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1 PREFACE 

This formal definition of SDL provides a precise language definition supplementing the definition given in the 
recommendation text. It is for use by those requiring a very precise definition of SDL such as maintainers of the SDL 
language, designers of SDL tools, and users of the SDL language. 

The formal definition consists of the three volumes: 

Annex F.1 (this volume) 

   This part provides motivation, gives an overview of the structure of the formal semantics, and 
  contains an introduction to the Abstract State Machine (ASM) formalism, which is used to define 
  the SDL semantics. 

Annex F.2 This part describes the static semantic constraints, and transformations as identified by the Model 
sections of Z.100. 

Annex F.3 This part defines the dynamic semantics of SDL. 

1.1 Motivation 
Specifications in natural languages are ambiguous, that is, more than one interpretation can be given to them. A 
specification is formal if its meaning (semantics) is unambiguous. Special languages, known as formal description 
techniques (FDTs), have been developed for this  purpose. FDTs are distinguished from formal languages in general by 
the fact that they have a formal syntax and a formal semantics. This is different from most formal languages such as 
Java or C++, which have a formal syntax only. 

The formal semantics of a language is defined in terms of an underlying mathematical formalism, e.g. axiomatically or 
operationally. The choice of an appropriate formalism is influenced by the expressiveness of the FDT as well as by the 
objectives of the semantics beyond unambiguity. The formal semantics defines, for each specification, a corresponding 
mathematical model that captures its meaning precisely and completely. 

This annex defines the semantics of SDL formally. If there is an inconsistency between the main body of Z.100 and 
Annex F, then there is an error that needs correction. Neither the main body of Z.100 nor the Annex F take precedence 
in this case. 

1.2 Main Objectives 
A primary objective of a formal SDL semantics is intelligibility, a prerequisite for correctness, acceptance, and 
maintainability. Intelligibility is supported by building on well-known mathematical formalisms and notations, a close 
correspondence between the specification technique and semantics to be formalised, and by a concise and well-
structured documentation. 

Maintainability is another important objective because SDL is an evolving technical standard. Apart from the language 
extensions that are incorporated into this standard, further language features, e.g. real-time expressiveness are under 
consideration. Therefore, the mathematical formalism has to be sufficiently rich and flexible such that the formal 
semantics can be adapted and extended with a reasonable effort. 

SDL can be classified as a model-oriented FDT for the specification of distributed and concurrent systems, which 
means that an SDL specification explicitly defines a set of computations. This calls for an operational semantics in 
order to achieve a close correspondence with the specification, and thus to improve its intelligibility. In addition, an 
operational semantics lends itself naturally to executability, given the availability of tools, which is another explicit 
objective. 

1.3 References 
ITU-T Recommendation Z.100. Languages for Telecommunication Applications – Specification and Description 
Language. International Telecommunication Union (ITU), Geneva, 1999. 
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2 OVERVIEW OF THE SEMANTICS 

In order to define the formal semantics of SDL, the language definition is decomposed into several parts: 

• the grammar, 

• the well-formedness conditions, 

• the transformation rules, and 

• the dynamic semantics. 

Starting point for defining the formal semantics of SDL is a syntactically correct SDL specification, represented as an 
abstract syntax tree (AST). 

The first three parts of the formal semantics are collectively referred to as static semantics or static aspects in the 
context of SDL (see Figure 1). 

Abstract Syntax (AS)

Language part

Concrete Syntax (CS)

Formalisation

BNF

PC1

Rewrite Rules

BNF

Well-formedness Conditions

Transformation rules

 

Figure 1: Static aspects of SDL 

The grammar defines the set of syntactically correct SDL specifications. In Z.100, a concrete textual, a concrete 
graphical, and an abstract grammar are defined formally using the Backus-Naur-Form (BNF) with extensions to capture 
the graphical language constructs. The abstract grammar is obtained from the concrete grammars by removing 
irrelevant details such as separators and lexical rules, and by applying transformation rules (see below). 

The well-formedness conditions define which specifications that are correct with respect to the grammar are also correct 
with respect to context information, such as which names it is allowed to use at a given place, or which kind of values it 
is allowed to assign to variable. Well-formedness conditions are defined in terms of first order predicate calculus (PC1). 

Furthermore, some language constructs appearing in the concrete grammars are replaced by other language elements in 
the abstract grammar using transformation rules to keep the set of core concepts small. These transformations are 
described in the model paragraphs of Z.100, and are formally expressed as rewrite rules.  

