Termshall resolve to a specific Value. If nore than one Term exists
then the Terms shall resolve to type integer or float. */

523. Term::= Factor {MultiplyOp Factor}

/* OPERATI ONAL SEMANTI CS - Each Factor shall resolve to a specific Value. If nore than one Factor
exi sts then the Factors shall resolve to type integer or float. */

524. Factor ::= [UnaryOp] Primary
/* OPERATI ONAL SEMANTICS - The Prinary shall resolve to a specific Value. If UnaryQp exists and is
"not" then Primary shall resolve to type BOOLEAN i f the UnaryOp is "+" or "-" then Prinary shall

resolve to type integer or float. If the UnaryQp resolves to not4b then the Primary shall resolve to
the type bitstring, hexstring or octetstring. */

525. Primary ::= OpCall | Value | "(" SingleExpression ")"

526. ExtendedFi el dReference ::= {(Dot StructFieldldentifier | ArrayOrBitRef)}+

527. OpCall ::= ConfigurationOps | VerdictOps | TinmerOps | Testcasel nstance | Functionlnstance |
Tenpl at eOps

528. AddOp ::= "+" | "-"

/* OPERATI ONAL SEMANTI CS - Operands of the "+" or "-" operators shall be of type integer or

float(i.e., TTCN or ASN.1 predefined) or derivations of integer or float (i.e., subrange) */
529. MultiplyOp ::="*" | "/" | mod | rem

/* OPERATI ONAL SEMANTI CS - Operands of the "*", "/", remor nod operators shall be of type integer
or float(i.e., TTCN or ASN. 1 predefined) or derivations of integer or float (i.e., subrange). */
530. UnaryOp : "+"] "-"] not | not4b

/* OPERATI ONAL SEMANTICS Operands of the "+" or "-" operators shall be of type integer or
float(i.e., TTCN or ASN.1 predefined) or derivations of integer or float (i.e., subrange). Operands
of the not operator shall be of type boolean (TTCN or ASN. 1) or derivatives of type Bool ean.
Oper ands of the n0t4b operator will be of type bitstring, octetstring or hexstring. */

531. Rel Op : R S e e e B B

[* OPERATI G\IAL SEI\/IANTICS The precedence of the operators is defined in table 7 */

532. BitOp ::= "and4b" | xor4b |ord4b | and | xor | or | StringOp

/ * OPERATI ONAL SEMANTI CS - Operands of the and, or or xor operators shall be of type boolean (TTCN
or ASN. 1) or derivatives of type Bool ean. Operands of the and4b, or4b or xor4b operator shall be of
type bitstring, hexstring or octetstring (TTCN or ASN. 1) or derivatives of these types. */
/* OPERATI ONAL SEMANTICS The precedence of the operators is defined in table 7 */

533. StringOp : "&"

/* OPERATI ONAL SEMANTICS Operands of the string operator shall be bitstring, hexstring,
octetstring or character string */

534. ShiftOp ::= "<<" | ">>" | "<@ | "@"

535. LogStatenment ::= LogKeyword "(" [FreeText] ")"
536. LogKeyword ::= "l og"

537. LoopConstruct ::= ForStatenment |

VWi | eSt at ement |
DoWhi | eSt at enent

538. ForStatenent ::= ForKeyword "(" Initial [Sem Colon] Final [Sem Colon] Step ")"
St at ement Bl ock

539. ForKeyword ::= "for"

540. Initial ::= Varlnstance | Assignhnment

541. Final ::= Bool eanExpression

542. Step ::= Assignnment

543. Wil eStatenent ::= Wil eKeyword "(" Bool eanExpression ")"
St at ement Bl ock

544. Wil eKeyword ::= "while"

545. DoWhil eStatenment ::= DoKeyword StatementBl ock
VWi | eKeyword " (" Bool eanExpression ")"

546. DoKeyword ::= "do"

547. Conditional Construct ::= |fKeyword "(" Bool eanExpression ")"

St at ement Bl ock
{El sel f Cl ause} [El seCl ause]

548. | fKeyword ::= "if"

549. ElselfClause ::= ElseKeyword |fKeyword "(" Bool eanExpression ")" StatenmentBl ock
550. El seKeyword ::= "el se"

551. El seCl ause ::= El seKeyword St atenent Bl ock

ITU-T Z.140 (07/2001) — Prepublished version 114

A.1.6.10 Miscellaneous productions

552. Dot ::="."

553. Dash ::= "-"

554, M nus ::= Dash
555. Sem Colon ::= ";"
556. Colon ::=":"

557. Underscore ::= "_
558. BeginChar ::= "{"
559. EndChar ::= "}"

560. Assignnent Char ::= ":="

ITU-T Z.140 (07/2001) — Prepublished version 115

Annex B (normative):
Operational semantics

This annex defines the meaning of a TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semanticsis not meant to be formal and therefore the ability to perform mathematical proofs based on thissemanticsis
very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructsis described by (1) using state informationto define
the preconditions for the execution of a construct and by (2) defining how the execution of a construct will change a
state.

The operational semanticsis restricted to the meaning of behaviour in TTCN-3, i.e., functions, test cases, module
control and language constructs for defining test behaviour, e.g., send andr ecei ve operations, i f -el se-, or
whi | e- statements. The meaning of several TTCN-3 constructsis explained by replacing them with other language
constructs. For example, named alternatives are macros and their meaning is completely explained by replacing all
macro references by the corresponding macro definitions. Thisincludes the handling of default behaviour.

In most cases, the definition of the semantics of alanguage is based on an abstract syntax tree of the code that shall be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptionsin form of flow graphs. A flow graph describes the flow of control in atest case, function or the
module control. The mapping of TTCN-3 behaviour descriptions onto flow graphsis straightforward.

B.1 Structure of this annex

Thisannex is structured into two parts:

1) Thefirst part (see clause B.2) defines the meaning of TTCN-3 shorthand and macro notations by their
replacement by other TTCN-3 language constructs. These replacementsin a TTCN-3 module can be seen as
pre-processing step before the module can be interpreted according to the following operational semantics
description.

2) The second part (see clause B.3) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

B.2 Replacement of shorthand notations and macro calls

Shorthand notations have to be expanded and macro references have to be replaced by the corresponding definitions on
atextual level before this operational semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 shorthand notations are:
stand-alone receiving operations;
trigger operations;
usages of the keywordany in timer and receiving operations,
usages of the keywordal | intimer and port operations;

missingr et ur n and st op statements at the end of function and test case definitions.

ITU-T Z.140 (07/2001) — Prepublished version 116

TTCN-3 macros are named alternatives, i.e., named al t definitions. They are called:
explicitly instead of anal t statement, i.e., they appear like afunction call;
explicitly inal t statements by using anexpand keyword;
implicitly in case they are referenced as default behaviour inact i vat e anddeact i vat e statements.

In addition to shorthand notations and macro calls, the operational semantics requires a special handling for module
parameters and global constants, i.e., constants that are defined in the module definitions part. All referencesto module
parameters and global constants shall be replaced by concrete values. This means, it is assumed that the value of module
parameters and global constants can be determined before the operational semantics becomes relevant.

NOTE1: Thehandling of module parameters and global constants in the operational semanticswill be different
from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not aguideline for the implementation of a TTCN-3 compiler.

NOTE2: The operational semantics handles parameters of and local constantsin test components, test cases,
functions and module control like variables. The wrong usage of local constantsor i n,out andi nout
parameters has to be checked statically.

B.2.1 Order of replacement steps

The textual replacements of shorthand notations, macro calls, global constants and modul e parameters have to be done
in the following order:

1) adding st op andr et ur n statementsin module control, functions and test cases,
2) replacement of global constants and modul e parameters by concrete values;

3) embedding stand-alone receiving operationsintoal t statements;

4) macro expansion of pure macro calls, this means:

- explicit expansionsof al t statements which include the expand keyword (and referstoananed al t
definition);

- explicit expansion of callsof nanmed al t -definitions.
5) expansionof i nt er | eave statements;
6) expansion of default behaviour;
7) replacementof altri gger operations by equivalentr ecei ve operations and got o statements;
8) replacement of all usages of the keywordsany andal | intimer and port operations.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

ITU-T Z.140 (07/2001) — Prepublished version 117

B.2.2 Adding stop and return operations in behaviour descriptions

TTCN-3 allows leaving module control, test cases and functions that do not return any val ue without specifying an
explicit st op orr et ur n operation. For the operational semanticsit isassumed that missingr et ur n and st op

operations are added, i.e., st op operations are added in module control and test casesandr et ur n operations are
added in functions.

EXAMPLE:

/1l Function and test case definition without explicit return and stop statenents at
/1 the end of their behaviour description

function MyFunction(inout integer MyPar) {
/1 MyFunction doesn't return a value but changes the val ue

MyPar := 10 * MyPar 1, /1 of MyPar which is passed in by refefernce
if (MyPar == 999) stop; /| Stops execution if MyPar has the value 999
/1 IMPLICIT return if MyPar != 999

}

testcase MyTest Case() runs on MyMICtype {
MyMTCbehavi our () ; /1 Function that defines MIC behavi or
/1 IMPLICIT stop after return of MyMICbehavi our

}

/'l MyFunction and MyTest Case after adding explicit return and stop operations

function MyFunction(inout integer MyPar) {
/1 MyFunction doesn't return a val ue but changes the val ue

MyPar := 10 * MyPar1; /1 of MyPar which is passed in by refefernce
if (MyPar == 999) stop; /1l Stops execution if MyPar has the value 999
return; /] EXPLICIT return

}

testcase MyTest Case() runs on MyMICtype {
MyMICbehavi our () ; /1 Function that defines MIC behavi or
st op; /1 EXPLICIT stop

}
B.2.3 Replacement of global constants and module parameters

Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constantsat run-time.

All referencesto global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace all references of the
constant or modul e parameter.

B.2.4 Embedding single receiving operations into alt statements

TTCN-3receiving operations are: r ecei ve,t ri gger,getcal | ,getrepl y,cat ch,check,ti meout, and
done.

NOTE: Theoperationsr ecei ve,tri gger,getcal | ,getreply,catch andcheck operate on ports and
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operationst i meout anddone are not real receiving operations, but they can be used in the same
manner as receiving operations, i.e., as alternativesinal t statements. Therefore, the operational
semantics handlest i neout and done like receiving operations.

ITU-T Z.140 (07/2001) — Prepublished version 118

A receiving operation can be used as stand-alone statement in afunction, anamed alternative or atest case. In such a
case the receiving operation as considered to be shorthand for anal t statement with only one alternative defined by
the receiving operation. For the operational semanticsanal t statement in which the receiving statement is embedded
shall replace all stand-alone occurrences of receiving operations.

EXAMPLE:

/'l The stand-al one occurrence of

WCL. trigger(MWType: *);

/1 shall be replaced by

ait {
[l MCL.trigger (MyType:*);

Il or

WPTC. done;

/'l shall be replaced by

alt {
[l MPTC. done;

B.2.5 Macro expansion

The macro expansion in TTCN-3isrelated to the usage of named alternatives (naned al t definitions) inal t
statements or instead of al t statements, i.e., thenamedal t definitionisreferenced similar to afunctioncall ina
sequence of statements.

B.2.5.1 Expansion of named alternatives in alternative statements

The expansion of named alternativesinal t statementsisrelated to the alternative branches indicated by the expand
keyword in square brackets followed by areferenceto ananed al t definition (as only statement of that branch). In
such a case the alternative branches of the referenced named alternative replace the branch with the expand keyword.

For the operational semanticsit isassumed that this replacement is done on a syntactical level. An example of this
expansion can be found in the main part of the present document.

B.2.5.2 Explicit call of a named alternative

Named alternatives can also be referenced similar to afunction call in a sequence of statements. In this case the
reference shall be expanded by the correspondingnanmed al t definition. An example of this expansion can be found in
the main part of the present document.

B.2.6 Replacement of the interleave construct

The meaning of thei nt er | eave statement is defined by its replacement by a series of nestedal t statements that
have the same meaning. The algorithm for the construction of the replacement for ani nt er | eave statement is
described in this clause. The replacement shall be made on a syntactical level.

ITU-T Z.140 (07/2001) — Prepublished version 119

A series of nestedal t statements can be described by means of atree. Tree nodes represent the statementsin the al t
statements. A branching denotesanal t statement and statements in the same branch describe statements in the same
alternative. Thisisschematically shown in figure B.1. Figure B.1a) presents atree and figure B.1b) shows the
corresponding representation in form of a series of nestedal t statements.

alt {
[1 A{
alt {
1E
(A ® © S
}
[] B
® & (& © ey
al t {{} E
O ® © .
[1 B
H
) }
(@) Tree (b) TTCN-3 like representation of (a)

Figure B.1: Nested alt statements and a corresponding tree representation

In the following the construction of atree representation of ani nt er | eave statement is presented. The
transformation of the tree into the series of nestedal t statementsis straightforward and needs no further explanation.

Ani nt er | eave statement can be seen as a partial ordered set POS of allowed TTCN-3 statements. Formally:
POS= (S, <) where:
S isthe set of allowed TTCN-3 statements; and
<l (SX S) describesthereflexive and transitive order relation.

Theterm allowed TTCN-3 statements refersto the fact that the control transfer statementsf or , whi | e, do-whi | e,
goto,activat e,deacti vat e,st op,ret urn and cals of user-defined functions which include communication
operations are not allowed to be used ini nt er | eave statements. In addition, it isalso not allowed to guard branches
of ani nt er | eave statement with Boolean expressions, to expandi nt er | eave statements with named alternatives
or to specify el se branches.

For the construction algorithm the following functions need to be defined:

The DISCARD function deletes an element s from a partially ordered set POS and returns the resulting partially

ordered set POS':
DISCARD(s, POS) = POS where:
POS =(S, <) ; and
S =8\{s} ; and

< =<G (3{s} x S{s}).

The ENABLED function takes a partially ordered set POS = (S, <) and returns all elements which have no
predecessors in POS:

ENABLED(POS) ={ s|sT SU(<C (SX {s})= A}

ITU-T Z.140 (07/2001) — Prepublished version 120

The RECEIVING function takes a set of TTCN-3 statements Sand returns all receiving statements from this set.

RECEIVING(S) ={ s|sT SUkind(s)T {receive, trigger, getcall, getreply, catch,
check, done, tineout}}

The SELECT function selects randomly an element s from a given set Sand returnss.
SELECT(S) =s wheresl S

NOTE: Thekind function in the RECEIVING function aboveis not defined formally. kind (or type) returns the
kind of agiven TTCN-3 statement.

The construction algorithm of the tree is arecursive procedure where in each recursive call the successor nodesfor a
given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the functions defined
above and some additional mathematical notation:

CONSTRUCT- SUCCESSORS (treeNode *predecessor, partiallyOrderedSet POS) {
/'l treeNode refers to the node type of the tree to be constructed
/1 partiallyOrderedSet denotes type for a partially ordered set of TTCN-3 statenents

var statement myStnt; /] for the storage of a TTCN-3 statenent
var treeNode *newSonNode; /1 for the handling of new tree nodes

/1 RETRI EVI NG SETS OF TTCN-3 STATEMENTS THAT HAVE NO PREDECESSORS I N ' PCS'
var statenentSet enabStnts := ENABLED PCS); /1 all statenments wi thout predecessor
var statenentSet enabRecStnts = RECEI VING enabStnms);// receiving statements in 'enabStnts’
var statenent Set enabNonRecStnts := enabStnts\enabRecStnts;

/1 non receiving statenents in 'enabStnts'

if (POCS == &)
return; /1 TERM NATI ON CRI TERI ON OF RECURSI ON
el se {
if (enabNonRecStnts != A& { /1 Handling of non receiving statenents in 'enabStnts'
myStnt := SELECT(enabNonRecStnts);
newSonNode : = create(myStnt, predecessor);
/1l Creation of a new tree node representing 'nyStnmt' in the tree
/1 and update of pointers in 'newSonNode' and ' predecessor'.
CONSTRUCT- SUCCESSORS(newSonNode, DI SCARD(nyStnt, PQOS)); /| NEXT RECURSI ON STEP
else { // Handling of receiving events, the tree will branch
for each (myStm in enabRecStnts) {
newSonNode : = create(nyStnt, predecessor);// New tree node

CONSTRUCT- SUCCESSORS(newSonNode, DI SCARX nyStmi, POS));// NEXT RECURSI ON STEP(S)

}
}
Initialy, the CONSTRUCT -SUCCESSORS function will be called with aroot node of an empty tree and the partially

ordered set of TTCN-3 statements describing thei nt er | eave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

B.2.7 Expansion of defaults

The TTCN-3 default behaviour mechanism is defined by means of a macro expansion mechanism. The default
behaviour hasto be provided in form of named al t definitions. A nanmed al t definition used as default behaviour is
referenced inanact i vat e statement. The scope of adefault isdetermined by anact i vat e statement and
corresponding deact i vat e statementsor by anact i vat e statement and the end of the function or test casein
whichtheact i vat e statement is used. Within this scope the alternatives of all al t statements are extended by the
behaviour specified in the activated named al t definitions. The operational semantics assumes that this extension is

done on the syntactical level. An example for the extension mechanism can be found in the main part of the present
document.

ITU-T Z.140 (07/2001) — Prepublished version 121

B.2.8 Replacement of trigger operations

Thetri gger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semanticsof thet ri gger operation can be described by its replacement withtwor ecei ve operationsand a
got o statement. The operational semantics assumes that this replacement is done on the syntactical level.

EXAMPLE:

/1 The follow ng trigger operation ...
alt { _
} [1 MCL.trigger (MyType:*);

/'l shall be replaced by ..

[T MWCL.receive (MyType:*);
[T MCL.receive {
goto alt
}
}

If thet ri gger statementisusedinamorecomplex al t statement, the replacement is done in the same manner.

EXAMPLE:
/1 The following alt statenment includes a trigger statenment

alt {
[] PCO2.receive {
st op;

}

[] MCL.trigger (MyType:*);

[] PCOB.catch {
verdict.set(fail);

st op;
}
}
/1 which will be replaced by
alt {
[T PCO2.receive {

st op;

}
MyCL. receive (MyType: *);
MyCL. receive {

goto alt;

[—r—

}
[] PCGB.catch {
verdict.set(fail);
st op;

}
B.2.9 Replacement of the keywords 'any' and 'all’
The usage of the keywordany isallowed for:
the timer operationsr unni ng andt i meout ;
the receiving operationsr ecei ve,tri gger,getcal | ,getrepl y,cat ch,check.
The usage of the keywordal | isalowed for:
the timer operationst op;

the port operationsst art ,st op andcl ear.

ITU-T Z.140 (07/2001) — Prepublished version

The usage of both keywordsis allowed for:

thedone and r unni ng operations for components.

B.2.9.1 Replacement of ‘all' in timer and port operations

The application of timer and port operations isrelated to the scope in which they are used. This means, the keyword
al | addresses all timers and ports known in the scope unitin whichal | (+ operation) is used. The replacement of

al | usagesin timer and port operationsis straightforward.

A usageof al | port inastart,stop,orcl ear operation shall bereplaced by aseparatest art, st op, or
cl ear operation for each known port. A usageof al | ti mer inast op operation shall be replaced by a separate
st op operation for each known timer.

EXAMPLE:

/'l Assune the ports PCOl, PCO2 and the tiners T1l and T2 are known
aIiI port.clear;
ail timer.stop;

/1 will be replaced by

PbOl. cl ear;
PCQ2. cl ear;

Ti. st op;
T2. stop;

B.2.9.2 Replacement of ‘any' in timer and receiving operations

The application of timer and receiving operationsis related to the scope in which they are used. This means, the
keyword any addresses all timers and ports (in case of receiving operations) known in the scope unit in which any
(+ operation) is used. The replacement of any usagesin timer and receiving operationsis straightforward.

A usageof any port inarecei ve,trigger,getcall,getreply,catch orcheck operation shall be
replaced by separate alternative operations for each known and possible port. Possible meansthat anany
port .recei ve occurrence only isrelevant for message based ports.

A usageof any ti mer inati meout operation shall be replaced by separate alternative operationsfor each known
timer in the scope unit.

EXAMPLE:
/1 Assume the ports PCOL, PCO2 and the tinmers T1 and T2 are known

alt {
[] PCO2.receive {
aTest Step();
}

[T any port.receive {
verdict.set(fail);
st op;

[T any tinmer.timeout ({

verdict.set(fail);
st op;

ITU-T Z.140 (07/2001) — Prepublished version 123

/1 will be replaced by

alt {
[T PCO2.receive {
st op;

}
[] PCOL.receive {
verdict.set(fail);
st op;

}
[] PCOL.receive {
verdict.set(fail);
st op;

[Til.receive {
verdict.set(fail);
st op;

[l T2.receive {
verdict.set(fail);
st op;

}

A usageof any ti mer inar unni ng operation shall be replaced by separater unni ng operations for each known
timer in the scope unit that are combined by means of or operators.

EXAMPLE:

/1 Assume the timers T1 and T2 are known in the scope unit

i f (any timer.running) {
verdict.set(fail);
st op;

/1 will be replaced by

if (T1l.running or T2.running) {
verdict.set(fail);
st op;

B.2.9.3 The keywords 'any' and 'all' in 'done' and ‘running'

The operationsany conponent .done,al | conponent .done,any conponent .runni ng andal |
component .r unni ng can only be executed by the MTC. Due to dynamic test component creation, the MTC may not

know all components that have been created during test case execution. Thus, the execution of these operations requires
communication with the means of testing. Therefore, any conponent .done,al | conponent .done, any
conponent .runni ng andal | conmponent .r unni ng are assumed to be system commands, i.e., cannot be

replaced by other commands.

ITU-T Z.140 (07/2001) — Prepublished version 124

B.3 Flow graph semantics of TTCN-3

The operational semantics of TTCN-3is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause B.3.1), the construction of flow graphs representing TTCN-3 modul e control, test cases,
functions and component type definitions is explained (see clause B.3.2), modul e and component states for the
description of the execution states of a TTCN-3 module are defined (see clause B.3.3), the handling of messages,
remote procedure calls, replies to remote procedure calls and exceptionsis described (see clause B.3.4), the evaluation
procedure of module control and test cases is explained (see clause B.3.6) and the meaning of the different TTCN-3
statementsis described (see clause B.3.7).

B.3.1 Flow graphs

A flow graph isadirected graph that consists of |abelled nodes and labelled edges. Walking through aflow graph
describes the flow of control during the execution of arepresented behaviour description.

B.3.1.1 Flow graph frame

A flow graph shall be put into aframe defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refersto the TTCN behaviour description represented
by the flow graph. A simple flow graph is shown in figure B.2

fl ow graph
M/Si npl eFl owG aph

A

Figure B.2: A simple flow graph

B.3.1.2 Flow graph nodes

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

B.3.1.2.1 Start nodes

Start nodes describe the starting point of aflow graph. A flow graph shall only have one start node. A start nodeis
shown in figure B.3a).

h 4 A

(a) Flow graph start node (b) Flow graph end node

Figure B.3: Start and end nodes

ITU-T Z.140 (07/2001) — Prepublished version 125

B.3.1.2.2 End nodes

End nodes describe end points of aflow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause B.3.1.2.3) and reference nodes (see clause B.3.1.2.4) that have no successor nodes shall

be connected to an end node to indicate that they describe the last action of a path through aflow graph. An end nodeis
shown in figure B.3b).

B.3.1.2.3 Basic nodes

A basic node describes an execution unit, i.e., it is executed in one step. A basic node has atype and, depending on the
type, may have an associated list of attributes. A basic node is shown in figure B.4a).

In theinscription of abasic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it isallowed to assign explicit valuesin basic nodes by using assignment '=". An exampleisshownin
figure B.4b).

node-type

node-type
(attr,=5.0, attr,

(attr,, attr,, ...,
attr,)

(a) (b)

Figure B.4: Basic nodes with attributes

B.3.1.2.4 Reference nodes

Reference nodes refer to flow graph segments (see clause B.3.1.4) that are sub-flow graphs. The meaning of areference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to aflow graph segment. A reference nodeis shown in figure B.53).

segnent -r ef erence;
OR

segnent - ref erence segnent-reference,
OR

segnent - r ef er ences

(a) Single reference node (b) OR combination of three reference nodes

Figure B.5: Reference node

B.3.1.24.1 OR combination of reference nodes

In some cases several flow graph segments may replace areference node. For these cases an OR operator may be used
to refer to several flow graph segments (figure B.5b). In the actual flow graph representing the module control, atest
case or afunction, one alternative is determined by the represented construct.

ITU-T Z.140 (07/2001) — Prepublished version 126

B.3.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or moretimesin aflow graph. In regular

expressions the possibl e repetition of parts of aregular expression is described by using the operator symbols'+' (one or
more repetitions) and *' (zero or more repetitions). As shown in figure B.6, these operators have been adopted to flow
graphs by introducing double-framed reference nodes with associated operator symbols. A single flow line shall replace
areference node, in case of zero occurrences (using a double-framed reference node with *-operator).