The dynamic semantics is given only to syntactically correct SDL specifications that satisfy the well-formedness 
conditions. The dynamic semantics defines the set of computations associated with a specification. 
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2.1 Grammar 
The grammar of SDL is formalised using a grammar representation in BNF (Backus-Naur-Form). However, the 
grammar in Z.100 is designed to be a presentation grammar, i.e. it is not made to generate a parser automatically. 
Moreover, some restrictions that finally guarantee uniqueness of the semantics can not be expressed in BNF and have 
been stated in the text instead. Therefore, the grammar is defined using BNF and some text (mostly for the precedence 
rules). The translation from the concrete text ual SDL representation to the abstract syntax representation of Z.100 
(called AS1) consists of two steps. The first step from the concrete textual SDL representation to the abstract syntax 
AS0 is not formally defined, but is derived from the correspondence between the two grammars, which is almost one-
to-one, and removes irrelevant details such as separators and lexical rules. The second step, translating AS0 to AS1, is 
formally captured by a set of transformation rules (see Annex F.2). 

2.2 Well-formedness Conditions 
The well-formedness conditions define additional constraints that a specification has to satisfy. These constraints can 
not be expressed in BNF, but are static, i.e., they can be defined and checked independent of the dynamic semantics 
definition (see Annex F.2). An SDL specification is valid if and only if it satisfies the syntactical rules and the static 
conditions of SDL. In fact, the well-formedness conditions refer to the syntax, but they have not been stated in the 
concrete syntax because they are not expressible in a context free grammar. 

There are basically five kinds of well-formedness conditions: 

• Scope/visibility rules: the definition of an entity introduces an identifier that may be used as the reference to the 
entity. Only visible identifiers must be used. The scope/visibility rules are applied to determine whether the 
corresponding definition of an identifier is visible or not. 

• Disambiguation rules: sometimes a name might refer to several identifiers. Rules are applied to find out the correct 
one. 

• Data type consistency rules: these rules ensure that dynamically, no operation is applied to operands that do not 
match its argument types. More specifically, the data type of an actual parameter must be compatible with that of 
the corresponding formal parameter; the data type of an expression must be compatible with that of the variable to 
which the expression is assigned. 

• Special rules: there are some rules applicable to specific entities. For example, there be local blocks or a graph 
within a block. 

• Plain syntax rules: there are some rules that refer to the correctness of the concrete syntax, and that have no 
counterpart in the abstract syntax. For instance, the name at the beginning and at the end of a definition have to 
match. 

2.3 Transformation Rules 
For a language with a rich syntax, it is important to identify the core concepts matching the intentions of the language 
designer. Further language constructs that are introduced for convenience, but do not add to the expressiveness of the 
language (such as shorthand notations), can be replaced using these core concepts. Since replacements, which are 
described by transformation rules, can be formalised, it suffices to define the dynamic semantics only for the core 
concepts, which adds to its conciseness and intelligibility. 

For the formal semantics definition, the choice of the “right” core concepts is crucial. If there are too many core 
concepts, the dynamic semantics will be less concise and intelligible. If there are too few or the wrong concepts, the 
transformations tend to be very complex. In the scope of SDL, object-orientation was introduced in 1992, but still the 
(formal) semantics definition and the abstract syntax relied on instances and had no notion of class. The result was a 
very cumbersome transformation. This is rectified in this formal semantics definition. 

Z.100 prescribes the transformation of SDL specifications by a sequence of transformation steps. Each transformation 
step consists of a set of single transformations as stated in the Model sections, and determines how to handle one special 
class of shorthand notations. The result of one step is used as input for the next step. 

To formalise the transformation rules of Z.100, rewrite rules are used. A single transformation is realised by the 
application of a rewrite rule to the concrete specification, which essentially means to replace parts of the specification 
by other parts as defined by the rule (see Annex F.2). 
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2.4 Dynamic Semantics 
The dynamic semantics (Annex F.3) consists of the following parts (see Figure 2): 

• The SDL Abstract Machine (SAM) , which is defined using ASM. The definition of the SAM is divided into three 
parts, corresponding to the abstract syntax: (1) basic signal flow concepts (signals, timers, exceptions, gates, 
channels), (2) various types of ASM agents (modelling corresponding SDL agents), and (3) behaviour primitives 
(SAM instructions). 

• The compilation, defined as a function over the abstract syntax tree of an SDL specification. Result of the 
compilation are sets of behaviour primitives, modelling the actions of the SDL agents. 

• The initialisation, defining a pre-initial state of a system and several initialisation programs. The initial system state 
is then reached by creating the SDL system agent, and by activating this agent in the pre-initial state. The 
initialisation recursively unfolds the static structure of the system, creating further SDL agents as specified. In fact, 
the same process will be initiated in the subsequent execution phase, whenever SDL agents are created. From this 
point of view, the initialisation merely describes the instantiation of the SDL system agent. 

• The data semantics, which is separated from the rest of the semantics by an interface. The use of an interface is 
intentional at this place. It will allow to exchange the data model, if for some domain another data model is more 
appropriate than the built-in model. Moreover, also the built-in model can be changed this way without affecting 
the rest of the semantics. 

The dynamic semantics is formalised starting from the abstract syntax AS1 of SDL. From this abstract syntax, a 
behaviour model for SDL specifications is derived. The approach chosen here is based on an abstract operational view 
using the ASM formalism as underlying mathematical framework for a rigorous semantic definition of the SAM model. 
The compilation defines an abstract compiler mapping the behaviour parts of SDL to abstract code (denotational 
semantics). Finally, the initialisation describes an interpretation of the abstract syntax tree to build the initial system 
structure (operational semantics). 

Compilat ion
Execution

Initialisation
Execution

Agents PrimitivesSignal Flow

Mathematics (ASM)

SDL Abstract Machine (SAM)

Interface

Behaviour DataStructure

Abstract Syntax (AS1)

 

Figure 2: Overview of the Dynamic Semantics 

The dynamic semantics associates, with each SDL specification, a particular distributed real-time ASM. Intuitively, this 
consists of a set of autonomous agents cooperatively performing concurrent machine runs. The behaviour of an agent is 
determined by an ASM program consisting of a transition rule. Collectively, these rules define the set of possible 
machine runs. Each agent has its own partial view on a global state, which is defined by a set of static and dynamic 
functions and domains. By having non-empty intersections of partial views, interaction among agents can be modelled. 
An introduction to the ASM model, and the notation used in Annex F, is given in Section 3. 
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3 ABSTRACT STATE MACHINES 

This section explains basic notions and concepts of Abstract State Machines (ASM) as well as the notation used in this 
document to define the SDL Abstract Machine model. The objective here is to provide an intuitive understanding of the 
formalism; for a rigorous definition of the mathematical foundations of ASM, the reader is referred to [3] and [4]. A 
discussion and motivation of the appropriateness of the semantic framework used here is given in [2].  Further 
references on ASM-related material can also be found on the ASM Web Pages [1]. 

The ASM model used to define the dynamic semantics of SDL is explained in several steps. Firstly, the basic ASM 
model with a single agent is treated (Section 3.1). Next, this model is extended to cover multi-agent systems (Section 
3.2). Then, open systems, i.e. systems interacting with an environment they cannot control, are addressed by adding the 
notion of external world (Section 3.3). Finally, the model is extended by introducing a notion of real-time behaviour 
(Section 3.4). To illustrate these steps, an ASM model for a simple system is developed, step by step. The final ASM 
model of this system is summarised in Section 3.5. Additional notation used to define the dynamic semantics of SDL is 
explained in Section 3.6. 

 
 

EXAMPLE (Informal Description): 

In order to illustrate the ASM model, a simple resource management system (RMS) consisting of a group of n > 1 
agents competing for a resource (for instance, some device or service) is defined. Informally, this system is 
characterised as follows: 

• There is a set of m tokens, m< n, used to grant exclusive or non-exclusive (shared) access to the resource. 

• Depending on whether the desired access mode is exclusive or shared, an agent must own all tokens or one token, 
respectively, before he may access the resource. 

• An agent is idle when not competing for a resource, waiting when trying to obtain access to the resource, or busy 
while owning the right to access the resource. 

• Once an agent is waiting, it remains so until it obtains access to the resource. 

• A busy agent releases the resource when it is no longer needed, as indicated by a stop condition for that agent that 
is externally set. On releasing the resource, all tokens owned by the agent are returned. 

• Stop conditions are only indicated when an agent is busy. This is an integrity constraint on the behaviour of the 
external world. 

• Initially, all agents are idle, and all tokens are available. 

The system will be defined step by step, as the explanations of the ASM model proceed, starting with the basic ASM 
model with a single agent. The final ASM model of this system is summarised in Section 3.5. 
 