* +

segment - segment -

Figure B.6: Repetition of reference nodes

An upper bound of possible repetitions of areference node can be given in form of an integer number in round
parenthesis following the ™' or '+' symbol in the double framed reference node. The segment reference shownin
figure B.7 may occur from zero up to 5 times.

* ()

segment -

Figure B.7: Restricted repetition of a reference node

B.3.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicatesa
condition under which the flow line is chosen during the flow graph interpretation. As ashort hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown below.

false

>

true

> which isidentical to >

To support the joining of several flow linesinto one flow line on agraphical level, aspecial join node isintroduced.
The join node and an example for its usage are shown below:

join node: (]

usage of join node: >@® >

ITU-T Z.140 (07/2001) — Prepublished version 127

Drawing long flow linesin big diagrams asit is, for example, necessary to model the TTCN-3 constructsgot o and
| abel , isawkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown
below.

Incoming flow line with label: in-labd ————P>

Outgoing flow line with label: — out-label

An outgoing flow line with alabel is connected with an incoming flow line with alabel, if the labels are identical. The
flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
thisis considered to be ajoin of linesto theincoming flow line with an identical |abel.

B.3.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

Asshown in figure B.8, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
Thereisonly one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
several labelled incoming and outgoing flow lines. The labelled incoming and outgoing flow lines are needed to
describe the meaning of TTCN-3got o statements.

Flow graph segments are put into aframe and the name of the flow graph segment shall follow the keywordsegnent

in the upper left corner of the frame. The flow lines describing the flow graph segment interface shall cross the flow
graph segment frame.

seament l
LI > e

segnent - r ef

Voo

Figure B.8: Schematical flow graph segment description

ITU-T Z.140 (07/2001) — Prepublished version 128

B.3.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate commentsto flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure B.9.

Comment related to

flow line
Thisisacommentin
............ acomment symbol Comment related to
"""""" basic node
|
(a) Comment symbol (b) Usage of comment symbols

Figure B.9: Flow graph representation of comments

B.3.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphsthat only consist of basic nodes, i.e., all
reference nodes are expanded by the corresponding flow graph segment definitions. The NEXT function is required to
support thistraversal. NEXT is defined in the following manner:

<actualNodeRef> NEXT(<bool>) = <successorNodeRef> where:
<actualNodeRef> isthereference of abasic flow graph node;
<successor NodeRef>is the reference of a successor node of the node referenced by <actual NodeRef>;

<bool> isaBoolean expressing whether atrue or afalse successor is returned (see clause B.3.1.3).

B.3.2 Flow Graph Representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e., for each TTCN-3 behaviour description a separate flow graph hasto be constructed.

The operational semanticsinterprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a) module control;
b) test case definitions;
¢) function definitions;
d) component type definitions.

The module control specifiesthe test campaign, i.e., the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Function definitions describe behaviour to be executed by the
module control or by the test components. Component type definitions are assumed to be behaviour descriptions
because they specify the creation, declaration and initialization of ports, constants, variables and timers during the
creation of an instance of a component type.

ITU-T Z.140 (07/2001) — Prepublished version 129

B.3.2.1 The flow graph construction procedure

The flow graphs presented in the figuresB.10 and B.11 and the flow graph segments presented in clause B.3.6 are only
templates. They include placeholders for information that hasto be provided in order to produce a concrete flow graph
or flow graph segment. The placeholders are marked with '<' and "> parenthesis.

The construction of aflow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, functions and component type definitions a concrete
flow graph segment is constructed.

2) For the module control and for each test case, function and component type definition a concrete flow graph
(with reference nodes) is constructed.

3) Inastepwise procedure all reference nodes in the concrete flow graphs are replaced by corresponding flow graph
segment definitions until all flow graphs only include one start node, end nodes and basic flow graph nodes.

NOTE 1. Basic flow graph nodes describe basic indivisible execution units. The operational semanticsfor TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. clause B.4 presents execution methods
for basic flow graph nodes only.

The replacement of areference node by the corresponding flow graph segment definition may lead to unconnected parts
in aflow graph, i.e., parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semanticswill ignore unconnected parts of aflow graph.

NOTE2: Anunconnected part of aflow graph isaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also has to be taken into consideration. However, the goal of this annex isto provide a correct and
complete semantics, not an optimal flow graph representation.

B.3.2.2 Flow graph representation of module control

Schematically, the syntactical structure of aTTCN-3 moduleis:
modul e <identifier> (<paraneter>) <nodul e-definitions-part> control <statenent-bl ock>

For the flow graph behaviour representation the following information isrelevant only:

modul e <identifier> <statenent-bl ock>

Thisis comparable to afunction definition and therefore the flow graph representation of module control is similar to
the flow graph representation of afunction (see clause B.3.2.4). The semantics will access the flow graph representing
the modul e control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to modul e parameters have to be
replaced by their concrete values on a syntactical level (see clause B.2.3).

B.3.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definitionis:
testcase <identifier> (<parameter>) <testcase-interface> <statenent-bl ock>

The<t est case-i nt er f ace> aboverefersto the (mandatory) r uns on and the (optional) syst emclausesin the
test case definition. The flow graph description of atest case describes the behaviour of the MTC. Theinformation
provided by the<t est case- i nt er f ace> isnot relevant for the MTC. It will be used by the execut e statement,
but needs not to be represented in the flow graph representation of atest case. Thus, for the flow graph representation
thefollowing informationis relevant only:

testcase <identifier> (<paraneter>) <statenment-block>

Thisis comparable to afunction definition and therefore the flow graph representation of atest caseissimilar to the
flow graph representation of afunction (see clause B.3.2.4). The semantics will access the flow graphs representing test
cases by using the test case names.

ITU-T Z.140 (07/2001) — Prepublished version 130

B.3.2.4 Flow graph representation of functions

Schematically, the syntactical structure of a TTCN-3functionis:

function <identifier> (<paraneter>) [<function-interface>] <statenent-block>

Theoptional <f uncti on-i nt er f ace> abovereferstother uns on andther et ur n clausesin the function
definition. The information provided by the <f unct i on- i nt er f ace> isnot relevant for the behaviour description.
It will be used for static semantics checks, but needs not to be represented in the flow graph. Thus, for the flow graph
representation the following information is relevant only:

function <identifier> (<paraneter>) <statenment-block>
The semantics will access flow graphs representing functions by using the function names.

The scheme of the flow graph representation of afunction is shown in figure B.10. The flow graph name
<i denti fi er > referstothe name of the represented function (or module control or test case). The nodes of the flow
graph have associated comments describing the meaning of the different nodes.

flow graph <identifier>

I - Actual paraneter values are assuned to
be in the val ue stack

<parameter -handling> = - Formal paraneters are handl ed |ike
1 | ocal variables and |ocal tinmers.

The function body is a statenment bl ock.
__________________ The function will termnate inside the
<stat ement - bl ock> statenment block either by a stop operation or

a return statenent.

Figure B.10: Flow graph representation of functions

ITU-T Z.140 (07/2001) — Prepublished version 131

B.3.2.5 Flow graph representation of component type definitions

Schematically, the syntactical structure of a TTCN-3 component type definitionis:

type conmponent <identifier> <port-constant-variable-timer-declartions>
The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of acomponent type definition is shown in figure B.11. The flow graph
name<i dent i f i er > refersto the name of the represented component type.

flow graph <identifier>

/1 The conponent scope is initialised

<i ni t -conmponent - scope>

+
<port-decl arati on>
R
<const ant - decl ar at i on> - Ports are created
(@ = S | ——
<vari abl e-decl arati on> - Constants, variables and timers are
R declared and initialised

<ti mer-decl arati on>

- The 'father' conponent waits for the
conpl eti on of the conponent creation,
i.e., isin a'blocking' state.

- The created conponent gives the control

<fi nal i se-conponent-i ni t > S back to the 'father' conponent

- The new conponent goes into a 'bl ocking'

state and waits to be started

Figure B.11: Flow graph representation of component type definitions

B.3.2.6 Retrieval of start nodes of flow graphs
For theretrieval of the start node reference of aflow graph the following function isrequired:

The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (<flow-graph-identifier>)

The function returns areference to the start node of aflow graph with the name <flow-graph-identifier>. The
<flow-graph-identifier> refers to the module name for the control, to test case names, to function names and to

component type definitions.

ITU-T Z.140 (07/2001) — Prepublished version

132

B.3.3 State definitions for TTCN-3 modules

During the interpretation of flow graphs representing TTCN-3 behaviour, modul e states are manipulated. A module
stateisastructured state that consists of several sub-states describing the states of test components and ports. Module
states, component states and port states are introduced in this clause. In addition, functionsto retrieve information from
and to manipulate states are defined.

B.3.3.1 Module state

Asshownin figure B.12 amodule state is structured into alist of entity states, alist of port states, areferenceto an
MTC and a TC-VERDICT. Thelist of entity states describes the state of the module control and during the execution of
atest case the states of the instantiated test components. The list of port states, the MTC reference and the
TC-VERDICT are only relevant during test case execution. The list of port states describes the states of the different
ports. MTC provides areference to the MTC, TC-VERDICT stores the actual global test verdict of atest case and
DONE isacounter that counts the number of updates of TC-VERDICT.

NOTE 1. The number of updates of TC-VERDICT isidentical to the number of test components that have
terminated.

The behaviour of module control (M-CONTROL infigure B.12) is handled like anormal test component and its state is
thefirst element in the list of entity states of amodule state.

list of entity states list of port states MTC TC-VERDICT | DONE

M-CONTROL | ES; | ... | ESp Pi | ... | Pn

Figure B.12: Structure of a module state

NOTE 2: Port states may be considered to be part of the entity states. However, by connect and map portsare
made visible for other components and therefore they are handled on the top level of amodule state.
B.3.3.1.1 Accessing the module state

The MTC, SYSTEM, TC-VERDICT and DONE are parts of amodul e state are handled like global variables, i.e., the
keywords MTC and TC-VERDICT can be used to retrieve and to change the values of the corresponding modul e state.

NOTE 1. Thereonly exists one module state during the interpretation of a TTCN-3 module. Therefore the
keywords MTC and TC-VERDICT can be considered as unique identifiers for the eval uation procedure.

For the handling of thelist of entity states and the list of port states, the list operationsappend, delete, first and |ength
can be used.

NOTE2: Thelist operationsappend, delete, first and |ength have the following meaning:
<list>.append(<item>) appends <iten® aslast element into the list <list>;
<list>.delete(<iterm>) deletes <itent from the list <list>;
<list>first() returnsthefirst element of <list>;
<list>.length() returnsthe length of <list>;

<list>.next(<iten®) returns the element that follows <item> in thelist, or NULL if <iterm> isthe last
elementinthelist.

ITU-T Z.140 (07/2001) — Prepublished version 133

B.3.3.2 Entity states

Entity states are used to describe the actual states of mo dule control and test components. The structure of an entity state
isshownin figure B.13.

<identifier> | STATUS | CONTROL-STACK | Data state | timer state VALUE-STACK | E-VERDICT

Figure B.13: Structure of an entity state

The<identifier> isaunique identifier of an entity, i.e., module control of test component, in the test system. Such
unique identifiers are created implicitly for the module control, thent ¢ and the test syst emwhen a module starts
execution or atest caseis executed by means of theexecut e statement. Theidentifier isused to identify and address
entitiesin the test system, e.g., in case of send operationswitht o clausesor r ecei ve operations withf r omclauses.

The STATUS describes whether the module control or atest component isACTI VE or BLOCKED. Module control is
blocked during the execution of atest case. Test components may be blocked during the creation of other test
components, i.e., during the execution of acr eat e operation.

The CONTROL-STACK isastack of flow graph node references. The top element in CONTROL-STACK isthe flow
graph node that has to be interpreted next. The stack is required to model function callsin an adequate manner.

The data stateis considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope units
dueto nested function calls. Each list inthelist of lists of variable bindings describes the variable bindingsin acertain
scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of variable bindings from the data
state. A more detailed description of the data state part of an entity state can be found in clause B.3.3.2.2.

Thetimer stateis considered to be alist of lists of timer states. The list of lists structure reflects nested scope units due
to nested function calls. Each list inthe list of lists of timer states describes the timer bindings (known timers and their
status) in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of timer states
from thetimer state. A more detailed description of the timer state part of an entity state can be found in
clauseB.3.3.2.3.

The VALUE-STACK isastack of values of all possible typesthat allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
the nt ¢ function will be pushed onto the VALUE-STACK. In addition to the values of all datatypes known in amodule

we define the special value MARK to be part of the stack alphabet. When leaving a scope unit, the MARK is used to clean
VALUE-STACK.

The E-VERDICT stores the actual local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.
B.3.3.2.1 Accessing entity states

The STATUS and E-VERDICT parts of an entity state are handled like global variables, i.e., the values of STATUS and
E-VERDICT can beretrieved or changed by using the 'dot' notation <identifier>.STATUS and <identifier>.E-VERDICT.
The<identifier> in the 'dot’ notation refers to the unique identifier of an entity.

The CONTROL-STACK and VALUE-STACK of an entity state can be addressed by using the 'dot' notation
<identifier>.CONTROL-STACK and <identifier>.VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operationspush, pop, top,
clear and clear-until.

NOTE: The stack operationspush, pop, top, clear and clear-until have the following meaning:

<stack>.push(<iten®) pushes <item> onto <stack>;
<stack>.pop() pops the top item from <stack>;
<stack>.top() returnsthe top element of <stack> or NULL if <stack> isempty;

<stack>.clear() clears <stack>, i.e., popsall items from <stack>;

ITU-T Z.140 (07/2001) — Prepublished version 134

<stack>.clear-until (<iten®™) popsitemsfrom <stack> until <item> isfound or <stack> isempty.
For the creation of anew entity state the function NEW-ENTITY is assumed to be available:
NEWAENTITY (<entity-identifier>, <flow-graph-node-reference>)
creates anew entity state and returnsits reference. The components of the new entity state have the following val ues:
<entity-identifier> isthe unique identifier;
STATUS is set to ACTIVE

<flow-graph-node-reference> is the only (top) element in CONTROL-STACK;

data state and timer state are empty lists;
VALUE-STACK isan empty stack;
E-VERDICTis set tonone.

During the traversal of aflow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped fromand the successor node of the popped node i s pushed onto CONTROL-STACK. This series of stack
operationsis encapsulated in the NEXT-CONTROL function:

<identifier> NEXT-CONTROL (boolean <bool>) {
FlowGraphNodeType successorNode : = <identifier>.CONTROL-STACK.NEXT(<bool>).top();
<identifier>.CONTROL-STACK.pop();
<identifier>.CONTROL-STACK.push(successor Node).

}
B.3.3.2.2 Data state and variable binding

Asshown infigure B.14 adata state is alist of lists of variable bindings. Each list of variable bindings defines the
variable bindingsin acertain scope unit. Adding anew list of variable bindings corresponds to entering a new scope
unit, e.g., afunctionis called. Deleting alist of variable bindings corresponds to leaving a scope unit, e.g., afunction
executesar et ur n statement.

o @ ,? N

VariableBinding, VariableBinding,

v v
v v

VariableBinding,, VariableBinding,

Figure B.14: Structure of the data state part of an entity state

The structure of avariable binding is shown in figure B.15. A variable has a name <var-name>, alocation and avalue.
<var-name> identifies avariable in ascope unit. The location isaunique identifier of the storage location of the value
of the variable. The value part of avariable binding describes the actual value of avariable.

NOTE: Uniquelocation identifiers shall be provided automatically when avariable is declared.

<var-name> location value

ITU-T Z.140 (07/2001) — Prepublished version 135

Figure B.15: Structure of a variable binding

The distinction between variable name and location has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) aparameter passed in by valueis handled like the declaration of anew variable, i.e., anew variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as<var-name>, receives anew location and gets the val ue that
is passed into the function or test case;

b) aparameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as<var-name>, but receives
no new location and no new value. The new variable binding gets a copy of location and value of the variable
that is passed in by reference.

When updating avariable value, e.g., in case of an assignment to avariable, the variable nameis used to identify a
location and all variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be del eted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

B.3.3.2.3 Timer state and timer binding

Asshown in figure B.16 and figure B.17 atimer state and a data state in an entity state are comparable. Both are alist
of lists of bindings and each list of bindings defines the valid bindingsin a certain scope. Adding anew list corresponds
to entering a new scope unit and deleting alist of bindings correspondsto |eaving a scope unit.

root P eneennrone

TimerBinding, TimerBinding,

v v
v v

TimerBinding, TimerBinding,

Figure B.16: Structure of the timer state part of an entity state

The structure of atimer binding is shown in figure B.17. The meaning of <timer-name> and location issimilar to the
meaning of <var-name> and location for avariable binding (figure B.15).

<timer-name> location STATUS DEF-DURATION | ACT-DURATION | TIME-LEFT

Figure B.17: Structure of a timer binding

STATUS denotes whether atimer is active, inactive or has timed out. The corresponding STATUSvaluesare | DLE,
RUNNI NG and TI MEOUT. DEF-DURATION describes the default duration of atimer. ACT-DURATION stores the
actual duration with which arunning timer has been started. TIME-LEFT describes the actual duration arunning timer
hasto run before it times out.

NOTE: DEF-DURATION isundefined if atimer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if atimer is stopped or times out. If atimer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occursif atimer is started
without adefined duration.

ITU-T Z.140 (07/2001) — Prepublished version 136

Timer can be only passed by reference into functions, i.e., the mechanism is similar to the mechanism for variables
described in clause B.3.3.2.2. This means a new timer binding (with the formal parameter name as<timer-name>) is
created which gets copies of location, STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT from the timer
that is passed in by reference. When updating <timer-name> all timer bindings with the same location are updated at
the sametime.

B.3.3.2.4 Accessing timer and data states

The value of avariable can be retrieved by using the dot notation <identifier>.<var-name> where <identifier> refers
to the unique identifier of an entity. For changing the value of avariable, the VAR-SET function has to be used:

<identifier>_ . VAR-SET (<var-name>, <value>)

sets the value of variable <var-name> in the actual scope of an entity with the uniqueidentifier <identifier>. In addition,
the value of all variables with the same location as variable <var-name> will also be set to <value>.

The values of STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT of atimer <timer-name> can be
retrieved by using the dot notation:

<identifier>.<timer-name>.STATUS;
<identifier>.<timer-name>.DEF-DURATION;
<identifier>.<timer-name>.ACT-DURATION;
<identifier>.<timer-name>.TIME-LEFT.

For changing the values of STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT of atimer <timer-name>, a
generic TIMER-SET operation has to be used, for example:

<identifier>_ TIMER-SET(<timer-name>, STATUS, <value>)

sets the STATUS value of timer <timer-name> in the actual scope of an entity with the unique identifier <identifier> to
the value <value>. In addition, the STATUS of all timers with the same location as timer <timer-name> will also be set
to <value>. The TIMER-SET function can also be used to change the values of DEF-DURATION, ACT-DURATION
and TIME-LEFT.

For the handling of variables, timers and scope units the following functions have to be defined:
a) TheNIT-VAR function: <identifier>_INIT-VAR (<var-name>, <value>)

creates anew variable binding for avariable <var-name> with theinitial value <value> in the actual scope unit
of an entity with the unique identifier <identifier>. Using the keyword NONE as <value> meansthat avariable
with undefined initial valueis created.

b) The INIT-TIMER function: <identifier>_INIT-TIMER (<timer-name>, <duration>)

creates anew timer binding for atimer <timer-name> with the default duration <duration> in the actual scope of
an entity with the unique identifier <identifier>. Using the keyword NONE as <duration> meansthat atimer
without default duration is created.

¢) The GET-VAR-LOC function: <identifier>.GET-VAR-LOCATION (<var-name>)

retrieves the location of variable <var-name> owned by an entity with the unique identifier <identifier>

d) The GET-TIMER-LOC function: <identifier>.GET-TIMER-LOCATION (<timer-name>)

retrieves the location of timer <timer-name> owned by an entity with the unique identifier <identifier>
€) ThelNIT-VAR-LOC function: <identifier>.INIT-VAR-LOC (<var-name>, <location>)

creates anew variable binding for avariable <var-name> with the location <location> in the actual scope unit of
an entity with the unique identifier <identifier>. The variable will beinitialized with the value of another
variable with the location <location>.

ITU-T Z.140 (07/2001) — Prepublished version 137

NOTE 1. Variableswith the same location are aresult of parameterization by reference. Due to the handling of

reference parameters as described in clause B.3.3.2.2 all variables with the same location will have
identical values during their lifetime.

f) TheINIT-TIMER-LOC function: <identifier>_INIT-TIMER-LOC (<timer-name>, <location>)

creates anew timer binding for atimer <timer-name> with the location <location> in the actual scope unit of an

entity with the unique identifier <identifier>. The timer will be initialized with the values of STATUS,
DEF-DURATION, ACT-DURATION and TIME-LEFT of another timer with the location <l ocation>.

NOTE2: Timerswith the same location are aresult of parameterization by reference. Due to the handling of timer
reference parameters as described in clause B.3.3.2.3 all timers with the same | ocation will have identical

valuesfor STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

g) TheINIT-VAR-SCOPE function: <identifier>_.INIT-VAR-SCOPE ()

initializes anew variable scope in the data state of entity with the unique identifier <identifier>, i.e., an empty

listisappended asfirst list in thelist of lists of variable bindings.

h) TheINIT-TIMER-SCOPE function: <identifier>_INIT-TIMER-SCOPE ()

initializes anew timer scope in the timer state of entity with the unique identifier <identifier>, i.e., an empty list

isappended asfirst listinthelist of lists of timer bindings.
i) The DEL-VAR-SCOPE function: <identifier>.DEL-VAR-SCOPE ()

deletes avariable scope of the data state of entity with the unique identifier <identifier>, i.e., thefirst list in the

list of lists of variable bindingsis deleted.
i) TheDEL-TIMER-SCOPE function: <identifier>.DEL-TIMER-SCOPE ()

deletes atimer scope of the timer state of entity with the unique identifier <identifier>, i.e., thefirst listin thelist

of lists of timer bindingsis deleted.

B.3.3.3 Port states

Port states are used to describe the actual states of ports. The structure of aport state is shown in figure B.18. The

<port-name> refers to the port name that is used by the test component <owner> that owns the port to identify the port.

STATUS provides the actual status of the port. A port may either be STARTED or STOPPED.

NOTE: A portinatest systemisuniquely identified by the owning test component <owner> and by the port

name <port-name> local to <owner>.

Thelist of connectionspart of aport state keepstrack of the connections between the different portsin the test system.

The mechanismisexplained in clause B.3.3.2.1.

The queue of values part of a port state includes the dataitems that are received at this port but not yet consumed.

<port-name> <owner> STATUS list of connections queue of values

Figure B.18: Structure of a port state

B.3.3.3.1 Handling of connections between ports

A connection between two test componentsis made by connecting two of their ports by means of aconnect
operation. Thus, acomponent can afterwards use itslocal port name to address the remote queue. As shown in
figure B.19, connection is represented in the states of both connected queues by a pair of <remote-entity>and

<remote-port-name>. The <remote-entity> is the unique identifier of the test component that owns the remote port. The

<remote-port-name> refers to the local name used by the <remote-entity> to address the queue. TTCN-3 supports

one-to-many connections of ports and therefore all connections of a port are organized in alist.

ITU-T Z.140 (07/2001) — Prepublished version

138

NOTE 1: Connections made by map operations are also handled in thelist of connections. The map operation:
map(PTCL1L:MyPort, syst emPCO1) leads to anew connection (syst em PCOL) in the port state of
MyPort owned by PTC1. The remote side to which PCOL1 is connected to resides inside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE2: The operational semantics handlesthe keywordsyst emas asymbolic address. A connection (syst em

<port-name>) in the list of connections of aport it indicates that the port is mapped onto the port
<port-name> in the test system interface.

<remote -entity> <remote-port-name>

Figure B.19: Structure of a connection

B.3.3.3.2 Handling of ports states
The handling of port statesis supported by the following methods:
a) The NEW-PORT function: NEW-PORT(< owner>,<port-name>)

creates anew port and returnsits reference. The new port is owned by <owner> and has the name <port-name>
to the port identified by the test component <owner> and the port name <port-name>. The status of the new port
isSTARTED and both, the list of connectionsand the queue of values are empty.

b) The GET-PORT function: GET-PORT(<owner>, <port-name>)
returns areference to the port identified by the test component <owner> that owns the port and the port name
<port-name>,

¢) The GET-REMOTE-PORT function: GET-REMOTE-PORT(< owner>, <port-name>, <remote-entity>)

returns the reference to the port that is owned by test component <remote-entity> and connected to a port
identified by <owner> and <port-name>. The symbolic address SYSTEM isreturned, if the remote port is
mapped onto a port in the test system interface.

NOTE 1l GET-REMOTE-PORT returnsNULL if thereis no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the <remote-entity> parameter if the remote
entity is not known or not required, i.e., there exits only a one-to-one connection for this port.

d) The STATUS of aport is handled like avariable. It can be addressed by qualifying STATUS with a GET-PORT
cal:

GET-PORT (<owner>,<port-name>).STATUS

€) The ADD-CON function: ADD-CON (<owner>, <port-name>, <remote-entity>, <remote-port-name>)
adds a connection (<remote-entity>, <remote-port-name>) to the list of connections of port <port-name> owned
by <owner>.

f) The DEL-CON function: DEL-CON(<owner>, <port-name>, <remote-entity>, <remote-port-name>)

deletes connection (<remote-entity>, <remote-port-name>) from the list of connections of port <port-name>
owned by <owner>.

The queue of valuesin a port state can be accessed and manipulated by using the known queue operations engueue,
dequeue, first and_clear. Using a GET-PORT or a GET-REMOTE function references the queue that shall be accessed.

NOTE2: The queue operations enqueue, dequeue, first and_clear have the following meaning:
<queue>.enqueue(<itent) puts <iten aslast item into <queue>;
<queue>.dequeue() deletes the first item from <queue>;

<queue> first() returnsthefirst item in <queue> or NULL if <queue> is empty;

ITU-T Z.140 (07/2001) — Prepublished version 132

<queue>.clear() removes all elements from <queue>.

B.3.3.4 General functions for the handling of module states
The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE: During the interpretation of a TTCN-3 module, there only exists one modul e state. It is assumed that the
components of the module state are stored in global variables and not in acomplex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific module state
object.

a) The DEL-ENTITY function: DEL-ENTITY (<entity-identifier>)
deletes an entity with the unique identifier <entity-identifier>. The deletion comprises:
- thedeletion of the entity state of <entity-identifier>;
- deletion of all ports owned by <entity-identifier>;
- deletion of all connections in which <entity-identifier> isinvolved.
b) The EXISTINGfunction: EXISTING(<entity-identifier>)
returnstrueif an entity state for the entity identified by <entity-identifier> exists. Otherwise it returnsfalse.

¢) The UPDATE-REMOTE-REFERENCES function:

UPDATE-REM OTE-REFERENCES (<source-entity>, <target-entity>)

the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both entities. The
values that will be used for the update are the values of variables and timers owned by <source-entity>.

ITU-T Z.140 (07/2001) — Prepublished version 140

B.3.4 Messages, procedure calls, replies and exceptions

The exchange of information among test components and between test components and the SUT isrelated to messages,
procedure calls, repliesto procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e., mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e., mapping of bits and bytesto TTCN-3 datatypes, is outside the scope of the operational semantics. Inthe
present document messages, procedure calls, replies to procedure calls and exceptionsare handled on a conceptual
level.

B.3.4.1 Messages

M essages are related to asynchronous communication. Values of all (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure B.20, the operational semantics handles a message
as structured object that consist of asender and a value part. The sender part identifiesthe sender entity of a message
and the value part defines the message val ue.

sender Value

Figure B.20: Structure of a message

NOTE: Theoperational semanticsonly presents amodel for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g., in some cases the sender information may be part of the value part of a message and therefore is no
separate part of the message structure.

B.3.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to synchronous calls. They are defined like values of arecord with
components representing the parameters. The operational semantics also handles procedure calls and replies to
procedure calls like valuesin structured types. The structure of a message call and the structure of areply are presented
in figure B.21 and figure B.23.

The sender and the procedure reference part have the same meaning in both figures. The sender part refersto the sender
entity of acall or thereply to aprocedure call. The procedure reference refersto the procedure to which call and reply
belong. The parameter part of the procedure call in figure B.21refersto thei n parameters andi nout parameters and
the parameter part of thereply infigure B.22 referstothei nout parametersandout parameters of the procedure to
which call and reply belong. In addition, the reply has avalue part for the return valuesin the reply to a procedure.

NOTE 1. Asstated inthe previous note, the operational semantics only presents amodel for the concepts of
TTCN-3. Whether and how the information described in figure B.21 and figure B.22is or has to be sent
and/or received depends on the implementation of the test system.

NOTE2: For aprocedurecall, out parametersare of no relevance and are omitted in figure B.21. For areply to a
procedurecall, i n parameters are of no relevance and are omitted in figure B.22.

sender procedure reference parameter part

in-or-inout-parametery in-or-inout-parameter,

Figure B.21: Structure of a procedure call

sender | procedure reference parameter part value

inout-or-out-parameter; | | inout-or-out-parameter,

Figure B.22: Structure of a reply to a procedure call

ITU-T Z.140 (07/2001) — Prepublished version 141

B.3.4.3 Exceptions

Exceptions are also related to synchronous communication. The structure of an exception isshownin figure B.23. It
consists of three parts. The sender part identifies the sender of the exception; the procedur e reference part refersto the
procedure to which the exception belongs and the value part provides the value of the exception. The type of the value
of an exception is defined in the signature of the procedure referred to in the procedure reference part. In general it can
be of any pre- or user-defined TTCN-3 data type.

Sender procedure reference value

Figure B.23: Structure of an exception

B.3.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, areply to aprocedure call or an exception aresend, cal | ,
repl y andr ai se. All these sending operations are built up in the same manner:

<port - name>. <sendi ng- oper at i on>(<send- speci fication>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM(< sender>, <sending-operation>, < send-specification>)

returns a message, a procedure call, areply to a procedure call or an exception depending on the
<sending-operation> and the <send-specification>. The <sender> information is also assumed to be part of the

item to be sent (figuresB.20 to B.23).

B.3.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving amessage, aprocedure cal, areply to aprocedure call or an exception arer ecei ve,
getcal | ,getrepl y andcat ch. All these receiving operations are built up in the same manner:

<port - nane>. <r ecei vi ng- oper at i on>(<nat chi ng-part>) [from <sender>] [<assi gnment-part >]

The <port-name> and <receiving-operation> define port and operation used for the reception of an item. In case of one-
to-many connections af r omclause can be used to select a specific sender entity <sender>. The item to be received has
to fulfil the conditionsspecified in the <matching-part>, i.e., it has to match. The <matching-part> may use concrete
values, template references, variable values, constants, expressions, functions, etc. to specify the matching conditions.

The operational semantics assumes that there exists ageneric MATCH-ITEM function:
MATCH-ITEM(<itemto-check>, <matching-part>, <sender>)

returns true if <itemto-check> fulfils the conditions of <matching-part> and if <itemto-check> has been sent by
<sender>, otherwise it returnsfalse.

ITU-T Z.140 (07/2001) — Prepublished version 142

B.3.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can beretrieved in the
<assignment-part> (see clause B.3.4.3) of the receiving functionsr ecei ve,get cal | ,getrepl y andcat ch. The
<assignment-part> describes how the parameters of procedure calls and replies, return values encoded in replies,
messages, exceptions and the identifier of the <sender> entity are assigned to variables.

The operational semantics assumes that there exists ageneric RETRIEVE-INFO function:

RETRIEVE-INFO(<itemreceived>, <assignment-part>, <receiver>)

al valuesto be retrieved according to the <assignment-part> are retrieved and assigned to the variableslisted in
the assignment part. Assignments are done by means of the VAR-SET operation, i.e., variables with the same

location are updated at the same time.

B.3.5 Call records for functions and test cases

Functions and test cases are called (or executed) by their name and alist of actual parameters. The actual parameters
provide references for reference parameter and concrete values for the value parameter as defined by the formal
parametersin the function or test case definition. The operational semantics handles function calls and calls of test cases
by using call recordsas shown in figure B.24. The value of BEHAVIOUR-ID is the name of afunction or test case,

value parameters provide concrete values <parld;> ... <parld,> for the formal parameters <parld,> ... <parld,>.
Reference parameters provide references to locations of existing variables and timers. Before afunction or test case can
be executed an appropriate call record has to be constructed.

BEHAVIOUR-ID value parameter r eference parameter
<parld,;> ... | <parld,> <parld;> |...| <parld,>
value value, loc, locy

Figure B.24: Structure of a call record

B.3.5.1 Handling of call records

The function or test case name and the actual parameter values can be retrieved by using the dot notation, e.g.,
<myRecord>.<parld,> or <myRecord>.BEHAVIOUR-ID where <myRecord> is a pointer to acall record.

For the construction of acall the function NEW-CALL-RECORD is assumed to be available:

NEW -CAL L-RECORD(<behaviour-name>)

creates anew call record for function or test case <behaviour-name> and returns a pointer to the new record. The
parameter fields of the new call record have undefined values.

<call-record>.INIT-CALL-RECORD()

creates variables and timers for the handling of value and reference parametersin the actual scope of afunction
or test case. The variables for the handling of value parameters are initialized with the corresponding values
provided in the call record. The variables and timers for the handling of reference parameters get the provided
location. In addition, they get avalue of an existing variable or timer in another scope unit of the component in
which the call record was created.

ITU-T Z.140 (07/2001) — Prepublished version 143

B.3.6 The evaluation procedure for a TTCN-3 module

B.3.6.1 Evaluation phases

The evaluation procedure for a TTCN-3 module is structured into (1) initialization phase, (2) update phase, (3)

selection phase and (4) execution phase. The phases (2), (3) and (4) are repeated until module control terminates. The
evaluation procedureis described by means of amixture of informal text, pseudo-code and the functions introduced in

the previous clauses.

B.3.6.1.1

Phase I: Initialization

Theinitialization phase includes the following actions:

a) Declaration and initialization of variables:

NOTE:

INIT-FLOW-GRAPHS();

Entity ;= NULL;

AllEntities:= NULL;
AllPorts:=NULL;
MTC:=NULL;

TC-VERDICT:= none;

DONE:=0;

/I Initialization of flow graph handling. INIT-FLOW-GRAPHS is
I/l explained in clause B.35.1.

/I Entity will be used to refer to an entity state. An entity state either
/I represents module control or atest component.

/I AllEntities will be alist of entity states
/I AllPortswill bealist of port states
/I MTC will refer to the MTC when atest caseis running

/| TC-VERDICT will store the actual test case verdict
/I when atest caseis running

// During the execution of atest case DONE counts the number
/I of test components that have terminated.

The global variables AllEntities, AllPorts, MTC, TC-VERDICT and DONE form the module state that is
manipulated during the interpretation of a TTCN-3 module.

b) Creation and initialization of module contral

Entity:= NEW-ENTITY (GET-UNIQUE-ID(), GET-FLOW-GRAPH (<modulel d>));

Entity.INIT-VAR-SCOPE();

/I A new entity state is created and initialized with the start node of the
/I flow graph representing the behaviour of the control of the module

[/ with the name <modulel d>. GET-UNIQUE-ID will be explained in

/l clause 3.5.1.

/I New variable scope

Entity.INIT-TIMER-SCOPE(); /I New timer scope

Entity. VALUE-STACK .push(MARK); // A mark is pushed onto the val ue stack

AllEntities.append(Entity);

/I The new entity is put into the module state.

ITU-T Z.140 (07/2001) — Prepublished version

144

B.3.6.1.2 Phase II: Update

The update phaseisrelated to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:;

a) Timeprogress: All running timers are updated, i.e., the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update atimer expires, the corresponding timer bindings are updated, i.e.,
TIME-LEFT is set to 0.0 and STATUS is set to TI MEOUT;

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE: Thisoperational semantics makes no assumptions about time progress and the behaviour of the SUT.

B.3.6.1.3 Phase IlI: Selection
The selection phase consists of the following two actions:

a) Selection: Select anon-blocked entity, i.e., an entity that has the STATUS value ACTIVE;

b) Storage: Storetheidentifier of the selected entity in the global variable Entity.

B.3.6.1.4 Phase IV: Execution
The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity;

b) Check termination criterion: Stop execution if module control hasterminated, i.e., the list of entity statesis
empty, otherwise continue with Phasell.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e., returns the control.

B.3.6.2 Global functions

The evaluation procedure uses the global functionsINIT-FLOW-GRAPHS and GET-UNIQUE-ID:

a) INIT-FLOW-GRAPHS is assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointersto the flow graphs and flow graph nodes.

b) GET-UNIQUE-ID isassumed to be afunction that returns a unique identifier each timeitiscalled. The unique
identifier may be implemented in form of a counter variable that isincreased and returned each time

GET-UNIQUE-ID iscalled.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, * * * DYNAM C- ERROR* * *

c) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of the
control stack, i.e., the control is not given back to the module evaluation procedure described in this clause.

d) RETURN returns the control back to the modul e evaluation procedure described in this clause. The RETURN is
the last action of the 'execution step of the selected entity' of the execution phase.

e) ***DYNAM C- ERROR* ** refersto the occurrence of adynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If adynamic error occurs all following behaviour of the moduleis
meant to be undefined.

NOTE: The occurrence of adynamic error is related to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g., wrong usage or race condition.

ITU-T Z.140 (07/2001) — Prepublished version 145

B.3.7 Flow graph segment definitions for TTCN-3 constructs

The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphs representing behaviour is described in clause B.3.2.1. It is based on templates for flow graphs and flow
graph segments that have to be used for the construction of concrete flow graphs for modul e control, test cases,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this Clause. They are presented in an alphabetical order and not in alogical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the | eft
side of the figures and comments associated to nodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and commentsin form of pseudo-code are associated to basic nodes. The pseudo-code
describes how abasic node isinterpreted, i.e., changes the modul e state. It make use of the functions defined in the
previous parts of clause B.3 and the global variables declared and initialized in the evaluation procedure for TTCN-3
modules (Clause B.3.6). An overall view of all functions and keywords used by the pseudo-code can also be found in
clause B.3.7.

B.3.7.1 Alt statement

Theflow graph representation of al t statement in figure B.25 distinguishes betweenal t statements that have an
el se branchandal t statements that have noel se branch.

segnent <al t-stm> l
<al t-with-el se>
R] /1 An alt statement may or may not
<al t-wi thout -el se> /'l have an el se branch
v

Figure B.25: Flow graph segment <alt-stmt >

The flow graph segments<al t - wi t h- el se>and<al t -wi t hout - el se> areshown infigure B.26 and
figure B.27. The el se branch is a statement block that needs no further explanation. However, both flow graph
segments are very similar with the difference that the el se branch provides adefinite exit for theal t statement,
whereas anal t statement without el se branch may loop.

Both flow graph segments have an entry node and beside one incoming flow line, an additional flow line with alabel
<dtld>. Thisisasymbolic label for theal t statement. It identifiesthetarget of got 0 al t statements and also defines
theloopinginthe<al t - wi t hout - el se> flow graph segment. Both flow graph segments also have a defined exit
point by means of thelabel <altldExit>and theal t - exi t node.

ITU-T Z.140 (07/2001) — Prepublished version 146

segnent <al t-with-el se>

<altld>

Entity. NEXT- CONTRA (true);

Gy 2

-]

<r ecei vi ng-branch> ——————P <altldExit>
<st at enent - bl ock> ——Pp <altldExit>
<al t 1 dExi t >
alt-exit Entity. NEXT- CONTRQAL (true);
........... RETURN:
v

Figure B.26: Flow graph segment <alt-with-else>

ITU-T Z.140 (07/2001) — Prepublished version

147

segment <alt-w thout-el se>

— <

<r ecei vi ng-branch> — >

Entity. NEXT- CONTROL(true);
- | RETURN:

<al tl dExi t>

'

Entity. NEXT- CONTRA (true);
" RETURN,

<al t 1 dExi t >

<altld> l

Entity. NEXT- CONTRQ (true);
RETURN;

v

Figure B.27: Flow graph segment <alt-without-else>

ITU-T Z.140 (07/2001) — Prepublished version

148

B.3.7.1.1

Flow graph segment <receiving-branch>

The execution of the flow graph segment <r ecei vi ng- br anch> isshown in figure B.28.

segnment <recei vi ng- branch> ¢

<expressi on>

/'l Bool ean expression that
/1 guards a branch

RETURN,

Entity. NEXT- CONTROL(Ent i ty. VALUE STACK. top());
Entity. VALUE STACK. pop()

true

<cat ch- op> OR
<ti meout -op> OR
<done- conponent - op>

'

<st at enent- bl ock>

<recei ve-op> CR

<getcal | -op> R

<getreply-op> CR 4}‘
fal se

/1 Continue with
/'l next alternative

v
<al tl dExit>

Figure B.28: Flow graph segment <receiving-branch>

ITU-T Z.140 (07/2001) — Prepublished version

149

B.3.7.2 Assignment statement
The syntactical structure of anassi gnnment statementis:

<varld> := <expression>

The value of the expression <expression> is assigned to variable <varld>. The execution of an assignment statement is

defined by the flow graph segment <assignment-stmt> in figure B.29.
|

segnent <assi gnnent - st nt >

N /'l The expression is evaluated and the
<expressi on> /1 result is pushed onto the val ue stack

Entity.VAR SET(varld, Entity. VALUE-STACK top());
Entity. VALUE STACK. pop();

assi gnnent- st
(varld)

Ent i ty. NEXT- CONTROL(true);
RETURN;

v

Figure B.29: Flow graph segment <assignment-stmt>

B.3.7.3 Call operation
The syntactical structure of the call operationis:

<portld>.call (<call Spec> [<blocking-info>]) [to <conponent expressi on>]
[<cal | -reception-part>]

Theoptional <bl ocki ng-i nf 0> consists of either the keywordnonbl ocki ng or aduration for atimeout
exception. The optional <conponent _expr essi on> inthet o clauserefersto thereceiver entity. It may be
provided in form of avariable value or the return value of afunction. The optional <call-reception-part> denotes the
aternative receptionsin case of ablockingcal | operation.

The operational semantics distinguishes between blocking and anon-blocking cal | operations. Acal | is
non-blocking if it expects no repliesor if the keyword nonblocking isused. A blockingcal | hasa
<cal | -reception-part>.

The flow graph segment<cal | - op> infigure B.30 defines the execution of acal | operation. It reflects the
distinction between blocking and non-blocking calls.

segnent <cal | - op> l
<bl ocki ng- cal | - op>
x| /1 A call operation may be bl ocking
<non- bl ocki ng-cal | -op> /1 or non-bl ocking
v

Figure B.30: Flow graph segment <call-op>

ITU-T Z.140 (07/2001) — Prepublished version

150

For blocking and non-blocking call operations areceiver entity may be specified in form of an expression. The

possibilities are shown in figure B.31 and figure B.32.

segment <bl ocki ng-cal | -op>

<__

<b-cal |l -wit

>

-receiver>

3

<b- cal |- wi thout - recei ver >

3

<b-cal I -wi t h-rec-dur>

3

<b- cal | - wi t hout -r ec- dur >

/'l A blocking call may or may not
/'l have a receiver specification

v

Figure B.31: Flow graph segment <blocking-call-op>

|
segnent <non- bl ocki ng-cal | - op> l

<nb-cal I -wi t h-recei ver>
R
<nb- cal | - wi t hout -recei ver >

/'l A non-blocking call may or may
/'l not have a receiver
/'l specification

v

Figure B.32: Flow graph segment <non-blocking-call-op>

ITU-T Z.140 (07/2001) — Prepublished version

151

B.3.7.3.1 Flow graph segment <nb-call-with-receiver>

The flow graph segment<nb- cal | - wi t h-r ecei ver > infigure B.33 defines the execution of a non-blocking

cal | operation wherethereceiver is specified in form of an expression.

segnent <nb-call-wth-receiver>

v

| // The expression shall evaluate
// to a conmponent reference

<expr essi on>

nb-cal I -wi t h-recei ver
(portld, call Spec)

let {
receiver := Entity VALUE- STACK. top();

if (remotePort == NULL) {
} ,
renot ePort . enqueue(CONSTRUCT-1 TEM Entity, call,
} /1 end of scope of receiver and renotePort
Entity. VALUE STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(tr ue):
RETURN:

renotePort := GET-REMOTE- PORT(Entity, portld, receiver);

*** DYNAM C- ERROR***; // Renote port cannot be found

Figure B.33: Flow graph segment <nb-call-with-receiver>

ITU-T Z.140 (07/2001) — Prepublished version

152

B.3.7.3.2

Flow graph segment <nb-call-without-receiver>

The flow graph segment<nb- cal | - wi t hout - r ecei ver > infigure B.34 defines the execution of a non-blocking

cal | operation without at o-clause.

segnent <nb-call-wi thout -recei ver >

nb-cal | -wi t hout -recei ver
(portld, call Spec)

let {

receiver := Entity VALUE- STACK. top();

renmotePort := GET-REMOTE- PORT(Entity, portld, NONE);

if (remotePort == NULL) {
*** DYNAM C- ERROR***; // Renote port cannot be found

}
renot ePort . enqueue(CONSTRUCT-| TEM Entity, call, call Spec));

} // end of scope of receiver and renotePort

Entity. VALUE STACK. pop():
Entity. NEXT- CONTRQL (true);
RETURN;

/1 clean val ue stack

v

Figure B.34: Flow graph segment <nb-call-without-receiver>

ITU-T Z.140 (07/2001) — Prepublished version

153

B.3.7.3.3 Flow graph segment <b-call-with-receiver>

Blocking calls are modelled by a non-blocking call followed by an al t statement. The flow graph segment
<b-cal | -w t h-recei ver > describesthe execution of ablocking call, without a duration as timer guard, but with

areceiver description for the call. The flow graph segment is shown in figure B.35.

segnent <b-cal l-wi th-receiver>

<nb-cal | -wi t h-r ecei ver >

<al t-stat enent >

—_~—
—_~—

Non- bl ocki ng-call with receiver
description

Al't statenent to capture the
different receive alternatives
for the call

v

Figure B.35: Flow graph segment <b-call-with-receiver>

B.3.7.34 Flow graph segment <b-call-without-receiver>

The flow graph segment<b- cal | - wi t hout - r ecei ver > describes the execution of ablocking call, without a

duration as timer guard and without areceiver specification for the call. The flow graph segment is shownin

figure B.36.

segment <b-cal | -wi t hout-receiver >

<nb-cal | - wi t hout -r ecei ver >

<al t-st at enent >

—_—
—_—

Non- bl ocki ng-cal I wi t hout
recei ver description

/1
/1
Il

Al't statenent to capture the
different receive alternatives
for the call

v

Figure B.36: Flow graph segment <b-call-without-receiver>

ITU-T Z.140 (07/2001) — Prepublished version

14

B.3.7.3.5 Flow graph segment <b-call-with-rec-dur>

Blocking calls guarded by timers are modelled by a non-blocking call followed by anal t statement. For the duration a
specia system timer SY S-Tl is started. The catch timeout branchintheal t statement refersto the system timer. The
flow graph segment<b- cal | -wi t h-r ec- dur > describes the execution of ablocking call, with aduration as timer
guard and areceiver description for the call. The flow graph segment is shown in figure B.37.