 

3.1 Basic ASM Model 
An Abstract State Machine M is defined over a given vocabulary V by its states S, its initial states S0 ⊆ S, and its 
program P. These items will be explained in the following subsections. 

3.1.1 Vocabulary 

The vocabulary (or signature) V denotes a finite set of function names, predicate names, and domain names, each of a 
fixed arity. Names in V are classified as basic or derived, and further distinguished into static or dynamic (see Figure 3). 
The meaning associated with these classifications will be explained in subsequent subsections. 
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names

  basic                                                             derived

static                         dynamic         static                          dynamic  

Figure 3: Classification of ASM Names 

V is declared when defining an ASM, except for a subset of predefined names. This subset includes, for instance, the 
equality sign, the 0-ary predicate names True, False, the 0-ary function name undefined, the domain names BOOLEAN, 
NAT and REAL, as well as the names of frequently used standard functions (such as Boolean operations ∧ , ∨ , ¬, ⇒, ⇔, 
and set operations ⊆, ∪, ∩, ∈, ∉, etc.). Predefined names are listed in Section 3.6. 

To declare names when defining a concrete ASM, we use the following notational conventions: 

• Domain names are written in capitalised italics (as in AGENT), except when denoting a non-terminal of the abstract 
grammar. Here, domain names are written as the non-terminals, i.e. in italics, hyphenated, and starting with a 
capital (as in AgentDefinition). A domain name D is declared by domain D. 

• Function names are written in italics starting with a small letter (as in mode). A function name f is declared by f: 
D1×D2×...×Dn → D0, where n is the arity of f, and D0,D1,D2,...,Dn are domain names. 

• Predicate names are also written in italics, but starting with a capital letter (as in Available). A predicate name P is 
declared by P: D1×D2×...×Dn → BOOLEAN. 

• Basic static names are qualified by the keyword static, when they are declared (see Figure 3). 

• Basic dynamic names are qualified by one of the keywords controlled, shared, or monitored, when they are 
declared (as will be explained in Section 3.3). 

• Names without a preceding keyword are derived names by default (see Figure 3). 

 

EXAMPLE (Vocabulary):  

To define an ASM model of the system RMS, assume a vocabulary V including the following names: 

  static domain AGENT 
  static domain TOKEN 
  domain MODE 

  shared mode: AGENT → MODE 
  controlled owner: TOKEN → AGENT 
  static ag: → AGENT 

  Idle: AGENT → BOOLEAN 
  Waiting: AGENT → BOOLEAN 
  Busy: AGENT → BOOLEAN 
  Available: TOKEN → BOOLEAN 

  monitored Stop: AGENT → BOOLEAN 

The static domain names AGENT, TOKEN, and MODE are introduced to represent the (single) agent of the system, the 
set of tokens, and the different access modes (exclusive, shared), respectively. The names mode and owner denote 
dynamic functions, they are used to model the current access mode of an agent and the current owner of a token, 
respectively. The 0-ary function name ag refers to a value of the domain AGENT. Idle, Waiting, Busy, and Available 
are names of derived, dynamic predicates. Stop denotes a monitored predicate, which will be explained later. 
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3.1.2 States 

A state s ∈ S is given by assigning a meaning, also called interpretation, to the names in V over an infinite set, called 
the base set of M (to which we refer by the predefined domain name X).1 That is, to each domain name, function name 
and predicate name in V a basic domain, function or predicate is to be associated , respectively. The interpretation of 
derived names follows from the interpretation of basic names. Note that the base set is the same for all states of M. It is 
required that True, False and undefined denote distinct elements of the base set. Predefined operations have their usual 
interpretation. 

Recall that names are classified as static or dynamic. If classified as static, names are required to have the same 
interpretation in all states of M. Otherwise, they may have different interpretations in different states of M. Thus, the 
states S of M are given by the set of all interpretations of the names in V over the base set of M that comply with these 
and other explicitly stated constraints. 

Strictly speaking, all functions are total functions on the base set of M. To imitate partial functions, “undefined” 
function values are marked by the distinguished element undefined. Predicates only yield one of the values True or 
False, i.e., they must not be partial. 

Every state has a potentially infinite number of reserve elements allowing to extend domains dynamically (see Section 
3.1.6). By definition, the reserve elements of a state are all those elements of the base set that are neither identified by a 
function nor contained in one of the domains. 