NOTE: Thehandling of the system timer isonly handled in an informal manner. The implementation is
proprietary to the test equipment.

segment <b-cal | -wi th-rec-dur>

. . /'l Non- bl ocki ng-call with receiver
<nb-cal | -wi th-receiver> [... .. // descri ption

Setting-of -System Ti mer
(dir ati an)

<al t-stat i > /1 At statement to capture the
alt-statemen ool [di fferent receive alternatives
/1 for the call

SET(SYS-TI, duration);
--------------- Entity. NEXT- CONTRAL(true);
RETURN:

v

Figure B.37: Flow graph segment <b-call-with-rec-dur>

ITU-T Z.140 (07/2001) — Prepublished version

155

B.3.7.3.6 Flow graph segment <b-call-without-rec-dur>

The flow graph segment<b- cal | - wi t hout - r ec- dur > describes the execution of ablocking call, with a duration
astimer guard and without areceiver description for the call. The flow graph segment is shown in figure B.38.

segment <b-cal | -wi t hout-rec-dur>

<nb- cal | - wi t hout -r ecei ver >

Setting-of - System Ti nmer

(dur ati an)

/'l Non- bl ocki ng-call w th receiver
/] description

SET(SYS-TI, duration);
Entity, NEXT- CONTROL(true);
RETURN:

<al t-st at enent >

/'l Al't statenment to capture the
[/1 different receive alternatives
/1 for the call

v

Figure B.38: Flow graph segment <b-call-without-rec-dur>

B.3.7.4 Catch operation

The syntactical structure of the catch operationis:

<portld>. catch (<matchi ngSpec>) [from <conponent expression>] -> [<assignnent Part >]

Theoptional <conponent _expr essi on> inthef r omclause refersto the sender of the exception. It may be

provided in form of avariable value or the return value of afunction, i.e., it isassumed to be an expression. The
optional <assi gnment Part > denotes the assignment of catched information if the catched exception matchesto the

matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <cat ch- op> infigure B.39 defines the execution of acat ch operation.

|
segnent <catch-op> l

<cat ch-wi t h-sender >
R
<cat ch- wi t hout - sender >

/1 Distinction due to the optional
/1 fromclause

v

Figure B.39: Flow graph segment <catch-op>

ITU-T Z.140 (07/2001) — Prepublished version

156

B.3.7.4.1 Flow graph segment <catch-with-sender>

The flow graph segment<cat ch- wi t h- sender > in figure B.40 defines the execution of acat ch operation where

the sender is specified in form of an expression.

segnent
<cat ch- wi t h- sender >

< i on>
expr essi on /1 to a conponent

/'l The Expression shall
reference.

eval uat e
The

el se {
queue does not match

—— s

/'l result is pushed onto the val ue stack
let {
portRef := CGET-PORT(Entity, portld); // Reference to actual
port
sender := Entity, VALUESTACK top(); // Reference to sender
entity
Entity. VALUE STACK. pop(); /1
del eting sender reference
if (PortRef first() == NULL) { /'l Port queue is enpty,
no mat ch
Entity. NEXT- CONTROL (f al se) ;
else {
if (MATCH ITEM portRef. first(), matchingSpec,
sender)) {

/1 The exception in the queue matches
Entity. NEXT- CONTRO (true);

AT AR e

/'l The exception in the

P SN RN

cat ch-wi t h-sender
(portI D, matchingSpec)

true

*(1)

<recei ve-assi gnnent >

renove-fromport
(portld)

/'l optional val ue

/] assi gnent

/'l Renoval
port

GET- PORT(Entity,
Entity. NEXT- CONTRA (true);

of received exception from

portld).dequeue();

v v

fal se

Figure B.40: Flow graph segment <catch-with-sender>

ITU-T Z.140 (07/2001) — Prepublished version

157

B.3.7.4.2 Flow graph segment <catch-without-sender>

The flow graph segment <cat ch- wi t h- sender > in figure B.41 defines the execution of acat ch operation

without af r omclause.

segment <catch-w t hout -sender >

cat ch- wi t hout - sender
(port!1 D, matchi ngSpec)

true

<recei ve-assi gnnent >

/] optional value
/1 assignent

remove-fromport
(portld)

let {
portRef := GET-PORT(Entity, portld); // Reference to actual
port
if (PortRef first() == NULL) { /'l Port queue is enpty,
no mat ch
Entity. NEXT- CONTROL(f al se);
el se {
if (MATCHI|TEMportRef first(), matchingSpec, NULL)) {
/'l The exception in the queue matches
Entity. NEXT- CONTRQ (true);
el se { /'l The exception in the
queue does not match
Entity. NEXT- CONTROL (f al se);
}

/'l Renobve received exception from port
GET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN:

fal se

v

Figure B.41: Flow graph segment <catch-without-sender>

ITU-T Z.140 (07/2001) — Prepublished version

158

B.3.7.5 Clear port operation
The syntactical structure of thecl ear port operationis:

<portld>. clear

The flow graph segment <clear-port-op> in figure B.42 defines the execution of thecl ear port operation.

segnent <cl ear -port -op>

/'l The port nanme <portld> is copied
/1 into the node attribute ‘portld

cl ear -port -op cl ear (GET-PORT(Enti t ortld));
IR ((Yy, p))s

Entity. NEXT- CONTROL(true);
RETURN;

A\

Figure B.42: Flow graph segment <clear-port-op>

ITU-T Z.140 (07/2001) — Prepublished version 158

B.3.7.6 Connect operation

The syntactical structure of atheconnect operationis:

connect (<conponent _expr essi on;>. <port | d1>, <conponent _expr essi on,>. <port | d2>)

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent expressi on;>and<conponent expressi ony>. The references may be stored in variables or

isreturned by afunction. For simplicity we consider them as expressions which evaluate to a component reference.

Thus, the value stack is used for storing the component references.

The execution of theconnect operation is defined by the flow graph segment <connect - op> shown in figure B.43.

In the flow graph description the first expression to be evaluated refersto <conponent _expr essi on;> and the
second expressionto <conponent _expressi on,>,i.e,the<conmponent expressi on,> isontop of the

value stack whentheconnect - op nodeis executed.

segnent <connect-op> i

<expr essi on>

v

<expressi on>

connect - op
(portldi, portld2)

let {
conp2 = Entity, VALUE- STACK top()
/'l Local variable to store the owner
of portld2
Entity. VALUE- STACK pop();
conpl = Entity, VALUE-STACK top()
/'l Local variable to store the owner
of portld2
Entity. VALUE- STACK pop();

ADD CON(conpl, portldl, conp2, portld2)
ADD CON(conp2, portld2, conpl, portldl)

} /1 end of scope of conmpl and conp2

v

Figure B.43: Flow graph segment <connect-op>

ITU-T Z.140 (07/2001) — Prepublished version

160

B.3.7.7 Declaration of a constant

The syntactical structure of aconstant declarationis:

const <const Type> <constld> : = <const Type- expressi on>

The value of a constant is considered to be an expression that evaluates to a value of the type of the constant.

NOTE: Global constants are replaced by their valuesin a preprocessing step before this semanticsis applied

(clause B.2.3). Local constants are treated like variable declarations with initialization. The correct usage
of constants, i.e., constants shall never occur on the left side of an assignment, shall be checked during the

static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-declaration> in figure B.44 definesthe execution of a constant declaration where the
value of the constant is provided in form of an expression.

segnent <const ant -decl arati on>

v

<expressi on>

/'l The expression shall evaluate
/1 to a value of the type of the
/1 variable that is declared.

var -decl aration-init
(constld)

Entity.IN T-VAR constld, Entity.VALUE STACK. top());
Entity. VALUE STACK. pop() ; /1 clean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN;

Figure B.44: Flow graph segment <constant-declaration>

ITU-T Z.140 (07/2001) — Prepublished version

161

B.3.7.8 Create operation
The syntactical structure of thecr eat e operationis:

<conponent Typel d>. creat e

The flow graph segment <create-op> in figure B.45 defines the execution of the cr eat e operation.

segnent <creat e-op>

create-op

(conponent Typel d)

/'l The identifier for the newentity is created and pushed
/1 onto the value stack of the 'father' entity

Entity. VALUE STACK. push(GET-UNI QUE-1 X)) ;

/'l New entity state is created and pushed onto the value stack of the
/] 'father' entity

Entity. VALUE STACK. push(NEWENTI TY(Entity. VALUE STACK, t op(),
conponent Typel D)) ;

/1 The identifier of the 'father' entity is pushed onto the
/1 value stack of the new entity
Entity. VALUE STACK. t op() . VALUE STACK. push(Entity);

/1 The new entity is put into the nodule state (AllEntities is a global variable)
Al Entities.append(). Entity. VALUE- STACK. top();

/1 The new entity state is renoved fromthe value stack of the 'father' entity
/1 The 'father' entity goes into a blocking state and the control is returned
/1 to the nodul e eval uation procedure

Entity. VALUE- STACK pop();
Entity. STATUS : = BLOCKED;
Entity. NEXT- CONTROL(true);
RETLIRN:

Figure B.45: Flow graph segment <create-op>

ITU-T Z.140 (07/2001) — Prepublished version

162

B.3.7.9 Declaration of a port
The syntactical structure of aport declarationis:
<port Type> <port Nanme>

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port. The flow graph segment <port-declaration> in figure B.46 defines the execution of a port declaration.

segnent <port- decl aration>

/'l The tinmer reference <portNanme> is copied
/1 into the node attribute ‘portNane’

port -declaration /)7 Al l Ports.append(NEW PORT(Entity, portName);
(port Nanme)

Entity. NEXT- CONTROL(true);
RETURN

v

Figure B.46: Flow graph segment <port-declaration>

B.3.7.10 Declaration of a timer
The syntactical structure of atimer declarationis:
timer <timerld> [:= <float_expression>]

The effect of atimer declaration isthe creation of anew timer binding. The declaration of avariable with a default

durationis optional. The default value is considered to be an expression that evaluates to avalue of thetypef | oat .

The flow graph segment <timer-declaration> in figure B.47 defines the execution of the declaration of atimer.

segnent <ti mer-decl aration> ¢
<timer-decl -defaul t>
R | | // Atimer may be declared with
<ti mer-decl-no- def > /1 or without a default duration

Figure B.47: Flow graph segment <timer-declaration>

ITU-T Z.140 (07/2001) — Prepublished version

163

B.3.7.10.1 Flow graph segment <timer-decl-default>

The flow graph segment <timer-decl-default> in figure B.48 defines the execution of atimer declaration where a default
duration in form of an expressionis provided.

segnent <tiner -decl -def aul t >

v

<expr essi on>

/'l The expression shall evaluate
/'l to a value of type float

(tinmerld)

timer-decl -default)= =

Entity. INT-TIMER(tinmerld, Entity. VALUE-STACK top());
Entity. VALUE STACK. pop(); /'l clean VALUE- STACK

Entity. NEXT- CONTROL(true);
RETURN;

Figure B.48: Flow graph segment <timer-decl-default>

B.3.7.10.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <timer-decl-no-def> in figure B.49 defines the execution of atimer declaration where no
default duration is provided, i.e., the default duration of the timer is undefined.

segnent <tiner -decl -no-def>

ti mer-decl-no- def
(tinmerld)

-------------- Entity. NEXT- CONTROL(true);
RETURN:

Entity.INIT-TIMER(ti merld, NONE);

v

Figure B.49: Flow graph segment <timer-decl-no-def>

ITU-T Z.140 (07/2001) — Prepublished version

164

B.3.7.11 Declaration of a variable
The syntactical structure of avariable declarationis:
var <varType> <varld> [:= <varType_expressi on>]

Theinitialization of avariable by providing an initial valueisoptional. Theinitial valueis considered to be an
expression that evaluates to a value of the type of the variable.

Theflow graph segment <variable-declaration> in figure B.50 defines the execution of the declaration of avariable.

segnent <vari abl e-decl arati on> v
<var -decl aration-init>
xR . .| // A variable may be declared with
<var - decl ar at i on- undef > /1 or without initial value

Figure B.50: Flow graph segment <variable-declaration>

B.3.7.11.1 Flow graph segment <var-declaration-init>

The flow graph segment <var-declaration-init> in figure B.51 defines the execution of avariable declaration where an
initial value in form of an expression is provided.

segnent <var -decl aration-init>

) /'l The expression shall evaluate
<expressi on> // to a value of the type of the
/'l variable that is declared.

Entity.IN T-VAR varld, Entity.VALUE STACK.top());

Entity. VALUE STACK. pop(); /1 cl ean VALUE- STACK;
var -declaration-init jwoe
(varld) Entity. NEXT- CONTROL(true);
RETURN;

Figure B.51: Flow graph segment <var-declaration-init>

ITU-T Z.140 (07/2001) — Prepublished version

165

B.3.7.11.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure B.52 defines the execution of a variable declaration where
noinitial valueisprovided, i.e., the value of the variable is undefined.

segment <var -decl arati on-undef >

Entity.| N T-VAR varld, NONE);

var - decl ar at i on- undef Entity. NEXT- CONTROL(true);
(varld) RETURN;

\4

Figure B.52: Flow graph segment < var-declaration-undef >

B.3.7.12 Disconnect operation

The syntactical structure of athedi sconnect operationis:
di sconnect (<conponent _expr essi on;>. <port| d1>, <conponent _expr essi on,>. <port| d2>)

Theidentifiers<port | d1>and <port | d2> are considered to be port identifiers of the corresponding test

components. The components to which the ports belong are referenced by means of the component references
<conponent expressi on;>and<conponent expressi ony>. The references may be stored in variables or

isreturned by afunction. For simplicity we consider them as expressions which evaluate to a component reference.
Thus, the value stack is used for storing the component references.

The execution of thedi sconnect operationisdefined by the flow graph segment <di sconnect - op> shownin
figure B.53. In the flow graph segment the first expression to be evaluated refersto <conponent _expr essi on>
and the second expressionto <conponent expressi on,>,i.e,the<conmponent expressi on,> isontop of
the value stack whenthedi sconnect - op nodeis executed.

segnent <di sconnect - op> L
let {
. conp2 = Entity, VALUE STACK top();
<expression> /1 Local variable to store the owner
of portld2
Entity. VALUE- STACK pop();
conpl = Entity, VALUE STACK top();
/1 Local variable to store the owner
<expressi on> of portld2
Entity. VALUE- STACK pop();
DEL- GON(conpl, portldl, conp2, portld2)
DEL- CON(conp2, portld2, conpl, portldl)
di sconnect - op
(portldi, portld2))= } /1 end of scope of conmpl and conp2

v

Figure B.53: Flow graph segment <disconnect-op>

ITU-T Z.140 (07/2001) — Prepublished version 166

B.3.7.13 Do-while statement

The syntactical structure of thedo-whi | e statementis:
do <statenent - bl ock>
whi | e (<bool ean_expressi on>)

The execution of ado-whi | e statement is defined by the flow graph segment <do- whi | e- st nt > shownin
figure B.54.

segnent <do- whil e-stnt>

<st at enent - bl ock>

l

<expr essi on> if (Entity.VALUE- STACK.top()== true) {
Entity. NEXT- CONTROL(t rue);
}

el se {
Entity. NEXT- CONTROL(true);

}
true Entity. VALUE- STACK pop();
decision e RETURN;

\\

fal se

v

Figure B.54: Flow graph segment <do-while-stmt>

ITU-T Z.140 (07/2001) — Prepublished version 167

B.3.7.14 Done-all-components operation

Thedone-al | -conmponent s operation refers to the usage of the keywordsal | conponent inthedone operation
(Clause B.7.16). Thedone-al | -conmponent s operation can only be called by thent c. It allowsto check whether al
parallel test components of atest case have terminated. The syntactical structure of thedone-al | -conponent s

operationis:

all conponent. done;

The execution of thedone- al | - conponent s operation is defined by the flow graph segment

<done-al | - conp- op>infigure B.55.

segnment <done- any- conp- op>

done- any- conp- op

if (Entity 1= MIQ {

*** DYNAM C- ERROR* * *

/1 Entity is not allowed to call the
operation

}
if (AllEntities. Length() 2) {

/1 only ntc and control exist
Entity. NEXT- CONTRO(true);

el se {
Entity. NEXT- CONTROL(f al se);
}

RETURN;

fal se /

\ true

Figure B.55: Flow graph segment <done-all-comp-op>

ITU-T Z.140 (07/2001) — Prepublished version

168

B.3.7.15 Done-any-component operation

Thedone-any-conmponent operation refersto the usage of the keywordsany conponent inthedone operation
(Clause B.7.16). Thedone-any-conmponent operation can only be called by the it c. It alows to check whether a
parallel test component of atest case has already terminated. The syntactical structure of thedone- any- conponent
operationis:

any conponent. done;

The execution of thedone-any-conponent operation is defined by the flow graph segment
<done- any- conp- op> infigure B.56.

segnent <done- any-conp-op>

done- any- conp- op ..

if (Entity !'= MIQ {

*** DYNAM C- ERROR* * *

/1 Entity is not allowed to call the
operation

}
if (DONE = 0) {
/] at |east one ptc has term nated

Entity, NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTRO (f al se);
}

RETURN:

fal se / x true

Figure B.56: Flow graph segment <done-any-comp-op>

ITU-T Z.140 (07/2001) — Prepublished version 168

B.3.7.16 Done component operation
The syntactical structure of thedone component operationis:
<conponent _expressi on>. done

The done component operation checks whether acomponent isrunning or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in avariable or be returned
by afunction. For simplicity thisis considered to be an expression that eval uates to a component reference.

The flow graph segment <done-component-op> in figure B.57 defines the execution of the done component operation.

segnent
<done- conponent - op>

/ The Expression shall evaluate
/ to a conponent reference. The
/1 result is pushed onto VALUE STACK

<expr essi on>

if (EXLSTINQENtity.VALUE STACK.top() == true) {
Entity. VALUE- STACK pop();
Entity. NEXT- CONTROL(true);
done-conponent -op)=
el se {
Entity. VALUE- STACK pop();
Entity. NEXT- CONTROL(f al se);
}

RETURN;

fal se true

Figure B.57: Flow graph segment <done-component-op>

B.3.7.17 Execute statement
The syntactical structure of theexecut e statement is:
execut e(<t est Casel d>([<act-par;> .., <act-pary,>)]) [, <float expression>])

Theexecut e statement describes the execution of atest case <t est Casel d> with the (optional) actual parameters
<act - par >, ..., <act-par,>. Optionally the execute statement may be guarded by aduration provided in form

of an expression that evaluatesto afloat. If within the specified duration the test case doesn't return averdict, a timeout
exception occurs, the test case is stopped and aner r or verdict isreturned. However, TTCN-3 has no real-time

semantics and, thus, the decision whether a timeout exception occurs or not is modelled in form of a non-deterministic
choice.

NOTE: The operational semantics only models the non-deterministic choice. The<f | oat _expr essi on> is
not evaluated.

If due to the non-deterministic choice no timeout exception occurs, the nt ¢ iscreated, the control instance

(representing the control part of the TTCN-3 module) is blocked until the test case terminates, and for the further test
case execution the flow of control isgiventothent c. Theflow of control is given back to the control instance when
thenmt ¢ terminates.

ITU-T Z.140 (07/2001) — Prepublished version 170

The flow graph segment <execut e- st nt > in figure B.58 defines the execution of anexecut e statement.

segnent <execute-stnt> l

<execut e- ti meout >
R
<execut e-wit hout -ti meout >

| // An execute statenment may or nay

/'l not be guarded by a timeout

v

Figure B.58: Flow graph segment <execute-stmt>

B.3.7.17.1 Flow graph segment <execute-timeout>

The flow graph segment <execut e- t i meout > in figure B.59 defines the execution of anexecut e statement that

isguarded by atimeout value.

segnent <execute-tineout>

random choi ce

true

fal se

<execute-wi t hout -ti meout >

execut e- ti meout

®-

/1 The path is randomy

/] chosen

Entity. NEXT- CONTROL (r andom) ;
RETURN;

Entity. VALUE STACK. push(error);
Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.59: Flow graph segment <execute-timeout>

ITU-T Z.140 (07/2001) — Prepublished version

17

B.3.7.17.2 Flow graph segment <execute-without-timeout>

The execution of atest case starts with the creation of the nt c¢. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the modul e control waits until the test case terminates. The creation and the start of the
mtc can be described by usingcr eat e andst art statements:

nmcType MyMIC : = ntcType. create;
MyMIC. st art (Test CaseNane(P1..Pn);

The flow graph segment <execut e- wi t hout - t i meout > infigure B.60 defines the execution of anexecut e
statement without the occurrence of atimeout exception by using the flow graph segments of the cr eat e and the
st art operations.

segnent <execute-w thout -

/] Creation of the MIC

<creatp-op>
v

MIC : = Entity. VALUE- STACK top();
TG VERDI CT : = none;
DONE : = 0;

init-test-case-state

Entity. NEXT- CONTROL(true);
RETURN:

<start -conponent -op> |. .| // Start of MIC

Entity. STATUS : = BLOCKED;

wai t-for-term nation)
----- Entity. NEXT- CONTROL(true);
RETURN:

Figure B.60: Flow graph segment <execute-without-timeout>

ITU-T Z.140 (07/2001) — Prepublished version 172

B.3.7.18 Expression

For the handling of expressions, the following four cases have to be distinguished:
a) Theexpressionisalitera value (or aconstant);
b) Theexpressionisavariable;
c) Theexpressionisan operator applied to one or more operands;
d) Theexpressionisafunction or operation call.
The syntactical structure of an expressionis:

<lit-val> | <var-val> | <func-op-call> | <operand-appl >

where:
<lit-val > denotes aliteral value;
<var-val > denotes avariable value;
<func-op-call > denotes afunction or operation call;

<oper at or - appl > denotesthe application of arithmetic operators like +, -, not, etc.

The execution of an expression is defined by the flow graph segment <expr essi on> shownin figure B.61.

segment <expressi on> i
<lit-val ue>
OR /1 The four alternatives
<var - val ue> /'l describe the four
OR [e /'l possibilities for
<func-op-cal | > /| expressions as
OR /1 described inthis
<oper at or - appl > /] section.
v

Figure B.61: Flow graph segment <expression>

B.3.7.18.1 Flow graph segment <lit-value>

The flow graph segment <lit-value> in figure B.62 pushes a literal value onto the value stack of an entity.

segnent <lit-val ue>

Entity. VALUE- STACK push(val ue);

Entity. NEXT- CONTRAO (true);
RETURN;

v

Figure B.62: Flow graph segment <lit-value>

ITU-T Z.140 (07/2001) — Prepublished version

173

B.3.7.18.2 Flow graph segment <var-value>

The flow graph segment <var-value> in figure B.63 pushes the value of avariable onto the value stack of an entity.

segnent <var -val ue>

Entity. VALUE- STACK push(Entity. var -nane);

Entity. NEXT- CONTRAO (true);
RETURN;

v

Figure B.63: Flow graph segment <var-value>

B.3.7.18.3 Flow graph segment <func-op-call>

The flow graph segment <f unc- op- cal | > infigure B.64 refersto calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

segment <func-op-call > ¢

<creat e- op> OR <done-conponent -op> CR
<done- al I -op> OR <done- any. op> R
<fuction-call> OR <nt c-op> CR
<read-timer-op> OR <running-timer-op> OR
<runni ng- conponent - op> OR
<runni ng- al I -op> OR <runni ng- any-op> OR
<sel f -op> OR <systemop> R

<verdict.get-op> OR <execute-stnt >

\4

Figure B.64: Flow graph segment <func-op-call>

ITU-T Z.140 (07/2001) — Prepublished version 174

B.3.7.18.4 Flow graph segment <operator-appl>

The flow-graph representation in figure B.65 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the evaluation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack.

segment <oper at or -appl > i
/1 For an n-nary operator,
/'l n operands in form of
+ .
------------------ /'l eval uat ed expressions have
/1 to be pushed onto the
<expressi on> /1 val ue stack

Entity. APPLY- OPERATOR(operat or);

Entity. NEXT- CONTRAL.(true);
RETURN;

oper at or-appl
(operator)

v

Figure B.65: Flow graph segment <operator-appl>

B.3.7.19 Flow graph segment <finalize-component-init>

The flow graph segment<f i nal i ze- conponent -i ni t > ispart of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure B.66:

segnent

<final i se-component -i ni t > /1 Control is given back to the 'father' entity.

/1 ldentifier of 'father' entity is deleted.
Entity. VALUE STACK top().STATUS : = ACTI VE;

Entity. VALUE STACK. pop();

finalise-conmponent-init

/1 A mark i s pushed on the val ue stack, the

/] entity goes into a blocking state (waits for
/1 being started) and control is given back to
/1 the nmodul e eval uati on procedure

Entity. VALUE STACK. push(MARK) ;

Entity. STATUS : = BLOCKED;

/1 No node is pushed onto the control stack
/1 areturn statenment will be a stop
RETURN;

v

Figure B.66: Flow graph segment <finalize-component-init>

ITU-T Z.140 (07/2001) — Prepublished version 175

B.3.7.20 Flow graph segment <init-component-scope>

The flow graph segment<i ni t - conmponent - scope> ispart of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure B.67:

segment <j nit- conponent- scope>

/1 A new variabl e scope and a new
/1 timer scope are created
Entity. | NI T- VAR- SCOPE() ;

I i t-coNponent-scope ... Entity, | NI T-TI MER- SCOPE() ;

Entity. NEXT- CONTROL(t rue) ;
RETURN

v

Figure B.67: Flow graph segment <init-component-scope>

ITU-T Z.140 (07/2001) — Prepublished version 176

B.3.7.21 For statement

The syntactical structure of thef or -st at enent is:

for (<assignnment>, <bool ean_expressi on>,

The initialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignmentsto theindex variable. The<bool ean _expr essi on> describes the termination criterion of the loop

<assi gnnent >) <statenent-bl ock>

specified by thef or -st at enent and the<st at ement - bl ock> describes the loop body.

The execution of the for statement is defined by the flow graph segment <f or - st m > shown in figure B.68. The
initial <assi gnnment > describes theinitialization of theindex variable. The<assi gnnment > inthet r ue branch of

thedeci si on node describes the manipulation of the index variable.

segrment <for-stnt>

'

<assi gnnent >

true

<expressi on>

<st at enent- bl ock>

i

<assi gnnment >

deci si on

if (Entity.VALUE- STACK.top()== true) {
Entity. NEXT- CONTROL(t r ue) ;

el se {
Entity. NEXT- CONTROL(true) ;
}

Entity. VALUF- STACK pop();
RETURN;

v

Figure B.68: Flow graph segment <for-stmt>

ITU-T Z.140 (07/2001) — Prepublished version

177

B.3.7.22 Function call

The syntactical structure of afunction call is:
<function- name>([<act - par-desc;>, ..., <act-par-descy,>])

The <function-name> denotes to the name of afunction and<act - par - descr ;>, ..., <act - par-descr ,>
describe the description of the actual parameter values of the function call. In case of avalue parameter the description
of an actual parameter may be provided in form of an expression that hasto be evaluated before the call can be
executed.

It isassumed that for each<act - par - desc > the corresponding formal parameter identifier <f - par - 1 d;> is
known, i.e., we can extend the syntactical structure above to:

<function-nanme>((<f-par-1d;> <act-par-desc;>), .., (<f-par-1dy,>,
<act - par - desc,>))

The flow graph segment <function-call> in figure B.69 defines the execution of afunction call. The executionis
structured into three steps. In the first step a call record for the function <function-name> is created. I n the second step
the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the third
step, the control of the behaviour that calls the function is transferred.

segnent
<function call>

Entity. VALUE STACK. push(NEW CALL- RECORD(f unct i on- nane)) ;
Entity. NEXT- CONTROL(true);
RETURN,

construct-cal | -record
(functi on- nane)

* /'l For each pair (<f-par-Id> <act-paraneter-desci>) the
/1 value of <act-paraneter-desci is calculated and

***** /'l assigned to the corresponding field <f-par-1di>

<val ue- par-cal cul ati on> /1 in the call record. The call record is assuned to be
/'l the top elenent in the val ue stack.

-~

Retrieves the locations for variables and tiners
used as reference paraneters

~—

<ref-var-par-calc> OR
<ref-timer-par-cal c>>

-~

// Storage of return address

Entity. NEXT- CONTRA (true);

/1 Control is transferred to called function

control -trans-to-function) [Entity.CONTROL- STACK push(GET- FLOM GRAPH functi on-nane));
(functi on- nane)

RETURN:

Figure B.69: Flow graph segment <function-call>

ITU-T Z.140 (07/2001) — Prepublished version 178

B.3.7.23 Flow graph segment <value-par-calculation>

The flow graph-segment <val ue- par - cal cul at i on>isused to calculate actual parameter values and to assign

them to the corresponding fieldsin call records for functions and test cases.

It is assumed that a call record isthe top element of the value stack and that a pair of:

(<f-par-1d;>,

hasto be handled. <act - par anet er - desc; > that hasto be evaluated and <f - par - | d; > istheidentifier of a

<act - par anet er - desc; >)

formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <val ue- par - cal cul at i on>isshowninfigureB.70.

segment
<val ue- par-cal cul ati on>

<expr essi on>

/'l The expression represents <act- paraneter-desci>
/1l The result of the evaluation of the expression
/'l is pushed onto the value stack

par anmet er-assi gnment
(f-par-1d)

let {
parVal = Entity, VALUE-STACK top();
/1 parVal is a

| ocal variable that

/'l stores the val ue
of the expression

Entity. VALUE STACK. pop();
/'l Renoval of

expression val ue
/1 Afterwards the
call record is
/1 again top of the

val ue stack

| Entity.VALUE STACK. top().f-par-Id :=
par Val ;
/1 Val ue assi annent

v

Figure B.70: Flow graph segment <value-par-calculation>

ITU-T Z.140 (07/2001) — Prepublished version

179

B.3.7.24 Flow graph segment <ref-par-var-calc>

The flow graph-segment <r ef - par - var - cal ¢> isused to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fieldsin call records for functions and test cases.

It isassumed that acall record isthe top element of the value stack and that a pair of:
(<f-par-1d;> <act-par;>)

hasto behandled. <act - par;> i s the actual parameter forwhichthelocation hasto beretrieved and
<f - par - | dj > istheidentifier of aformal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <r ef - par - var - cal ¢>isshownin figure B.71.

segment
<ref -par-var -cal c>

let {
location := Entity GET-VAR LOCATI ON act - par) ;

par anmet er-assi gnnment
f-par-1d, act-par

Entity, VALUE-STACK top().f-par-1d:=
| ocati on;

/1 Val ue assignnment to call
record

} /1 end of scope for |ocation

Entity. NEXT- CONTROL(true);
RFTI! IRN"

v

Figure B.71: Flow graph segment <ref-par-var-calc>

ITU-T Z.140 (07/2001) — Prepublished version 180

B.3.7.25 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <r ef - par - t i mer - cal ¢> isused to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fieldsin call records for functions and test cases.

It isassumed that acall record isthe top element of the value stack and that a pair of:
(<f-par-1d;> <act-par;>)

hasto behandled. <act - par;> i s the actual paraneter forwhichthelocationhasto beretrieved and
<f - par - | dj > istheidentifier of aformal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <r ef - par - ti mer - cal ¢>isshownin figure B.72.

segment
<ref -par-tinmer-cal c>

let {
location := Entity. GET-TI MER L OCAT| ON(act - par);

""" Entity, VALUE-STACK top().f-par-1d:= location;
/1 Val ue assignnent to call record

par anet er-assi gnment
f-par-1d, act-par)

} // end of scope for location

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure B.72: Flow graph segment <ref-par-timer-calc>

B.3.7.26 Flow graph segment <parameter-handling>

The flow graph-segment <par anet er - handl i ng> isused in the beginning of function calls. It initializes anew
scope and creates variables and timers for the handling of parameters. It is assumed that the call record of the called
function is lying on top of the value stack.

The execution of flow graph-segment <par anet er - handl i ng>isshownin figure B.73.

segment
<par anet er- handl i ng>

Entity.lNT-VAR SCOPE(); // new variabl e scope
Entity.INT-TI MER SCOPE(); // new tinmer scope

. Entity. VALUE STACK top(). | N T- CALL- RECORD() ;

par anet er - handl i ng /|l paraneters are initialized
Entity. VALUE STACK pop(); // renoval of call record
Entity. VALUE STACK push(MARK); // for scope

Entity. NEXT- CONTROL(tr ue);
RETURN:

v

Figure B.73: Flow graph segment <parameter-handling>

ITU-T Z.140 (07/2001) — Prepublished version 181

B.3.7.27 Getcall operation

The syntactical structure of the getcall operation is:

<portld>. getcal |l (<matchingSpec>) [from <conponent expression>] -> [<assignnentPart>]
The optional <conponent _expr essi on>inthef r omclause refersto the sender of the call that is handled by the
get cal | operation. It may be provided in form of avariable value or the return value of afunction, i.e., it is assumed

to be an expression. The optional <assi gnnment Par t > denotes the assignment of received information if the
received call matches to the matching specification<mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment<get cal | - op> infigure B.74 defines the execution of aget cal | operation.

|
segnent <getcal | -op> l
<getcal | - w t h- sender >
xR] /1 Distinction due to the optional
<getcal | -wi t hout-sender > /'l fromcl ause
v

Figure B.74: Flow graph segment <getcall-op>

ITU-T Z.140 (07/2001) — Prepublished version 182

B.3.7.27.1

Flow graph segment <getcall-with-sender>

The flow graph segment<get cal | - wi t h- sender > infigure B.75 defines the execution of aget cal | operation
where the sender is specified in form of an expression.

segment
<getcal | - wi t h- sender >

<expr essi on>

eval uat e
The

/' The Expression shall
/1 to a conponent reference.

/'l result is pushed onto the value stack
let {
portRef := GET-PORT(Entity, portld); // Reference to
actual port
sender : = Entity. VALUE- STACK. top(); // Reference to sender
entity

Entity. VALUE- STACK. pop() ; /11

del eting sender reference

enpty,

if (PortRef first() == NULL) { /1l Port queue is
no match

Enti ty. NEXT- CONTROL(f al se);

el se {
mat chi ngSpec,

if (MATCH-1TEM(portRef.first(),

sender)) {

/1 The call in the queue matches
Entity. NEXT- CONTROL(true);
in the

el se { /1 The call

queue does not match

}

Entity. NEXT- CONTROL(fal se);

}
}
RETURN;
/1 End of scope of portRef and sender

getcal I -wi t h-sender
(portl D, matchi ngSpec)

/1 optional value
/| assignemt

<recei ve-assi ghnent >

renmove- from port
(portld)

/'l Rermoval of received call fromport
GET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN;

fal se

v

Figure B.75: Flow graph segment <getcall-with-sender>

ITU-T Z.140 (07/2001) — Prepublished version

183

B.3.7.27.2 Flow graph segment <getcall-without-sender>

The flow graph segment<get cal | - wi t h- sender > infigure B.76 defines the execution of aget cal | operation

without af r omclause.

segment <getcal | - wi t hout - sender >

portld); // Reference to actual

/1 Port queue is enpty,

mat chi ngSpec, NULL)) {

let {
portRef := CGET-PORT(Entity,
port
if (PortRef first() == NULL) {
no mat ch
Entity. NEXT- CONTROL(f al se) ;
el se {
if (MATCH | TEM portRef first(),
/1 The call in the queue matches
Entity. NEXT- CONTRQ (true);
else {
does not nmatch
Entity. NEXT- CONTROL (f al se) ;

/1 The call in the queue

getcal | -wi t hout-sender
(portI D, matchi ngSpec)

true

<recei ve-assi gnnent >

/'l optional
/] assi gnent

val ue

renove-fromport
(portld)

/1 Renoval of
GET- PORT(Entity,

RETURN:

recei ved call

Entity. NEXT- CONTROL(true);

from port
portld).dequeue();

fal se

v

Figure B.76: Flow graph segment <getcall-without-sender>

ITU-T Z.140 (07/2001) — Prepublished version

184

B.3.7.28 Getreply operation

The syntactical structure of theget r epl y operationis:

<portld>. getreply (<matchingSpec>) [from <conponent expressi on>]

The optional <conponent _expr essi on> inthef r omclauserefersto the sender of thereply that is handled by
theget r epl y operation. It may be provided in form of avariable value or the return value of afunction, i.e, itis

-> [<assi gnnent Part >]

assumed to be an expression. The optional <assi gnmrent Part > denotes the assignment of the received information
if the reply matches to the matching specification<mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <get r epl y- op> infigure B.77 defines the execution of aget r epl y operation.

segment <getrepl y-op> l

<getrepl y-w th-sender>
R

<getrepl y-w t hout- sender >

/1 Distinction due to the optional
/'l fromcl ause

v

Figure B.77: Flow graph segment <getreply-op>

ITU-T Z.140 (07/2001) — Prepublished version

185

B.3.7.28.1 Flow graph segment <getreply-with-sender>

The flow graph segment<get r epl y- wi t h- sender > infigure B.78 defines the execution of aget r epl y
operation where the sender is specified in form of an expression.

segnent

<getreply-with-sender>

<expression> [T

/'l The Expression shall evaluate
/1 to a component reference. The
/'l result is pushed onto the val ue stack

let {
portRef := CGET-PORT(Entity, portld); // Reference to actual
port
sender := Entity.VALUESTACK top(); // Reference to sender
entity
Entity. VALUE STACK. pop(); /1
del eting sender reference
if (PortRef first() == NULL) { /1 Port queue is enpty,
no mat ch
Entity. NEXT- CONTROL (f al se) ;
el se {
if (MATCH ITEM portRef . first (), matchingSpec,
sender)) {
/'l The reply i n the queue matches
Entity. NEXT- CONTRQL (true);
}
else { /1 The reply in the
queue does not match
Entity. NEXT- CONTROL(f al se) ;
}
}
RETURN;
1 /1 End of scope of portRef and sender

getrepl y-w t h- sender
(port! D, matchi ngSpec)

*(1)

<recei ve-assi gnnent >

/1 optional value
/] assi gnent

renove-fromport
(portld)

/'l Renoval of received reply from port
GET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN,;

fal se ‘

v

Figure B.78: Flow graph segment <getreply-with-sender>

ITU-T Z.140 (07/2001) — Prepublished version

186

B.3.7.28.2

Flow graph segment <getreply-without-sender>

The flow graph segment<get r epl y- wi t h- sender > infigure B.79 defines the execution of aget r epl y
operation without af r omclause.

segnment <getreply-w t hout-sender>

let {

portRef .= GET-PORT(Entity, portld); // Reference to actual
port

if (PortRef first() == NULL) { /1 Port queue is enpty,
no mat ch

Entity. NEXT- CONTROL(f al se) ;

el se {
if (MATCH | TEM portRef first (), matchingSpec, NULL)) {
/'l The reply in the queue matches
Entity. NEXT- CONTRQ (true);

el se { /1 The reply in the queue
does not match

Entity. NEXT- CONTROL (f al se) ;

getrepl y-wi t hout- sender
(portI D, matchi ngSpec)

true

<recei ve-assi gnnent >

/'l optional val ue
/] assi gnent

renove-fromport
(portld)

/1 Rermoval of received reply from port
GET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);
RETURN;

fal se

v

Figure B.79: Flow graph segment <getreply-without-sender>

ITU-T Z.140 (07/2001) — Prepublished version 187

B.3.7.29 Goto statement

The syntactical structure of the got o statement is:

goto <l abel | d>

The flow graph segment <goto-stmt> in figure B.80 defines the execution of the got o statement.

segment <got o- stnt >

/1 *nop’ means ‘no operation’
Entity, NEXT- CONTROL(true);
nop RETURN

A\

<l abel | d>

Figure B.80: Flow graph segment <goto-stmt>

NOTE: The<labelld> parameter of the got o statement indicates the transfer of control to the place at which a
label <l abel | d> isdefined (see also clause B.3.7.31).

B.3.7.30 If-else statement
The syntactical structure of thei f -el se-st at enent is:
i f (<bool ean_expressi on>) <statenent-bl ock;>
[el se <statenent-bl ocky>]
Theelsepart of thei f -el se statement is optional.

The flow graph segment <if-else-stmt> in figure B.81 defines the execution of thei f -el se statement.

segnent <if-else-stnt> l
<i f-with-el se-branch> /1 An if-else state may or
/1 may not have an el se
<i f-wi t hout-el se-branch> /'l branch.
v

Figure B.81: Flow graph segment <if-else-stmt>

ITU-T Z.140 (07/2001) — Prepublished version 188

B.3.7.30.1 Flow graph segment <if-with-else-branch>

Figure B.82 describes the execution of ani f -el se statement that includes an else branch. The
<st at ement - bl ock> inthet r ue branch of the decision nodein figure B.82, corresponds to
<st at ement - bl ock;> inthe syntactical structure above. The other <st at ement - bl ock> corresponds to

<st at ement - bl ock,> above.

segrment <if-wth-else-branch> i

<expressi on>

if (Entity.VALUE- STACK.top()== true) {
Entity. NEXT- CONTROL(t r Ue) ;

el se {
Entity. NEXT- CONTROL(true);

Entity. VALUE- STACK pop();

RETURN;
true fal se
<st at enent- bl ock> <st at enent- bl ock>
v

Figure B.82: Flow graph segment <if-with-else-branch>

ITU-T Z.140 (07/2001) — Prepublished version

189

B.3.7.30.2 Flow graph segment <if-without-else-branch>

Figure B.83 describes the execution of ani f -el se statement that includes no else branch. The
<st at ement - bl ock> inthet r ue branch of the decision nodein figure B.82, corresponds to
<st at ermrent - bl ock;> inthe syntactical structure above.

segnent <jf-w thout -el se-branch> i

<expr essi on>

if (Entity.VALUE STACK top()== true) {
Entity. NEXT- CONTRO (t T U€) ;

el se {
Entity. NEXT- CONTROL(true);

deci si on }
Entity. VALUE- STACK pop();
RETURN;

true

<st at enent- bl ock>

@

v

Figure B.83: Flow graph segment <if-without-else-branch>

B.3.7.31 Label statement
The syntactical structure of thel abel statementis:
| abel <l abel | d>

The flow graph segment <label-stmt> in figure B.84 defines the execution of the| abel statement.

segnent <l abel -stnt >

<l abel | d>)‘

/1 ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);
nop . | RETURN

v

Figure B.84: Flow graph segment <label-stmt>

NOTE: The<labelld> parameter of the label statement indicates the possibility that alabel can bethetarget for a
jump by means of agot o statement (see also clause B.3.7.29).

ITU-T Z.140 (07/2001) — Prepublished version 190

B.3.7.32 Log statement
The syntactical structure of thel og statement is:
|l og (<infornmal-description>)

The flow graph segment <log-stmt> in figure B.85defines the execution of thel og statement.

segnment <l og-stnt>
/1 inscription ‘nop’ neans ‘no operation’
Entity. NEXT- CONTROL(true);

nop RETURN

v
Figure B.85: Flow graph segment <log-stmt>

NOTE: The<informal description> parameter of the |l og statement has no meaning for the operational semantics
and istherefore not represented in the flow graph segment.

B.3.7.33 Map operation

The syntactical structure of athe map operationis:

map(<conmponent _expr essi on>. <port | dl>, system <port| d2>)

Theidentifiers<port | d1> and<port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portld1> belongsis referenced by means of the component
reference<conponent _expr essi on>. Thereference may be stored in variables or is returned by a function. For

simplicity it is considered to be an expression that eval uates to a component reference. Thus, the value stack is used for
storing the component reference.

NOTE: Thenmap operation does not care whether the sy st em<portld> statement appears as first or as second
parameter. For simplicity it is assumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <nap- op> shown in figure B.86.

segnent <map-op> l

let {
. compl = Entity.VALUE STACK. ;
<expression> ™ /1 Locyal vari abl e toLos-E(o)re t he owner
of portldl
Entity. VALUE- STACK pop();

) ADD OON(conpl, portldl, SYSTEM portld2)

map-op } /'l end of scope of conpl

(pOI’“dl, portldz)

Entity NEXT- CONTROL (true):

Figure B.86: Flow graph segment <map-op>

ITU-T Z.140 (07/2001) — Prepublished version 191

B.3.7.34 MTC operation
The syntactical structure of thent ¢ operationis:
ntc

The flow graph segment <mtc-op> in figure B.87 defines the execution of the nt ¢ operation.

segnment <ntc-op>
Entity. VALUE- STACK. push(MIC) ;
Entity. NEXT- CONTROL(t rue) ;

m C- Op RE"UH\L

v

Figure B.87: Flow graph segment <mtc-op>

B.3.7.35 Raise operation
The syntactical structure of ther ai se operationis:
<portld>.raise (<exceptSpec>) [to <conmponent expression>]

The optional <conponent _expr essi on> intheto clauserefersto the receiver entity. It may be provided in form
of avariable value or the return value of afunction.

The flow graph segment <r ai se- op> infigure B.88 defines the execution of ar ai se operation.

segnent <raise-op> l
<repl y-wi t h-recei ver -op>
1@ S . /1l Areply operation may or nmay not
<repl y-w t hout -r ecei ver- op> /'l have a receiver description.
v

Figure B.88: Flow graph segment <raise-op>

ITU-T Z.140 (07/2001) — Prepublished version 192

B.3.7.35.1 Flow graph segment <raise-with-receiver-op>

The flow graph segment <r ai se-wi t h-r ecei ver - op> infigure B.89 defines the execution of ar ai se operation

where the receiver is specified in form of an expression.

segnment <rai se-w th-receiver-op>

v

/1 The expression shall eval uate

<expressi on> /1 to a conponent reference

rai se-with-receiver -op
(portld,

except Spec)

let {
receiver := Entity VALUE- STACK. top();
renotePort := GET-REMOTE- PORT(Entity, portld, receiver);

if (remotePort == NULL) {
DYNAM C- ERROR; // Renote port cannot be found

if (remotePort == SYSTEM {

/1 Port is mapped onto a port of the test system The
/'l reception of the exception by the SUT is outside
/'l the scope of the operational semantics

el se {
renmot ePort . enqueue (CONSTRUCT- | TEM(Entity, rai se,
sendSpec));
Entity. VALUE- STACK pop(); /'l clean value stack

} /1 end of scope of receiver and renotePort

Entity. NEXT- CONTRQL (true);
RETURN;

Figure B.89: Flow graph segment <raise-with-receiver-op>

ITU-T Z.140 (07/2001) — Prepublished version

193

B.3.7.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <r ai se- wi t hout - r ecei ver - op> in figure B.90 defines the execution of araise
operation without t o-clause.

segment <rai se-without -recei ver-op>

rai se-w thout -recei ver- op
(portld, exceptSpec)

let {
renotePort := GET-REMOTE- PORT(Entity, portld, NONE);

if (remotePort == NULL) {
DYNAM G ERROR; |/ Renote port cannot be found

i}f (remotePort == SYSTEM ({

/1 Port is mapped onto a port of the test system The
/'l reception of the exception by the SUT is outside
/'l the scope of the operational semantics

}
el se {
renot ePort . enqueue(CONSTRUCT- 1 TEM(Entity, rai se,
sendSpec));
Entity. VALUE- STACK pop(); /'l clean val ue stack

} /1 end of scope of renotePort

Entity. NEXT- CONTRO (true);
RETURN;

v

Figure B.90: Flow graph segment <raise-without-receiver-op>

ITU-T Z.140 (07/2001) — Prepublished version

194

B.3.7.36 Read timer operation
The syntactical structure of ther ead timer operationis:

<tinerld>. read

The flow graph segment <read-timer-op> in figure B.91 defines the execution of ther ead timer operation.

segnent
<read-tiner-op>

/1 The timer reference <tinmerld> is copiedinto
/'l the node attribute ‘tinerld
Entity. VALUE- STACK push(
Entity.timerld ACT-DURATION — Entity.tinerld. TIM=
LEFT)
Entity, NEXT- CONTROL (true);
RETURN:

read-tiner-op
(timrld)

Figure B.91: Flow graph segment <read-timer-op>

B.3.7.37 Receive operation
The syntactical structure of ther ecei ve operationis:
<portld>.receive (<matchingSpec>) [from <conponent expressi on>] -> [<assignnent Part >]

The optional <conponent _expr essi on> inthef r omclause refersto the sender entity. It may be provided in
form of avariable value or the return value of afunction, i.e., it is assumed to be an expression. The optional

<assi gnnent Par t > denotes the assignment of received information if the received message matches to the
matching specification <mat chi ngSpec> and to the (optional) f r omclause.

The flow graph segment <r ecei ve- op> infigure B.92 defines the execution of ar ecei ve operation.

segnent <recei ve-op> l
<recei ve- wi t h- sender >
)) ... // Distinction due to the optional
<recei ve-wi t hout-sender > /'l fromcl ause
v

Figure B.92: Flow graph segment <receive-op>

ITU-T Z.140 (07/2001) — Prepublished version 195

B.3.7.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <r ecei ve- wi t h- sender > in figure B.93 defines the execution of ar ecei ve operation

where the sender is specified in form of an expression.

segnent
<recei ve-w t h- sender >

. . .1 /1 The Expression shall evaluate
<expressi on> /1 to a conmponent reference. The
/1 result is pushed onto VALUE STACK

recei ve-wi t h-sender
(port!| D, matchi ngSpec)

let {
portRef := GET-PORT(Entity, portld); // Reference to actual
port
sender : = Entity. VALUE- STACK. top(); // Reference to sender
entity
Entity. VALUE- STACK, pop(); /1
del eting sender reference
if (PortRef first() == NULL) { /1 Port queue is enpty,
no match
Entity. NEXT- CONTRO(fal se);
el se {
if (MATCH-ITEM(portRef .first(), matchingSpec,
sender)) {
/1 The nessage in the queue matches
Entity. NEXT- CONTRO(true);
el se { /1 The nessage in the
queue does not match
Entity. NEXT- CONTRO(fal se);
}
}
1 /1 End of scope of portRef and sender

<recei ve-assi gnnent >

renove-fromport
(portld)

/'l optional val ue
/] assignent

RETURN:

/'l Renoval of received nmessage from port
GET- PORT(Entity, portld).dequeue();

Entity. NEXT- CONTROL(true);

false‘ v

Figure B.93: Flow graph segment <receive-with-sender>

ITU-T Z.140 (07/2001) — Prepublished version

196

B.3.7.37.2 Flow graph segment <receive-without-sender>

The flow graph segment <r ecei ve- wi t h- sender > in figure B.94 defines the execution of ar ecei ve operation

without af r omclause.

segment <recei ve- w t hout - sender >

let {

port

no mat ch

el se {

portRef := CGET-PORT(Entity,

if (PortRef first() == NULL) {

Entity. NEXT- CONTROL (f al se) ;

portld); // Reference to actual

/1 Port queue is enpty,

if (MATCH | TEM portRef first (), matchingSpec, NULL)) {

else {
gqueue does not match

/1 The nessage in the queue natches

Entity. NEXT- CONTRA (true);

/1 The nessage in the

Entity. NEXT- CONTROL (f al se) ;

recei ve-w t hout - sender
(portI D, matchi ngSpec)

true

<recei ve-assi gnnent >

(portld)

renmove-fromport

/'l optional val ue
/] assi gnent

GET- PORT(Entity,

RETURN:

/1 Removal of received nessage from port

portld).dequeue();

Entity. NEXT- CONTROL(true);

fal se l
v

Figure B.94: Flow graph segment <receive-without-sender>

ITU-T Z.140 (07/2001) — Prepublished version

197

B.3.7.37.3 Flow graph segment <receive-assignment>

The flow graph segment<r ecei ve- assi gnment > infigure B.95 definesthe retrieval of informationfrom

received messages and their assignment to variables.

segnent
<r ecei ve- assi gnment > let {
portRef := GET-PORT(Entity, portld);

/'l Reference to actual port

Entity);

} /'l End of scope of portRef

RETRI EVE- | NFQ(port Ref .first(), assignnmentPart,

recei ve- assi gnment
(portld, assignmentPart)

v

Figure B.95: Flow graph segment <receive-assignment>

B.3.7.38 Reply operation

The syntactical structure of ther epl y operationis:

<portld>.reply (<replySpec>) [to <conponent expression>]

The optional <conponent _expr essi on> intheto clauserefersto thereceiver entity. It may be provided in form

of avariable value or the return value of afunction.

The flow graph segment <r epl y- op> infigure B.96 defines the execution of ar epl y operation.

segnent <reply-op> l
<repl y-wi t h-recei ver -op>
xR] /'l Areply operation may or nmay not
<repl y- wi t hout -r ecei ver- op> /'l have a receiver description.
v

Figure B.96: Flow graph segment <reply-op>

ITU-T Z.140 (07/2001) — Prepublished version

198

B.3.7.38.1 Flow graph segment <reply-with-receiver-op>

The flow graph segment <r epl y-wi t h-r ecei ver - op> infigure B.97 defines the execution of ar epl y operation
where the receiver is specified in form of an expression.

segnent <reply-wth-receiver- op>

v

<expr essi on>

/'l The expression shall evaluate
/1 to a conmponent reference

(portld, replySpec)

repl y-wi t h-recei ver -op

let {

receiver := Entity. VALUE- STACK, top();
renotePort := GET-REMOTE- PORT(Entity, portld, receiver);
if (renmotePort == NULL) {

*** DYNAM C- ERROR***; // Renote port cannot be found

}

if (renptePort == SYSTEM {
/1 Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/'l the scope of the operational senmantics

}

else { // sending of reply
renot ePort. enqueue (CONSTRUCT- | TEM(Entity, reply,

repl ySpec));
Y/

end of scope of receiver and renotePort

Entity. VALUE STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTROL(tr ue):
RETURN:

Figure B.97: Flow graph segment <reply-with-receiver-op>

ITU-T Z.140 (07/2001) — Prepublished version

199

B.3.7.38.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <r epl y- wi t hout - r ecei ver - op> in figure B.98 defines the execution of areply
operation without t o-clause.

segment <repl y-wi t hout -recei ver- op>

repl y-wi thout -recei ver- op
(portld, replySpec)

let {
renotePort := GET-REMOTE- PORT(Entity, portld, NONE);

if (remotePort == NULL) {
DYNAM G- ERROR; |/ Renote port cannot be found

i}f (remotePort == SYSTEM ({
/1 Port is mapped onto a port of the test system
/'l reception of the reply by the SUT is outside
/1 the scope of the operational senmantics

else { // sending of reply
renot ePort . enqueue (CONSTRUCT- 1 TEM(Entity, reply,

repl ySpec));
} /1 end of scope of renotePort
Entity. VALUE STACK. pop(); /'l clean val ue stack

Entity. NEXT- CONTRQ (true);
RETURN;

v

Figure B.98: Flow graph segment <reply-without-receiver-op>

ITU-T Z.140 (07/2001) — Prepublished version

B.3.7.39 Return statement

The syntactical structure of the return statement is:
return [<expression>]

The optional <expr essi on> describes a possible return value of afunction. The execution of areturn statement
means that the control leaves the actual scope unit, i.e., variables and timers only known in this scope have to be deleted
and the value stack has to be updated. A r et ur n statement hasthe effect of ast op operation, if it isthe last statement

in abehaviour description.

NOTE: Dueto thereplacement of shorthand notations Test cases and module control will always end with a
st op operation. Only other test components may terminate with ar et ur n statement.

The flow graph segment <return-stmt> in figure B.99 defines the execution of ar et ur n statement.

segnment <retun-stnt> l

<return-wth-val ue>
R
<return-wi t hout-val ue>

A return statenment nay or nay
not return a val ue

/1
11

v

Figure B.99: Flow graph segment <return-stmt>

ITU-T Z.140 (07/2001) — Prepublished version 201

B.3.7.39.1

Flow graph segment <return-with-value>

The flow graph segment <r et ur n- wi t h- val ue> in figure B.100 defines the execution of ar et ur n that returnsa
value specified in form of an expression.

segment

<return-wt h-val ue>

v

<expr essi on>

/'l The expression shall eval uates
/1 to the return val ue

return-wth-val ue

let {
return-value := Entity. VALUE STACK top();

Entity. DEL-VAR SCOPE(); // The actual variable scope is deleted
Entity DEL-TIMER SCOPE(); // The actual timer scope is deleted
Entity. VALUE- STACK cl ear-until (MARK);
Entity. VALUE- STACK push(return-val ue);

} // end of scope of return-val ue

Entity. CONTRA - STACK pop(); // return address is lying on the
/'l control stack

if (Entity. CONTROL- STACK. top() == NULL) { // returnis a stop
/' Updat e of test case verdict
if (Entitiy EEVERDICT == fail or TC-VERDICT == fail) {
TG VERDICT : = fail; }

el se {
if (Entity. E-VERDICT == inconc or TC-VERDI CT == inconc) {
TC-VERDI CT : = inconc; }
el se {
if (Entity E-VERDICT == pass or TC-VERDICT == pass) {
IG VERDICT : = pass; }
) }
DONE : = DONE+1; // update of gl obal DONE vari abl e
AllEntities, del ete(Entity); /1 Deletes Entity Ref. from
Al Entities
DEL- ENTI TY(Entity): // Deletion of Entity
}
RETURN:

Figure B.100: Flow graph segment <return-with-value>

ITU-T Z.140 (07/2001) — Prepublished version

202

B.3.7.39.2 Flow graph segment <return-without-value>

The flow graph segment <r et ur n- wi t hout - val ue> infigure B.101 defines the execution of ar et ur n statement
that returns no value.

segnent <return-wthout-val ue>

return-wth-val ue

Entity.DEL- VAR-SCOPE(); // The actual variable scope is deleted
Entity.DEL- TI MER-SCOPE(); // The actual tiner scope is deleted
Entity. VALUE STACK. clear-until(MARK) ;

Entity. CONTROL- STACK pop(); // return address is lying on the
/1 control stack

if (Entity. CONTROL- STACK. top() == NULL) { // returnis a stop
// Update of test case verdict
if (Entitiy. E-VERDICT == fail or TC-VERDICT == fail) {
TG VERDICT : = fail ; }

el se {
if (Entity, E- VERDI CT == inconc or IC-VERDICT == inconc) {
IC-VERDICT : = inconc; }
el se {
if (Entity. E-VERDICT == pass or IC-VERDICT == pass) {
IC VERDICT : = pass; }
) }
DONE : = DONE+1; // update of gl obal DONE variable
Al Entities. del ete(Entity); /] Deletes Entity Ref. from
Al Entities
DEL- ENTI TY(Entity): /1 Deletion of Entity
}
RETURN;

Figure B.101: Flow graph segment <return-without-value>

ITU-T Z.140 (07/2001) — Prepublished version 203

B.3.7.40 Running-all-components operation

Ther unni ng-al | -conponent s operation refersto the usage of the keywordsal | conponent s inther unni ng

component operation (Clause 42). Ther unni ng-al | -conponent s operation can only be called by themnt c. It
allows checking whether all parallel test components of atest case are running. The syntactical structure of the
runni ng-al | -conponent s operationis:

al | component. running

The execution of ther unni ng-al | -conponent s operation is defined by the flow graph segment
<running-dl-comp-op>in figure B.102.

segnent

<runni ng- al | -conp- op> E(Entity 1= MIQ {

*** DYNAM C- ERROR* * *

/1 Entity is not allowed to call the
operation
runni ng- al | -conp-op

}
if (DONE == 0) {
/'l no ptc has yet term nated

Entity. VALUE- STACK push(true);

el se {
Entity. VALUE- STACK push(fal se);

}
Entity. NEXT- CONTROL (true);
RETURN:

v

Figure B.102: Flow graph segment <running-all-comp-op>

ITU-T Z.140 (07/2001) — Prepublished version

204

B.3.7.41 Running-any-component operation

Ther unni ng-any-conponent operation refers to the usage of the keywordsany conponent inther unni ng
component operation (Clause 42). Ther unni ng-any-conponent s operation can only be called by thent c. It
alows checking if at least one parallel test component of atest caseisstill running. The syntactical structure of the

runni ng-any-conponent s operationis:

any conponent.running

The execution of ther unni ng-any-conponent s operation is defined by the flow graph segment

<running-any-comp-op> in figure B.103.

segnent
<runni ng- any- conp- op>

if (Entity 1= MIQ {
*** DYNAM C- ERROR* * *
/1 Entity is not allowed to call the
operation
runni ng- any-conp-op ... }
if (AllEntities, length() > 2) {
/1 at least on parallel test
/1 conponent is alive

Entity. VALUE- STACK push(true);

else {
Entity. VALUE- STACK push(fal se);

}
Entity. NEXT- CONTROL(tr ue);

v

Figure B.103: Flow graph segment <running-any-comp-op>

ITU-T Z.140 (07/2001) — Prepublished version

205

B.3.7.42 Running component operation

The syntactical structure of ther unni ng component operationis:

<conponent _expressi on>. runni ng

Ther unni ng component operation checks whether acomponent is running or has stopped. Using a component
reference identifies the component to be checked. The reference may be stored in avariable or be returned by a
function. For simplicity thisis considered to be an expression that evaluates to a component reference.

The flow graph segment <running-component-op> in figure B.104 defines the execution of ther unni ng component

operation.

segment
<r unni ng- conponent - op>

<expr essi on>

/| The expression shall evaluate
to a conponent reference. The
result is pushed onto VALUE STACK

runni ng-conponent-op

(EXLSTINQ Entity. VALUE STACK. top())
Entity. VALUE- STACK pop();
Entity. VALUE- STACK push(true);

el se {
Entity. VALUE- STACK pop();
Entity. VALUE- STACK push(fal se);
}

Entity. NEXT- CONTRO (true);
RETURN;

true) {

v

Figure B.104: Flow graph segment <running-component-op>

ITU-T Z.140 (07/2001) — Prepublished version

206

B.3.7.43 Running timer operation
The syntactical structure of ther unni ng timer operationis:

<tinmerld>. running

The flow graph segment <running-timer-op> in figure B.105 defines the execution of ther unni ng timer operation.

segment <runni ng-ti ner-op>

runni ng-ti mer-op
(timerld)

el se

/1 The timer reference <tinerld> is copied

/1 into the node attribute ‘tinmerld

if (Entity. timerld. STATUS == RUNNING {
Entity. VALUE STACK push(true);

{
Entity. VALUE STACK. push(fal se);

}
Entity. NEXT- CONTROL(t r ue);
RETURN

A\

Figure B.105: Flow graph segment <running-timer-op>

B.3.7.44 Send operation

The syntactical structure of the send operationis:

<portld>. send (<send-spec>) [to <conponent _expression>]

Theoptional <conponent _expr essi on> intheto clauserefersto the receiver entity. It may be provided in form

of avariable value or the return value of afunction.

The flow graph segment <send-op> in figure B.106 defines the execution of asend operation.

segnment <send- op> l

<send-wi t h-recei ver- op>
R

<send- wi t hout - r ecei ver- op>

/
/

/
/

A send operation may or may not
have a receiver description.

v

Figure B.106: Flow graph segment <send-op>

ITU-T Z.140 (07/2001) — Prepublished version

B.3.7.44.1 Flow graph segment <send-with-receiver-op>

The flow graph segment<send-wi t h-r ecei ver - op> infigure B.107 defines the execution of asend operation

where the receiver is specified in form of an expression.

segnent <send- with-receiver-op>

N . /1 The expression shall evaluate
<expressi on> /1 to a conponent reference

send-wi th-receiver-op
(portld, sendSpec)

let {
receiver := Entity. VALUE- STACK, top();
renotePort := GET-REMOTE- PORT(Entity, portld, receiver);

if (remotePort == NULL) {
DYNAM C- ERROR; // Renote port cannot be found

i}f (renmotePort == SYSTEM {

/1 Port is nmapped onto a port of the test system
/'l reception of the message by the SUT is outside
/'l the scope of the operational semantics

}
el se {
renmot ePor t . enqueue (CONSTRUCT- I TEM(Entity, send,
sendSpec));
Entity. VALUE- STACK pop(); /'l clean val ue stack

} /1 end of scope of receiver and renotePort

Entity. NEXT- CONTRA (true);
RETURN;

v

Figure B.107: Flow graph segment <send-with-receiver-op>

ITU-T Z.140 (07/2001) — Prepublished version

208

B.3.7.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment<send- wi t hout - r ecei ver - op> in figure B.108 defines the execution of asend
operation without t o-clause.

segment <send- wi t hout - r ecei ver-op>

send- wi t hout -recei ver- op
(portld, sendSpec)

let {
renotePort := GET-REMOTE- PORT(Entity, portld, NONE);

if (renmptePort == NULL) {
DYNAM G ERROR; |/ Renote port cannot be found

i}f (remotePort == SYSTEM ({

/1 Port is mapped onto a port of the test system
/'l reception of the nessage by the SUT is outside
/'l the scope of the operational semantics

}
el se {
renot ePor t . enqueue (CONSTRUCT- | TEM(Entity, send,
sendSpec));
Entity. VALUE- STACK pop(); /'l clean val ue stack

} /1 end of scope of renotePort

Entity. NEXT- CONTROL(tr ue):
RETURN:

v

Figure B.108: Flow graph segment <send-without-receiver-op>

B.3.7.45 Self operation

The syntactical structure of thesel f operationis:
sel f

The flow graph segment <self-op> in figure B.109 defines the execution of the sel f operation.

ITU-T Z.140 (07/2001) — Prepublished version

209

segnent <sel f- op>
Entity. VALUE- STACK push(Entity);
Entity. NEXT- CONTRA (true);

sel f S0P e—— REBJRN

Figure B.109: Flow graph segment <self-op>

B.3.7.46 Start component operation
The syntactical structure of thest art component operationis:
<conponent _expression>.start(<function-name>(<act-par-desc:> .., <act-par-descn>))

Thest art component operation starts anewly created component. Using a component reference identifies the
component to be started. The reference may be stored in avariable or be returned by a function. For simplicity thisis
considered to be an expression that evaluates to a component reference.

The<f unct i on- name> denotes to the name of the function that defines the behaviour of the new component and
<act - par - descr >, ..., <act - par - descr ,> provide the description of the actual parameter val ues of

<f unct i on- name>. In case of avalue parameter the description of an actual parameter may be provided in form of
an expression that has to be evaluated before the call can be executed. The handling of formal and actual parameter is
similar to their handling in function calls (Clause B.3.7.22).

The flow graph segment <start-component-op> in figure B.110 defines the execution of the st ar t component
operation. The start component operation is executed in four steps. In the first step acall record is created. In the second
step the actual parameter values are calculated. In the third step the reference of the component to be started isretrieved,
and, in the fourth step, control and call record are given to the new component.

ITU-T Z.140 (07/2001) — Prepublished version 210

segnent <start -conponent -op>

construct-cal | -record
(function- nane)

Entity. VALUE STACK. push(NEW CALL- RECORD(f unct i on- nane));
Entity. NEXT- CONTROL(true);
RETURN,;

<val ue- par-cal cul ati on>

/'l For each pair (<f-par-ldi> <act-paraneter-desci>) the
/1 value of <act-paraneter-desci is calculated and

/| assigned to the corresponding field <f-par-1d>

/1 in the call record. The call record is assuned to be
/1 the top elenment in the val ue stack.

v

<ref-var-par-calc> OR
<ref-timer-par-cal c>>

v

/'l Retrieves the locations for variables and tiners
/'l used as reference paraneters

<expr essi on>

control -trans-to-conmponent
(function- nane)

-~
~—

The expression shall evaluate to a conponent reference.
It refers to t he conponent to be started

-~

| et

RETURN-

toBeStarted = Entity. VALUE STACK. top();

/] toBeStarted is a local variable that stores the
/1 identifier of the conponent to be started

Entity. VALUE- STACK pop():

/'l Renoval of conponent reference. Afterwards the
// call record is on top of the value stack

toBeSt art ed. VALUE- STACK push(Entity. VALUE STACK. top();

/1 Qll record is transferred to toBeStarted.

Ent i ty. VALUE- STACK pop():

/'l Rermoval of the call record fromthe val ue stack
/1 of the starting conponent (= Entity).

toBeSt art ed, CONTROL- STACK, push (GET- FLOW GRAPH(f unct i on- nane)) ;

/1l Control stack of toBeStarted is set to
/'l the start node of its behaviour.

toBeSt art ed. STATUS : = ACTI VE

/1 Control is given to toBeStarted

} // end of scope for variable toBeStarted

Entity. NEXT- CONTROL(true);

v

Figure B.110: Flow graph segment <start-component-op>

ITU-T Z.140 (07/2001) — Prepublished version

211

B.3.7.47 Start port operation
The syntactical structure of thest art port operationis:

<portld>. start

The flow graph segment <start-port-op> in figure B.111 defines the execution of the st ar t port operation.

segnent <start -port -op>

/1 The port name <portld> is copied

/1 into the node attribute ‘portld

st a(r;c;rpt"lré)"’p """ clear (GET- PORT(Entity, portid));
CGET-PORT(Entity, portld). STATUS : = STARTED

Entity. NEXT- CONTROL(true);
RETURN

\4

Figure B.111: Flow graph segment <start-port-op>

B.3.7.48 Start timer operation
The syntactical structure of the st ar t timer operationis:
<tinmerld>. start [(<float_ expression>)]

The optional <float_expression> parameter of thetimer st ar t operation denotes the optional duration with which the
timer shall be started. It is an expression that shall evaluateto avalue of typef | oat . If provided, the expression shall
be evaluated beforethe st ar t operation isapplied. The result of the evaluation is pushed onto the VALUE-STACK of
Entity.

The flow graph segment <start-timer-op> in figure B.112 defines the execution of the st ar t timer operation.

segnent <start-tiner-op> L

start-timer-op-default

xR /1 Atimer may be started with
start-timer-op-duration /1 a given duration, or with a
/1 default duration

v

Figure B.112: Flow graph segment <start-timer-op>

ITU-T Z.140 (07/2001) — Prepublished version 212

B.3.7.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <start-timer-op-default> in figure B.113 defines the execution of the st ar t timer operation

with the default value.

segnent <start-timer-op-default>

start-timer-op-default
(timerld)

/'l The tinmer reference <tinerld> is copied
// into the node attribute'tinerld

if (Entity.tinmerld. DEE-DURATION == NONE) {
*** DYNAM C- ERROR* * * /1 Tinmer has no default duration

el se
Entity. TIMER-SET(tinerld, STATUS, RUNNING :

Entity. TIMER-SET(tinerld, ACT-DURATION Entity.tinerld. DEF
DURATI QN :

}
Entity. NEXT- CONTROL (true);
RETURN;

Entity TIMER-SET(timerld, TIME-LEFT, Entity.timerld. DEE- DURATI ON) ;

v

Figure B.113: Flow graph segment <start-timer-op-default>

ITU-T Z.140 (07/2001) — Prepublished version

213

B.3.7.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <start-timer-op-duration> in figure B.114 defines the execution of thest ar t timer operation
with aprovided duration.

segment <start-timer-op-duration>

<expr essi on>

/1 The expression shall eval uate
/'l to a float. The result is pushed
/'l onto VALUE- STACK

start-tiner-op-duration
(timerld)

/1 The tinmer reference <tinerld> is copied into the node
/] attribute ‘tinmerld

Entity.TLMER SET(timerid, STATUS RUNNING);
Entity. TIMER SET(timerld, ACT-DURATION, Entity. VALUE STACK.top());
Entity. TIMER SET(timerid, TIME-LEFT, Entity. VALUE STACK top());

Entity. VALUE STACK. pop(); /'l cl ean VALUE- STACK

Entity. NEXT-CONTROL(true);
RETURN:

\4

Figure B.114: Flow graph segment <start-timer-op-duration>

ITU-T Z.140 (07/2001) — Prepublished version 214

B.3.7.49 Statement block

The syntactical structure of a statement block is:

{ <statenent;> ..; <statenent,> }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When |leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

The flow graph segment <st at enrent - bl ock> infigure B.115 defines the execution of a statement block.

segnent <st at enent -

Entity. | N T- VAR SCOPE();
Entity. !N T-TI MER SOOPE() ;
Entity. VALUE STACK. push(MARK) ;

ent er - scope-unit

Entity. NEXT- CONTROL(true);
RETURN;

LI ST HAS TO BE PROVI DED

/1 List of all possible statenents

Entity. DEL- VAR- SCOPE() ;
Entity. DEL- TI MER- SCOPE() ;
Entity. VALUE STACK. cl ear -uni t | (MARK) ;

exi t-scope- unit Entity. NEXT- CONTROL(true);
RETURN,

v

Figure B.115: Flow graph segment <statement-block>

ITU-T Z.140 (07/2001) — Prepublished version 215

B.3.7.50 Stop operation
The syntactical structure of the st op entity operationiis:
stop
The effect of the stop operation depends on the entity that executes the stop operation:

a) If st op is performed by the module control, the test campaign ends, i.e., all test components and the module
control disappear from the modul e state.

b) If thest op operation isexecuted by thent c, all parallel test components and the nt ¢ stop execution. The
global test case verdict is updated and pushed onto the value stack of the module control. Finally, control is
given back to the module control and the nt ¢ terminates.

c) If the stop operation is executed by atest component, the global test case verdict TC-VERDICT and the global
DONE variable are updated. Then the component disappears completely from the module.

The flow graph segment <stop-entity-op> in figure B.116 defines the execution of the st op entity operation.

ITU-T Z.140 (07/2001) — Prepublished version 216

segment <stop-entity-op> ‘

if (Entity == AllEntities first()) { // Entity is nodule control
AllEntities := NULL; AllPorts := NULL; MIC:= NULL;
TC-VERDI CT := none: DONE := Q: Entity := NULL:

el se {
if (Entlty == m
while (Entity 1= NULL) { // Update test case
verdict
stop if (Entitiy. EVERDICT == fail or IGCVERDICT == fail)
{ TGVERDICT : = fail; }
el se {

if (Entity. E-VERDICT == inconc or TC-VERDICT

== inconc) {
TG VERDI CT : = inconc; }
el se {

if (Entity E-VERDICT == pass or IC-
VERDI CT == pass) {
IC VERDICT := pass; }
}

}
Entity := All Entities, next (Entity);

}

Entity := All Entities, next (MIQ;

while (Entity 1= NULL) { /1 Deletion of test
conmponent s

AllEntities, delete(Entity); /1 Del ete Reference
fromA IlEntities
DEL-ENTI TY(Entity);
/'l Deletion of entity
Entity := AllEntities.next (MO ; /1 Next Entity
to delete

}AI IEntities,.first().VALUE STACK, push(TC-VERDI CT);
// TG VERDICT is the result of
the execute operation
AllEntities.first().STACK := ACTIVE;
UPDATE- REMOTE- LOCATI ONS(MIC Al l Entities. first());
AllEntities, delete(MIQ; /1l Delete nmtc reference from

Al lEntities

DEL- ENTI TY(MIC) ; /1 Deletion of
MIC

else { // Entitiy is a normal test conponent
if (Entitiy. EEVERDICT == fail or IGVERDICT == fail) {
TG VERDICT : = fail; }
el se {
if (Entity, EEVERDICT == inconc or TC-VERDI CT ==

Figure B.116: Flow graph segment <stop-entity-op>

ITU-T Z.140 (07/2001) — Prepublished version

217

B.3.7.51 Stop port operation
The syntactical structure of the st op port operationis:

<portld>. stop

The flow graph segment <stop-port-op> in figure B.117 defines the execution of the st op port operation.

segnent <st op- port- op>

/1 The port name <portld> is copied
stop-port-op) . /1 into the node attribute ‘portld

(portld) .
CET-PORT(Entity, portld). STATUS : = STOPPED

Enti ty. NEXT- CONTROL(t r ue) ;
RETURN

v

Figure B.117: Flow graph segment <stop-port-op>

B.3.7.52 Stop timer operation

The syntactical structure of the st op timer operationis:

<tinmerld>. stop

The flow graph segment <stop-timer-op> in figure B.118 defines the execution of the st op timer operation.

segment <stop-tiner-op>

/1 The timer reference <tinerld> is copied
// into the node attribute ‘tinmerld

Entity, TI MER- SET(timerld, STATUS, |DLE);
Entity, TI MER- SET(tinerld, ACT-DURATION, 0.0);
Entity. TI MER- SET(tinerld, TIME-LEFT, 0.0);
Ent i ty. NEXT- CONTROL(t r ue) ;

RETURN

stop-timer-op
(tinmerld)

v

Figure B.118: Flow graph segment <stop-timer-op>

ITU-T Z.140 (07/2001) — Prepublished version 218

B.3.7.53 Sut.action operation
The syntactical structure of thesut .act i on operationis:

sut.action (<informal description>)

The flow graph segment <sut.action-op> in figure B.119 defines the execution of the sut .act i on operation.

seanent <sut. action-opn>

/1 inscription ‘nop’ neans ‘no operation’
Entity, NEXT- CONTRO (true);

nop)¢ e e REBJEN

v

Figure B.119: Flow graph segment <sut.action-op>

NOTE: The<informal description> parameter of thesut . act i on operation has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.
B.3.7.54 System operation
The syntactical structure of the sy st emoperationis:
system

The flow graph segment <system-op> in figure B.120 defines the execution of the sy st emoperation.

segnent <syst emop>

Entity. VALUE- STACK push(system);
Entity. NEXT- CONTROL(true);
systemop) o o RETURN

v

Figure B.120: Flow graph segment <system-op>

ITU-T Z.140 (07/2001) — Prepublished version 219

B.3.7.55 Timeout timer operation
The syntactical structure of thet i meout timer operationis:

<tinmerld>. tineout

The flow graph segment <timeout-timer-op> in figure B.121 defines the execution of thet i meout timer operation.

segment <tineout-timer-op> .) . .

/1 The tiner reference <timerld> is copied

/1 into the node attribute ‘tinerld

if (Entity.tinerld. STATUS == TI MEQUT) {
Entity. TIMER-SET(timerld, STATUS, IDLE);

ti meout-timer-op)- Entity. TIMER-SET(tinerld, ACT-DURATION 0.0);
(timerld) Entity. TIMER-SET(timerld, TIME-LEFT, 0.0);
Entity, NEXT- CONTROL(true);
el se
Entity. NEXT- CONTRO(fal se);
}
RETURN.
fal se true

Figure B.121: Flow graph segment <running-timer-op>

NOTE: Atinmeout operationisembeddedinanal t statement. Depending on whether thet i meout evaluates
totrue orf al se, either execution continues with the statement that followsthet i meout operation
(t r ue branch), or the next alternativeintheal t statement hasto be checked (f al se branch).

ITU-T Z.140 (07/2001) — Prepublished version 220

B.3.7.56 Unmap operation

The syntactical structure of athe unmap operationis:

unmap(<conponent _expr essi on>. <port | d1>, syst em <port| d2>)

Theidentifiers<port | d1> and<port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portld1> belongs s referenced by means of the component
reference <conponent expr essi on>. Thereference may be stored in variables or isreturned by afunction. For
simplicity it is considered to be an expression that evaluates to a component reference. Thus, the value stack is used for
storing the component reference.

NOTE: Theunmap operation does not care whether the sy st em<portld> statement appears as first or as second
parameter. For simplicity it isassumed that it is always the second parameter.

The execution of the unmap operation is defined by the flow graph segment <map- op> shown in figure B.122.

segnment <unnap-op> l

let {
. conpl = Entity.VALUE STACK. top();
<expresston> /1 Local variable to store the owner
of portldl
Entity. VALUE- STACK pop();

. DEL- OON(conpl, portidl, SYSTEM portld2)

unmap- op } /1 end of scope of conpl

(port | dl’ port | dz)

Entity. NEXT- CONTROL(true):

v

Figure B.122: Flow graph segment <unmap-op>

B.3.7.57 Verdict.get operation
The syntactical structure of thever di ct .get operationis:
verdi ct. get

The flow graph segment <verdict.get-op> in figure B.123 defines the execution of thever di ct .get operation.

segnent <verdict. get-op>
/1 E-VERDICT is pushed onto VALUE STACK
Entity. VALUE- STACK push(Entity. E-

.................. VERD C‘I’)’

Entity. NEXT- CONTROL(true);

RETURN

verdi ct.get -op

v

Figure B.123: Flow graph segment <verdict.get-op>

ITU-T Z.140 (07/2001) — Prepublished version 221

B.3.7.58 Verdict.set operation
The syntactical structure of thever di ct .set operationis:

verdi ct.set(<verdi cttype expression>)

NOTE: The<verdicttype expression> parameter of thever di ct .set operation is an expression that shall
evaluateto avalueof typever di ct t ype,i.e,none,pass,i nconc orf ai |l . Theexpressionis
evaluated beforethever di ct .set operationisapplied.

The flow graph segment <verdict.set-op> in figure B.124 defines the execution of thever di ct .set operation.

segnent <verdict. set-op> l

/'l The expression shall evaluate to a val ue
) /1 of type verdicttype.

<expression> | - /1 The result of the evaluation is pushed
/1 onto the VALUE-STACK of Entity

if (Entity.E-VERDICT == fail or
Entity. VALUE STACK. top() == fail) {

verdict.set-op) Entity. EEVERDICT : = fail;
el se {
if (Entity. VALUE- STACK tap() == inconc
or
Entity. E-VERDI CT == inconc) {
Entity.E- VERDI CT := Inconc;
}
el se {
if (Entity. VALUE STACK.top() ==
pass or
Entity. E-VERDICT == pass) {
Entity. E-VERDI CT : = pass;
}
}

}

Entity. VALUE- STACK pop() // clear VALUE-STACK
Entity. NEXT- CONTROL(true);

RETURN;

v

Figure B.124: Flow graph segment <verdict.set-op>

ITU-T Z.140 (07/2001) — Prepublished version

B.3.7.59 While statement

The syntactical structure of thewhi | e statement is:

whi | e (<bool ean- expressi on>) <st at ement - bl ock>
The execution of awhi | e statement is defined by the flow graph segment <whi | e- st mt > shown in figure B.125.

segment <while-stnt>

<expressi on>

if (Entity.VALUE- STACK.top()== true) {
Entity. NEXT- CONTROL(true);

el se {
Entity. NEXT- CONTROL(true);

decision ... }

Entity. VALUE- STACK pop();
RETURN;

true

<st at enent - bl ock>

v

Figure B.125: Flow graph segment <while-stmt>

ITU-T Z.140 (07/2001) — Prepublished version

B.3.8 Lists of operational semantic components

B.3.8.1 Functions and states

Name Description Reference
NEXT Retrieves the successor node of a given node in a flow graph. Clause B.3.1.6
GET-FLOW-GRAPH Retrieves the start node of a flow graph Clause B.3.2.6

MTC

Reference to mtc in module state

Clause B.3.3.1.1

TC-VERDICT Actual test case verdict in module state Clause B.3.3.1.1
DONE Number of terminated test components (part of module state) Clause B.3.3.1.1
append List operation ‘append': appends an item as last element to a list Clause B.3.3.1.1
delete List operation 'delete’: deletes an item from a list Clause B.3.3.1.1
first List operation 'first'": returns the first element of a list Clause B.3.3.1.1

Queue operation 'first': returns the first element of a queue Clause B.3.3.3.2
length List operation 'length': returns the length of a list Clause B.3.3.1.1
STATUS Status (ACTIVE or BLOCKED) of module control or a test component Clause B.3.3.2.1

Status (IDLE, RUNNING or TIMEOUT) of a timer Clause B.3.3.24

Status (STARTED or STOPPED) of a port Clause B.3.3.3.2
E-VERDICT Local test verdict of a test component Clause B.3.3.2.1

CONTROL-STACK

Stack of flow graph nodes denoting the actual control state of an entity

Clause B.3.3.2.1

VALUE-STACK

Stack of values for the storage of results of expressions, operands,
operations and functions.

Clause B.3.3.2.1

push Stack operation 'push': pushes an item onto a stack Clause B.3.3.2.1
pop Stack operation 'pop': pops an item from a stack Clause B.3.3.2.1
top Stack operation 'top': returns the top item from a stack Clause B.3.3.2.1
clear Stack operation 'clear': clears a stack Clause B.3.3.2.1
Queue operation 'clear’: removes all elements from a queue Clause B.3.3.3.2
clear-until Stack operation ‘clear-until': pops items until a specific item is top element||Clause B.3.3.2.1
in the stack.
NEW-ENTITY Creates a new entity state Clause B.3.3.2.1
VAR-SET Setting the value of a variable Clause B.3.3.2.4
TIMER-SET Setting values of a timer Clause B.3.3.24

DEF-DURATION

Default Duration of a timer

Clause B.3.3.2.4

ACT-DURATION

Duration with which an active timer has been started

Clause B.3.3.2.4

TIME-LEFT Time a running timer has left to run before a it times out Clause B.3.3.2.4
INIT-VAR Creates a new variable binding Clause B.3.3.2.4
INIT-TIMER Creates a new timer binding Clause B.3.3.24
GET-VAR-LOC Retrieves location of a variable Clause B.3.3.2.4
GET-TIMER-LOC Retrieves location of a timer Clause B.3.3.24
INIT-VAR-LOC Creates a new variable binding with an existing location Clause B.3.3.2.4

INIT-TIMER-LOC

Creates a new timer binding with an existing location

Clause B.3.3.2.4

INIT-VAR-SCOPE

Initializes a new variable scope

Clause B.3.3.2.4

INIT-TIMER-SCOPE

Initializes a new timer scope

Clause B.3.3.2.4

DEL-VAR-SCOPE

Deletes a variable scope

Clause B.3.3.2.4

DEL-TIMER-SCOPE

Deletes a timer scope

Clause B.3.3.2.4

NEW-PORT Creates a new port Clause B.3.3.3.2
GET-PORT Retrieves a port reference Clause B.3.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port Clause B.3.3.3.2
ADD-CON Adds a connection to a port state Clause B.3.3.3.2
DEL-CON Deletes a connection from a port state Clause B.3.3.3.2
enqueue Queue operation 'enqueue’: puts an item as last element into a queue Clause B.3.3.3.2
dequeue Queue operation 'dequeue’: deletes the first element from a queue Clause B.3.3.3.2
DEL-ENTITY Deletes an entity from a module state Clause B.3.3.4
EXISTING Checks whether a test component exists or not Clause B.3.3.4
UPDATE-REMOTE- Updates timers and variables with the same location in different entities to[|Clause B.3.3.4
REFERENCES the same value.

CONSTRUCT-ITEM Constructs an item to be sent Clause B.3.4.3
MATCH-ITEM Checks if a received message, call, reply or exception matches with a Clause B.3.4.4

receiving operation
RETRIEVE-INFO Retrieves information from a received message, call, reply or exception [|Clause B.3.4.4
NEW-CALL-RECORD ([Creates a call record for a function call Clause B.3.5.1
INIT-FLOW-GRAPHS Initializes the flow graph handling Clause B.3.6.1
GET-UNIQUE-ID Returns a new unique identifier when it is called Clause B.3.6.1
ITU-T Z.140 (07/2001) — Prepublished version 224

Name Description Reference
CONTINUE- The actual component continues its execution Clause B.3.6.1
COMPONENT
RETURN Returns the control to the module evaluation procedure defined in clause [|Clause B.3.6.1

B.3.6
DYNAMIC-ERROR [Describes the occurrence of a dynamic error Clause B.3.6.1
B.3.8.2 Special keywords
Keyword Description Reference
MARK Used as mark for VALUE-STACK Clause B.3.3.2
ACTIVE STATUS of an entity state Clause B.3.3.2
BLOCKED STATUS of an entity state Clause B.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing is
addressed
IDLE STATUS of a timer state Clause B.3.3.24
RUNNING STATUS of a timer state Clause B.3.3.2.4
TIMEOUT STATUS of a timer state Clause B.3.3.24
STARTED STATUS of a port Clause B.3.3.2.4
STOPPED STATUS of a port Clause B.3.3.2.4
NONE Used to describe an undefined value

ITU-T Z.140 (07/2001) — Prepublished version

225

B.3.8.3 Flow graph segments

Identifier Related TTCN-3 construct Reference

Figure Clause
<alt-stmt> alt statement Figure B.25 Clause B.3.7.1
<alt-with-else> alt statement Figure B.26 Clause B.3.7.1
<alt-without-else> [lalt statement Figure B.27 Clause B.3.7.1
<assignment-stmt>lassignment statement Figure B.29 Clause B.3.7.2
<b-call-with- call Figure B.35 Clause B.3.7.3.3
receiver>
<b-call-without- call Figure B.36 Clause B.3.7.3.4
receiver>
<b-call-with-rec- call Figure B.37 Clause B.3.7.3.5
dur>
<b-call-without-rec-||call Figure B.38 Clause B.3.7.3.6
dur>
<blocking-call-op> ||call Figure B.31 Clause B.3.7.3
<call-op> call Figure B.30 Clause B.3.7.3
<catch-op> catch Figure B.39 Clause B.3.7.4
<catch-with- used in catch operation Figure B.40 Clause B.3.7.4.1
sender>
<catch-without- used in catch operation FigureB.41 Clause B.3.7.4.2
sender>
<clear-port-op> clear port Figure B.42 Clause B.3.7.5
<constant- Declaration of a constant Figure B.44 Clause B.3.7.7
declaration>
<connect-op> connect Figure B.43 Clause B.3.7.6
<create-op> create Figure B.45 Clause B.3.7.8
<disconnect-op> | disconnect Figure B.53 Clause B.3.7.12
<do-while-stmt> do-while statement Figure B.54 Clause B.3.7.13
<done-all-comp-op>f|lall component.done Figure B.55 Clause B.3.7.14
<done-any-comp- [lany component.done Figure B.56 Clause B.3.7.15
op>
<done-component-||done component Figure B.57 Clause B.3.7.16
op>
<execute-stmt> execute Figure B.58 Clause B.3.7.17
<execute-timeout>>||lexecute FigureB.59 Clause B.3.7.17
<execute-without- [lexecute Figure B.60 Clause B.3.7.17
timeout>>
<expression> Expression Figure B.61 Clause B.3.7.18
<finalize- Used in the behaviour of component type Figure B.66 Clause B.3.7.19
component-init> definitions
<for-stmt>> for statement Figure B.68 Clause B.3.7.21
<function-call> Call of user defined functions Figure B.69 Clause B.3.7.22
<func-op-call> Used in <expression> Figure B.64 Clause B.3.7.18.3
<getcall-op> getcall Figure B.74 Clause B.3.7.27
<getcall-with- used in getcall operation Figure B.75 Clause B.3.7.27.1
sender>
<getcall-without- |lused in getcall operation Figure B.76 Clause B.3.7.27.2
sender>
<getreply-op> getreply Figure B.76 Clause B.3.7.28
<getreply-with- used in getreply operation Figure B.78 Clause B.3.7.28.1
sender>
<getreply-without- [lused in getreply operation Figure B.79 Clause B.3.7.28.2
sender>
<goto-stmt> goto Figure B.80 Clause B.3.7.29
<if-else-stmt> if-else Figure B.80 Clause B.3.7.30
<if-with-else- if-else Figure B.82 Clause B.3.7.30.1
branch>
<if-without-else- if-else Figure B.83 Clause B.3.7.30.2
branch>
<init-component- ||Used in the behaviour of component type Figure B.67 Clause B.3.7.20
scope> definitions
<label-stmt> label Figure B.84 Clause B.3.7.31
<lit-value> Used in <expression> Figure B.62 Clause B.3.7.18.1

ITU-T Z.140 (07/2001) — Prepublished version

226

Identifier Related TTCN-3 construct Reference

Figure Clause
<log-stmt> log FigureB.85 Clause B.3.7.32
<map-op> map operation Figure B.86 Clause B.3.7.33
<mtc-op> mtc Figure B.87 Clause B.3.7.34
<nb-call-with- call Figure B.33 Clause B.3.7.3.1
receiver>
<nb-call-without- ||call Figure B.34 Clause B.3.7.3.2
receiver>
<non-blocking-call-|call Figure B.32 Clause B.3.7.3
op>
<operator-appl> used in <expression> Figure B.65 Clause B.3.7.18.4
<parameter- creation of entities, function calls Figure B.73 Clause B.3.7.26
handling>
<port-declaration> [|Declaration of a port Figure B.46 Clause B.3.7.9
<raise-op> raise Figure B.88 Clause B.3.7.35
<raise-with- raise Figure B.89 Clause B.3.7.35.1
receiver-op>
<raise-without- raise Figure B.90 Clause B.3.7.35.2
receiver-op>
<read-timer-op> read timer Figure B.91 Clause B.3.7.36
<receive- used in receive operation Figure B.95 Clause B.3.7.37.3
assignment>
<receive-op> receive Figure B.92 Clause B.3.7.37
<receive-with- used in receive operation Figure B.93 Clause B.3.7.37.1
sender>
<receive-without- |lused inreceive operation Figure B.94 Clause B.3.7.37.2
sender>
<receiving-branch>|lalt statement Figure B.28 Clause B.3.7.1.1
<reply-op> reply Figure B.96 Clause B.3.7.38
<reply-with- reply FigureB.97 Clause B.3.7.38.1
receiver-op>
<reply-without- reply Figure B.98 Clause B.3.7.38.2
receiver-op>
<ref-par-var-calc> [lcreation of entities, function calls Figure B.71 Clause B.3.7.24
<ref-par-timer-calc>|creation of entities, function calls Figure B.72 Clause B.3.7.25
<return-stmt> return Figure B.99 Clause B.3.7.39
<return-with-value>|return Figure B.100 Clause B.3.7.39.1
<return-without- return Figure B.101 Clause B.3.7.39.2
value>
<running-all comp- ||all component.running Figure B.102 Clause B.3.7.40
op>
<running-any comp{lany component.running Figure B.103 Clause B.3.7.41
op>
<running- running component Figure B.104 Clause B.3.7.42
component-op>
<running-timer-op>|running timer Figure B.105 Clause B.3.7.43
<self-op> self Figure B.109 Clause B.3.7.45
<send-op> send Figure B.106 Clause B.3.7.44
<send-with- send Figure B.107 Clause B.3.7.44.1
receiver-op>
<send-without- send Figure B.108 Clause B.3.7.44.2
receiver-op>
<start-component- ||start component Figure B.110 Clause B.3.7.46
op>
<start-port-op> start port Figure B.111 Clause B.3.7.47
<start-timer-op> start timer Figure B.112 Clause B.3.7.48
<start-timer-op- start timer Figure B.113 Clause B.3.7.48.1
default>
<start-timer-op- start timer Figure B.114 Clause B.3.7.48.2
duration>
<stop-entity-op> stop execution of module control, mtc ora ||Figure B.116 Clause B.3.7.50

test component

<stop-port-op> stop port Figure B.117 Clause B.3.7.51
<statement-block> ||Statement block Figure B.115 Clause B.3.7.49
<stop-timer-op> stop timer Figure B.118 Clause B.3.7.52

ITU-T Z.140 (07/2001) — Prepublished version

227

Identifier Related TTCN-3 construct Reference

Figure Clause
<sut.action-op> sut.action-op Figure B.119 Clause B.3.7.53
<system-op> system Figure B.120 Clause B.3.7.54
<timeout-timer-op>|timeout timer Figure B.121 Clause B.3.7.55
<timer-declaration>||Declaration of a timer Figure B.47 Clause B.3.7.10
<timer-decl-default>||Declaration of a timer with a default duration|[Figure B.48 Clause B.3.7.10.1
<timer-decl-no-defy|Declaration of a timer without default duration||Figure B.49 Clause B.3.7.10.2
<unmap-op> unmap operation FigureB.122 Clause B.3.7.56
<value-par- creation of entities, function calls Figure B.70 Clause B.3.7.23
calculation>
<variable- Declaration of a variable Figure B.50 Clause B.3.7.11
declaration>
<variable- Declaration of a variable with an initial values|FigureB.51 Clause B.3.7.11.1
declaration-init>
<variable- Declaration of a variable without an initial FigureB.52 Clause B.3.7.11.2
declaration-undef> [value
<var-value> Used in <expression> Figure B.63 Clause B.3.7.18.2
<verdit.get-op> verdict.get Figure B.123 Clause B.3.57
<verdit.setop> verdict.set Figure B.124 Clause B.3.7.58
<while-stmt> while statement Figure B.125 Clause B.3.7.59

ITU-T Z.140 (07/2001) — Prepublished version

228

Annex C (normative):
Matching incoming values

C.1 Template matching mechanisms

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

C.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3templates. Specific valuesin templates are expressions
which do not contain any matching mechanisms or wildcards. Unless otherwise specified, atemplate field matches the
corresponding incoming field value if, and only if, the incoming field value has exactly the same value as the value to
which the expression in the template evaluates. For example:

/'l G ven the message type definition
type record MyMessageType
{

i nteger fieldl,
charstring field2
bool ean field3 optional

integer[4] field4
}

/'l A message tenplate using specific values could be
tenpl ate MyMessageType MyTenpl ate: =

{
fieldl := 3+2, /'l specific value of integer type
field2 := "My string", // specific value of charstring type
field3 := true, /'l specific value of boolean type
fieldd := {1,2,3} /1 specific value of integer array

}

C.1.2 Matching mechanisms instead of values

C.1.2.1 Value list

Value lists specify lists of acceptable incoming values. It can be used on values of all types. A template field that usesa
value list matches the corresponding incoming field if, and only if, the incoming field value matches any one of the
valuesin thevaluelist. Each value in the value list shall be of the type declared for the template field in which this
mechanism is used. For example:

tenpl ate Mynessage MyTenpl ate: =

fieldl :
field2 :

(2,4,6), /1 list of integer val ues
("Stringl", "String2"),// list of charstring val ues

}
C.1.2.2 Complemented value list

The keywordconpl enent denotesalist of valuesthat will not be accepted asincoming values (i.e., itisthe
complement of avaluelist). It can be used on all values of all types.

Each valuein thelist shall be of the type declared for the template field in which the complement is used. A template
field that uses complement matches the corresponding incoming field if and only if theincoming field does not match
any of the valueslisted in the value list. The valuelist may be asingle value, of course.

ITU-T Z.140 (07/2001) — Prepublished version 229

EXAMPLE:
tenpl ate Mymessage MyTenpl ate: =
conpl enent (1,3,5),// list of unacceptable integer values

field3 not (true) /1 will match false

C.1.2.3 Omitting values

The keywordom t denotes that an optional template field shall be absent. It can be used on values of all types,
provided that the template field is optional . For example:

tenpl ate Mynessage: MyTenpl ate: =
{ :

fields:zomt, // omt this field

}

C.1.2.4 Anyvalue

The matching symbol "?* (AnyValue) is used to indicate that any valid incoming valueis acceptable. It can be used on
values of al types. A template field that uses the any value mechanism matches the corresponding incoming field if,
and only if, theincoming field evaluates to asingle element of the specified type. For example:

tenpl ate Mynessage: MyTenpl ate: =

fieldl : = 2, /1 will match any integer

field2 := 2, /1 will match any non-enmpty charstring val ue
field3 := ?, /1 will match true or false

fieldd := 7 /1 will match any sequence of integers

C.1.2.5 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of
that value, is acceptable. It can be used on values of all types, provided that the template field is declared as optional.

A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming
field evaluates to any element of the specified type, or if theincoming field is absent. For example:

tenpl ate Mynessage: MyTenpl ate: =

fieIdS 1= ox, I/ will match true or false or omtted field

ITU-T Z.140 (07/2001) — Prepublished version 230

C.1.2.6 Value range

Ranges indicate a bounded range of acceptable values. It shall be used only on values of i nt eger types (and integer
sub-types). A boundary value shall be either:

a) infinity or -infinity;
b) an expression that evaluates to a specific integer value.

The lower boundary shall be put on the |eft side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary. A template field that uses a range matches the corresponding incoming field if,
and only if, theincoming field value is equal to one of the valuesin the range. For example:

tenpl ate Mynessage: MyTenpl ate: =

fieldl := (1 .. 6),// range of integer type

}
/1l other entries for fieldl mght be (-infinity to 8) or (12 to infinity)

C.1.3 Matching mechanisms inside values

C.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings), ar ecord of ,aset of oranarray. It shall beused only within values of string types, r ecor d of types,

set of typesand arrays. For example:

tenpl ate Mynessage MyTenpl ate: =

field2 .= "abcxyz",
field3 := "'10???' B, /'l where each "?" may either be 0 or 1
fieldd := {1, ?, 3}// where ? may be any integer val ue

}

NOTE: The"?"infi el d4 can beinterpreted asAnyValue as an integer value, or AnyElement insidear ecor d
of ,set of orarray. Since both interpretations |ead to the same match no problem arises.

C.1311 Using single character wildcards

If it isrequired to expressthe "?" wildcard in character stringsit shall be done using character patterns (see clause
C.15).. For example "abcdxyz", "abcexyz” "aoexxyz” etc. will all matchpat t er n "abc?xyz". However, "abexyz",

abcdefxyz", etc. will not.

C.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of astring (except character strings), ar ecor d of ,aset of or anarray. It shall be used only within
values of string types or arrays. The"*" symbol matches the longest sequence of elements possible, according to the
pattern as specified by the symbols surrounding the "*". For example:

tenpl ate Mynessage MyTenpl ate: =
field2 :

field3 :
fieldd :

"abcxyz",
'10*11' B, /1 where "*" may be any sequence of bits (possibly enpty)
{*, 2, 3} /'l where the first element may be any integer value or omtted

}

var charstring MyStrings[4];
MyPCO. recei ve(MyStrings: {"abyz", *, "abc" });

ITU-T Z.140 (07/2001) — Prepublished version 231

If a"*" appears at the highest level insideastring, ar ecord of ,set of or array, it shall be interpreted as
AnyElementsOr None.

NOTE: Thisrule prevents the otherwise possible interpretation of "*" asAnyValueOrNone that replaces an
elementinsideastring, r ecord of ,set of orarray.

C.1.321 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns (see clause
C.15).For example: "abcxyz", "abedefxyz" "abcabexyz" etc. will all matchpat t er n "abc*xyz"

C.1.4 Matching attributes of values

C.1.4.1 Length restrictions

Thelength restriction attribute is used to restrict the length of string values and the number of elementsinaset of or
record of structure. It shall be used only as an attribute of the following mechanisms. Complement, AnyValue,
AnyValueOrNone, AnyElement and AnyElementsOrNone. It can also be used in conjunction with thei f pr esent
attribute. The syntax for| engt h can befound in clause 6.2.3 and 6.3.3.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of and record of typestheunit of length isthereplicated type. The boundaries shall be

denoted by expressions which resolve to specific non-negativei nt eger values. Alternatively, the keyword
i nfinity canbeusedasavaluefor the upper boundary in order to indicate that thereis no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type. A template field that uses Length as an attribute of a symbol matches the corresponding incoming field if, and
only if, the incoming field matches both the symbol and its associated attribute. The length attribute matches if the
length of theincoming field is greater than or equal to the specified lower bound and less than or equal to the upper
bound. In the case of asingle length value the length attribute matches only if the length of the received field is exactly
the specified value.

In the case of an omitted field, the length attribute is always considered as matching (i.e., withomi t itisredundant).
With AnyValueOrNone andi f pr esent it placesarestriction on theincoming value, if any. For example:

tenpl ate Mymessage MyTenpl ate: =

fieldl := conplement (4,5) length (1 .. 6),// is the same as (1,2, 3,6)
field2 := "ab*ab" length(13) // nmax length of the AnyEl ementsOrNone string is 9 characters

C.1.4.2 The IfPresent indicator

Thei f present indicatesthat amatch may be made if an optional field is present (i.e., not omitted). This attribute
may be used with all the matching mechanisms, provided the type is declared as optional.

A template field that usesi f pr esent matches the corresponding incoming field if, and only if, theincoming field
matches according to the associated matching mechanism, or if theincoming field is absent. For example:

tenpl ate Mynessage: MyTenpl ate: =

fieldz = "abcd" ifpresent, // matches "abcd" if not omtted

}

NOTE: AnyValueOrNone has exactly the same meaning as? i f pr esent

ITU-T Z.140 (07/2001) — Prepublished version 232

C.1.5 Matching Character Pattern

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to matchchar st ri ngand uni versal charstri ng vaues. Inadditionto literal characters,

character patterns allow the use of meta characters? and * to mean any character and any number of any character
respectively. For example:

tenpl ate charstring MyTenpl ate: = pattern "ab??xyz*";

Thistemplate would match any character string that consists of the characters ‘ab’, followed by any two characters,
followed by the characters ‘xyz’, followed by any number of any characters.

If it isrequired to interpret any metacharacter literally it should be preceded with the metachacter ‘\'. For example:
tenpl ate charstring MyTenpl ate: = pattern "ab?\ ?xyz*";

Thistemplate would match any character string which consists of the characters ‘ab’, followed by any characters,
followed by the characters‘ ?xyz’, followed by any number of any characters.

In addition to direct string valuesit is also possible within the pattern statement to use references to existing templates,
constants or variables. The reference shall resolve to one of the character string types and more than one. For example:

const charstring MyString:= "ab?";

tenplate charstring MyTenpl ate: = pattern MyString;

Thistemplate would match any character string that consists of the characters‘ab’, followed by any characters. In effect
any character string following the pat t er n keyword either explicitly or by reference will beinterpreted following the

rules defined in this clause.

The pattern statement also allows the use of the concatenate operator and in the case of universal charstring the use of
the Quadruple production to specify asingle character. For example:

const charstring MyString: = "ab?";

tenpl ate universal charstring MyTenpl ate: = pattern MyString & "de" & (1, 1, 13, 7);

Thistemplate would match any character string which consists of the characters ‘ab’, followed by any characters,
followed by the characters ‘ de’, followed by the character in 1SO10646 with group=1, plane=1, row=65 and cel|=7.

ITU-T Z.140 (07/2001) — Prepublished version 233

Annex D (normative):
Pre-defined TTCN-3 functions

D.1 Pre-defined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

D.1.1 Integer to character

i nt 2char (i nteger value) return char

Thisfunction convertsani nt eger valueintherangeof 0 ... 127 (8-bit encoding) into a character value of
ISO/IEC 646 [5]. The integer val ue describes the 8-bit encoding of the character.

The function returns—1 if the value of the argument is a negative or greater than 127.

D.1.2 Character to integer

char 2i nt (char value) return integer

Thisfunction convertsachar value of 1SO/IEC 646 [5] into aninteger valueintherangeof 0 ... 127. Theinteger
value describes the 8-hit encoding of the character.

D.1.3 Integer to universal character

i nt 2uni char (i nteger value) return universal char

This function convertsani nt eger vaueintherangeof 0 ... 268435455 (32-bit encoding) into a character value of
ISO/IEC 10646 [6]. The integer value describes the 32-bit encoding of the character.

The function returns—1 if the value of the argument is anegative or greater than 268435455.

D.1.4 Univeral character to integer

uni char 2i nt (uni veral char value) return integer

Thisfunction convertsauni ver al char vaueof 1SO/IEC 10646 [6] into an integer valuein therangeof O ...
268435455. The integer value describes the 32-bit encoding of the character.

D.1.5 Bitstring to integer
bit2int(bitstring value) return integer
Thisfunction convertsasinglebi t st ri ng valuetoasinglei nt eger value.

For the purposes of thisconversion, abi t st ri ng shall beinterpreted asapositivebase2i nt eger value. The

rightmost bit isleast significant, the leftmost bit isthe most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

D.1.6 Hexstring to integer
hex2i nt (hexstring value) return integer

Thisfunction convertsasingle hexst ri ng valuetoasinglei nt eger value.

ITU-T Z.140 (07/2001) — Prepublished version 234

For the purposes of this conversion, ahexst ri ng shall beinterpreted as apositive base 16 nt eger value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O .. F represent the decimal values O .. 15 respectively.

D.1.7 Octetstring to integer

oct2int(octetstring value) return integer
Thisfunction convertsasingleoct et st ri ng valuetoasinglei nt eger value.

For the purposes of this conversion, ahexst ri ng shall beinterpreted as apositivebase 16 nt eger value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digitsO .. F represent the decimal values0 .. 15 respectively.

D.1.8 Charstring to integer

str2int(charstring value) return integer

Thisfunction convertsachar st ri ng representing ani nt eger valueto the equivalenti nt eger . If the string does
not represent avalid integer value the function returns the value zero (0).

EXAMPLES:

str2int("66") willreturnthe i nt eger vaue 66
str2int("-66") will retunthe i nteger vaue - 66
str2int("abc") will returnthe i nt eger value 0

str2int("0") will returnthe i nt eger value 0

D.1.9 Integer to bitstring

int2bit(integer value, length) return bitstring

Thisfunction convertsasingle i nt eger valuetoasinglebi t st ri ng value. Theresulting string isl engt h bits
long.

For the purposes of thisconversion, abi t st ri ng shall beinterpreted asapositivebase2i nt eger value. The
rightmost bit isleast significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values0
and 1 respectively. If the conversion yieldsavalue with fewer bits than specified inthel engt h parameter, then the
bi t st ri ng shall be padded on the left with zeros. A test case error shall occur if theval ue isnegativeor if the
resulting bi t st r i ng contains more bits than specified inthel engt h parameter.

D.1.10 Integer to hexstring

i nt 2hex(i nteger value, length) return hexstring

Thisfunction convertsasinglei nt eger valuetoasinglehexst ri ng value. Theresulting string isl engt h
hexadecimal digitslong.

For the purposes of this conversion,ahexst r i ng shall beinterpreted asapositive base 16 i nt eger value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 ... F represent the decimal values 0 ... 15 respectively. If the conversion yields avalue with fewer hexadecimal
digitsthan specified inthel engt h parameter, thenthehexst r i ng shall be padded on the left with zeros. A test case
error shall occur if the val ue isnegativeor if theresultinghexst r i ng contains more hexadecimal digits than
specified inthel engt h parameter.

ITU-T Z.140 (07/2001) — Prepublished version 235

D.1.11 Integer to octetstring
i nt 2oct (i nteger value, length) return octetstring

Thisfunction convertsasinglei nt eger valuetoasingleoct et st ri ng value. Theresulting string isl engt h
octetslong.

For the purposes of this conversion, anoct et st ri ng shall beinterpreted as apositive base 16 nt eger value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digitsO .. F represent the decimal values 0 .. 15 respectively. If the conversion yields avalue with fewer
hexadecimal digitsthan specified inthel engt h parameter, thenthehexst r i ng shall be padded on the |eft with
zeros. A test case error shall occur if theval ue isnegative or if theresultinghexst r i ng contains more hexadecimal
digitsthan specified inthel engt h parameter.

D.1.12 Integer to charstring

int2str(integer value) return charstring
Thisfunction converts the integer value into its string equivalent (the base of the return string is always decimal).
EXAMPLES:

i nt2str(66) will returnthe charstri ng vaue " 66"
int2str(-66) will returnthe charstring value "-66"

i nt2str(0) will returnthe i nt eger vaue " 0"

D.1.13 Length of string type
| engt hof (any_string_type value) return integer

Thisfunction returnsthe length of avaluethat isof typebi t st ri ng,hexstri ng,oct et stri ng, or any character
string. The units of length for each string type are defined in table 4 in the main body of the present document.

EXAMPLE:

| engthof (' 010'B) // returns 3
Il engthof ('F3'"H) // returns 2
Il engthof ('F2'0O) // returns 1

| engt hof ("Length_of _Exanple") // returns 17

D.1.14 Number of elements in a structured type

si zeof (structured_type value) return integer

Thisfunction returns the actual number of elementsof ar ecor d,r ecor d of ,set,set of ,t enpl at e or array.

/'l Gven
type record MyPDU
{ bool ean fieldl
integer field2
}

/'l then
si zeof (MyPDU)
/'l returns 2

ITU-T Z.140 (07/2001) — Prepublished version 236

D.1.15 The IsPresent function

i spresent (any_type value) return bool ean

Thisfunction returnsthevaluet r ue if andonly if the value of the referenced field is present in the actual instance of

the referenced data object. Theargument toi spr esent shall be areferenceto afield within adata object that is
defined asbeingopt i onal .

/1l Gven
type record MyRecord
{ bool eanfi el d1 optional,
integer field2
}

/1 and given that MyPDU is a tenplate of MyRecord type
/1 and received _PDU is also of MyRecord type
/'l then

MyPort.recei ve(MyPDU) -> val ue received_PDU
i spresent (received_PDU. fiel dl)
/1 returns true if fieldl in the actual instance of MyPDU is present

D.1.16 The IsChosen function

i schosen(any_type value) return bool ean

Thisfunction returnsthe valuet r ue if and only if the data object reference specifiesthe variant of theuni on type

that is actually selected for a given data object.

EXAMPLE:

/'l Gven
type uni on MyUnion
{ PDU_typel p1,
PDU_type2 p2,
PDU_t ype p3
}

/1l and given that MyPDU is a tenplate of MyUnion type
/'l and received_PDU is also of MyUnion type
/1 then

MyPort.recei ve(MyPDU) -> val ue received_PDU
i schosen(recei ved_PDU. p2)

/1l returns true if the actual instance of MyPDU carries a PDU of the type PDU type2

ITU-T Z.140 (07/2001) — Prepublished version

237

Annex E (normative):
Using other data types with TTCN-3

E.1l

Using ASN.1 with TTCN-3

Thisannex defines the optional use of ASN.1 with TTCN-3.

TTCN-3 provides aclean interface for using ASN.1 version 1997 (as defined in the X.680 series[7], [8], [9], [10]) in
TTCN-3 modules. When imported into a TTCN-3 modul e the language identifier for ASN.1 version 1997 shall be

"ASN.1:1997".

When ASN.1is used with TTCN-3the keywords listed in table E 1 shall not be used asidentifiersin aTTCN-3
module. ASN.1 keywords shall follow the requirements of X.680[7].

Table E.1: List of ASN.1 keywords

ABSENT
ABSTRACT-SYNTAX
ALL
APPLICATION
AUTOMATIC
BEGIN

BIT
BMPSTRING
BOOLEAN

BY
CHARACTER
CHOICE
CLASS
COMPONENT
COMPONENTS
CONSTRAINED
DEFAULT
DEFINITIONS

EMBEDDED
END
ENUMERATED
EXCEPT
EXPLICIT
EXPORTS
EXTERNAL
FALSE

FROM
GeneralizedTime
GeneralString
IA5String
IDENTIFIER
IMPLICIT
IMPORTS
INCLUDES
INSTANCE
INTEGER

INTERSECTION
1s010646string
MAX

MIN
MINUS-INFINITY
NULL
NumericString
OBJECT
ObjectDescriptor
OCTET

OF

OPTIONAL

PDV
PLUS-INFINITY
PRESENT
PrintableString
PRIVATE

REAL

SEQUENCE
SET

SIZE

STRING
SYNTAX
T61String
TAGS
TeletexString
TRUE
TYPE-IDENTIFIER
UNION
UNIQUE
UNIVERSAL
UniversalString
UTCTime
VideotexString
VisibleString
WITH

E.1.1 ASN.1 and TTCN-3 type equivalents

The ASN.1typeslisted in table E2 are considered to be equivalent to their TTCN-3 counterparts.

Table E.2: List of ASN.1 and TTCN-3 equivalents

ASN.1 type Maps to TTCN-3 equivalent
BOOLEAN bool ean
INTEGER i nteger
REAL fl oat
OBJECT IDENTIFIER objid
BIT STRING bitstring
OCTET STRING octetstring
SEQUENCE record
SEQUENCE OF record of
SET set
SET OF set of
ENUMERATED enuner at ed
CHOICE uni on

All TTCN-3 operators, functions, matching mechanisms, value notation etc. that can be used with a TTCN-3 type given
in table E.E2 may also be used with the corresponding ASN.1 type.

ITU-T Z.140 (07/2001) — Prepublished version

238

E.1.2 ASN.1 data types and values

ASN.1types and values may be used in TTCN-3 modules. ASN.1 definitions are made using a separate ASN.1 module.

EXAMPLE:
MyASN1nmodul e DEFINITIONS :: =
BEG N
Z = | NTEGER -- Sinple type definition
BMessage: : = SET -- ASN. 1 type definition
{
name Name,
title VisibleString,
dat e Dat e
}
j ohnVval ues Bnessage ::= -- ASN. 1 value definition
{
name "John Doe",
title "M",
date "April 12'™
}
END

The ASN.1 module shall be written according to the syntax of the ITU-T Recommendation X.680 series[7], [8], [9] and
[10]. Once declared, ASN.1 types and val ues may be used within TTCN-3 modules in exactly the same way that
ordinary TTCN-3types and values from other TTCN-3 modules are used (i.e. the required definitions shall be

imported).

EXAMPLE:

modul e My TTCNModul e

{ import all from MyASNlnmodul e | anguage "ASN. 1:1997";
) const Bmessage MyTTCNConst: = johnVal ues;

NOTE: ASN.1definitions other than types and values (i.e. information object classes or information object sets)
are not directly accessible from the TTCN-3 notation. Such definitions shall be resolved to atype or value
within the ASN.1 module before they can be referenced from within the TTCN-3 module.

E.1.2.1 Scope of ASN.1 identifiers

Imported ASN.1 identifiers follow the same scope rules asimported TTCN-3 types and val ues (see clause 5.4).

E.1.3 Parameterization in ASN.1

It is permitted to reference parameterized ASN. 1 type and value definitions from with the TTCN-3 module. However,
al ASN.1 parameterized definitions used in a TTCN-3 modul e shall be provided with actual parameters (open types or
values are not permitted) and the actual parameters provided shall be resolvable at compile-time.

The TTCN-3 core language does not support parameterization of uniquely ASN.1 specific objects. ASN.1 specific
parameterization which involves objects which cannot be defined directly in the TTCN-3 core language shall therefore
be resolved in the ASN.1 part before use within the TTCN-3. The ASN.1 specific objects are:

a) Vaue sets;
b) Information Object classes;
¢) Information Objects;

d) Information Object Sets.

ITU-T Z.140 (07/2001) — Prepublished version 239

For example the following is not legal because it defines a TTCN-3 type which takes an ASN.1 object set as an actual
parameter.
MyASN1nmodul e DEFINITIONS :: =
BEG N
-- ASN. 1 Modul e definition

-- Information object class definition

MESSAGE ::= CLASS { &msgTypeVal uel NTEGER UNI QUE,
&MsgFi el ds}
-- Information object definition
set upMessage MESSAGE ::= {&nsgTypeVal ue 1,
&MVsgFi el ds OCTET STRI NG
set upAckMessage MESSACGE ::= { &rsgTypeVal ue 2,
&\sgFi el ds BOOLEAN}

-- Information object set definition
MyPr ot ocol MESSAGE ::= { setupMessage | setupAckMessage}

-- ASN. 1 type constrained by object set
MyMessage{ MESSAGE : MsgSet} ::= SEQUENCE
{

code MESSAGE. &msgTypeVal ue({ MsgSet}),
Type MESSAGE. &MsgFi el ds({ MsgSet})

}
END
nodul e MyTTCNModul e
{
/1 TTCN-3 nodul e definition
import all from MyASNlnmodul e | anguage "ASN. 1:1997";
/1 Illegal TTCN-3 type with object set as paraneter
type record Q MESSAGE MyMsgSet) ::= {Z fieldl,
MyMessage(MyMsgSet) fi el d2}
}

To makethisalegal definition the extra ASN.1 type My Messagel has to be defined as shown below. Thisresolves the
information object set parameterization and can therefore be directly used in the TTCN-3 module.

MyASN1nmodul e DEFI NI TIONS :: =
BEGI N
-- ASN. 1 Module definition

MyPr ot ocol MESSAGE ::= { setupMessage | setupAckMessage}
-- Extra ASN.1 type to remove object set paranetrization
MyMessagel ::= MyMessage{ MyProtocol}

END

modul e MyTTCNModul e

/1 TTCN-3 modul e definition
import all from MyASNlmodul e | anguage "ASN. 1:1997";

/'l Legal TTCN-3 type with no object set as paraneter

type record Q := {Z fieldl,
MyMessagel field2}

ITU-T Z.140 (07/2001) — Prepublished version 240

E.1.4 Defining message types with ASN.1
In ASN.1 messages are defined using SEQUENCE (or possibly SET).

EXAMPLE:

MyASN1nodul e DEFI NI TIONS :: =
BEGI N
-- ASN. 1 Modul e definition

MyMessageType ::= SEQUENCE
{ fieldl Fi el d1Type,
field2 Fi el d2Type OPTIONAL, -- This field may be omtted
fiel dN Fi el dNType
END}

M essages defined using ASN.1 may also, of course, be sub-structured using SEQUENCE, SET etc.

E.1.5 Defining ASN.1 message templates

If messages are defined in ASN.1 using, for example: SEQUENCE (or possibly SET) then actual messages, for both
send andr ecei ve events, can be specified using the ASN.1 value syntax.

EXAMPLE:

MyASN1nmodul e DEFI NI TIONS :: =
BEG N
-- ASN. 1 Modul e definition

-- The nmessage definition

MyMessageType: : = SEQUENCE

{ fieldl [1] | ASSTRI NG,
field2 [2] INTEGER OPTI ONAL,
field3 [4] Field3Type,
fieldd [5] Field4Type

Li ke TTCN-3 character string
i ke TTCN-3 integer

Li ke TTCN-3 record

Li ke TTCN-3 array

}
Fi el d3Type: : = SEQUENCE {fiel d31 BIT STRING, field32 |INTEGER, field33 OCTET STRI NG,
Fi el d4Type: : = SEQUENCE OF BOOLEAN

-- may have the follow ng val ue
myVal ue MyMessageType: : =

fieldl "A string",
field2 123,
field3 {field31 '11011'B, field32 456789, field33 'FF O},
field4 {true, false}
}
END

ITU-T Z.140 (07/2001) — Prepublished version 241

E.1.5.1 ASN.1 receive messages using the TTCN-3 template syntax

M atching mechanisms are not supported in the standard ASN.1 syntax. Thus, if it is wished to use matching
mechanisms with an ASN.1 receive message then the TTCN-3 syntax for receive templates shall be used instead. Note
that this syntax includes component referencesin order to be able to reference the individual componentsin ASN.1
SEQUENCE, SET etc.

EXAMPLE:
i mport type nyMessageType from MyASNlnodul e | anguage "ASN 1:1997";

/'l a message tenplate using matching nmechani sms within TTCN-3 m ght be
tenpl ate myMessageTypeMyVal ue: =

{
fieldl : = TAT?S"trt<E > g,
field2 : = *,
field3.field31 := '110?7?' B,
field3.field32 := ?,
field3.field33 := '"F?' O,
field4d.[0] := true,
fieldd.[1] := fal se

}

/1 the followi ng syntax is equally valid
tenpl ate myMessageTypeMyVal ue: =

fieldl := "A"<?>"tr"<*>"g", /1l string with wildcards
field2 := *, /1l any integer or none at all
field3 := {'110??'B, ?, 'F?' O},

fieldd := {?, false}

E.1.5.2 Ordering of template fields

When TTCN-3templates are used for ASN.1 types the significance of the order of the fields in the template will depend
on the type of ASN.1 construct used to define the message type. For example: if SEQUENCE or SEQUENCE OF is used

then the message fields shall be sent or matched in the order specified in the template. If SET or SET OF is used then
the message fields may be sent or matched in any order.

E.1.6 Encoding information

TTCN-3 allows references to encoding rules and variations within encoding rules to be associated with various TTCN-3
language elements. It is also possible to define invalid encodings. This encoding information is specified using the
Wi t h statement according to the following syntax:

EXAMPLE:

modul e MyModul e
{ :
inmport type nyMessageType from MyASNlnodul e | anguage "ASN 1:1997"wi t h {encode: =

"PER: 1997"}
/1 Al'l instances of MyMessageType shoul d be encoded using PER: 1997

} with {encode "BER:1997"} // Default encoding for the entire nodule (test suite) is BER 1997

E.1.6.1 ASN.1 encoding attributes

The following strings are the predefined (standardized) encoding attributes for ASN.1:
a) "BER:1997" means encoded according to ITU-T Recommendation X.690 (BER) [11];
b) "CER:1997" means encoded according to ITU-T Recommendation X.690 (CER) [11];
c) "DER:1997" means encoded according to ITU-T Recommendation X.690 (DER) [11].

d) "PER-BASIC-UNALIGNED:1997" means encoded according to (Unaligned PER)
ITU-T Recommendation X.691 [12];

ITU-T Z.140 (07/2001) — Prepublished version 242

e) "PER-BASICALIGNED:1997" means encoded according to ITU-T Recommendation X.691 (Aligned PER)
[12);

f) "PER-CANONICAL-UNALIGNED:1997" means encoded according to (Canonical Unaligned PER)
ITU-T Recommendation X.691 [12];

g) "PER-CANONICAL-ALIGNED:1997" means encoded according to ITU-T Recommendation X.691 (Canonical
Aligned PER) [12].

ITU-T Z.140 (07/2001) — Prepublished version

243