3.1.3 Derived Names 

The meaning of derived names follows from the interpretation of basic names, and is defined in terms of formulae (see 
Section 3.6); derived names may therefore be understood as abbreviations. Let DerivedName  be an n-ary name, and let 
Formula(v1,...,vn) denote a formula of the domain D with free variables v1,...,vn of domains D1,...,Dn, n ≥ 0. The general 
form of a derived name definition is: 

DerivedNameDefinition ::= DerivedName(v1:D1,...,vn:Dn):D =def Formula(v1,...,vn) 

The result domain D is omitted in case of a derived domain definition. 
 

EXAMPLE (Definitions): 

The following derived predicates are defined to refer to the status of an agent/token in a given state: 

  MODE =def   {exclusive, shared} 

  Idle(a:AGENT): BOOLEAN =def a.mode = undefined ∧  ∀t ∈ TOKEN: t.owner ≠ a 
  Waiting(a:AGENT): BOOLEAN =def a.mode ≠ undefined ∧  ∀t ∈ TOKEN: t.owner ≠ a 
  Busy(a:AGENT): BOOLEAN =def a.mode ≠ undefined ∧  ∃t ∈ TOKEN: t.owner = a 
  Available(t:TOKEN): BOOLEAN =def t.owner = undefined 

An agent a is, for instance, idle iff the function mode yields the value undefined for that agent, and a does not hold 
any token. A token t is available iff no agent is holding t. 
 

For an improved readability, we use a “.”-notation for unary functions and predicates. For instance, we write a.mode, 
which is equivalent to writing mode(a). 

3.1.4 Initial States 

The set of initial states S0 ⊆ S is defined by constraints imposed on domains, functions, and predicates as associated 
with the names in V. The initial constraints for predefined domains and operations are given implicitly; see section 3.6. 
Initial constraints have the following general form: 

initially ClosedFormula 

                                                                 
1 Formally speaking, ASM states are (many-sorted)  first-order structures. 
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EXAMPLE (Initial States): 

The following constraints define the set of initial states of the system RMS: 

  initially AGENT = {ag} 
  initially ∀a ∈ AGENT: a.Idle ∧  ∀t ∈ TOKEN: t.Available 

The first constraint defines the initial set AGENT to consist of a single element ag. The second constraint expresses 
that initially, the agent of RMS is idle (a.mode = undefined), and all tokens are available (t.owner = undefined). Note 
that no constraint on Stop is defined. 
 

3.1.5 State Transitions and Runs 

Recall that a (global) state s ∈ S is given by an interpretation of the names in V over the base set of M. State transitions 
can be defined in terms of partial reinterpretations of dynamic domains, functions, and predicates. This gives rise to the 
notions of location as a conceptual means to refer to parts of global states, and of update to describe state changes. 

A location of a state s of M is a pair locs = <f, s(x)>, where f is a dynamic name in V, and s(x) is a sequence of elements 
of the base set according to the arity of f. An update of s is a pair δs = <locs, s(y)>, where s(y) identifies an element of 
the base set as the new value to be associated with the location locs. To fire δs means to transform s into a state s' of M 
such that fs'(s(x)) = s(y), while all other locations loc's of s, loc's ≠ locs, remain unaffected. In other words, firing an 
update modifies the interpretation of a state in a well-defined way. 

The potential behaviour of a basic ASM is captured by a program P, which is defined by a transition rule (see Sections 
3.1.6 and 3.1.8). For each state s ∈ S, a program P of M defines an update set ∆s(P) as a finite set of updates of s. ∆s(P) 
is consistent, if and only if it does not contain any two updates δs, δ's such that δs = <locs, s(y)>, δ's = <locs, s(y')>, and 
s(y) ≠ s(y'). The firing of a consistent update set ∆s(P) in state s means to fire all its members simultaneously, i.e. to 
produce (in one atomic step) a new state s' such that for all locations locs =  <f,s(x)> of s, fs'(s(x)) = s(y), if 
<<f,s(x)>,s(y)> ∈ ∆s(P), and fs'(s(x)) = fs(s(x)) otherwise, and is called state transition. Firing an inconsistent update set2 
has no effect, i.e., s' = s. 

The behaviour of a single-agent ASM M is modelled through (finite or infinite) runs of M, where a run is a sequence of 
state transitions of the form 

 

 ∆s0(P)  ∆s1(P)  ∆s2(P)   moves 

s0 → s1 → s2 → ...  states 

such that s0 ∈ S0, and si+1 is obtained from si, for i ≥ 0, by firing ∆si(P) on si, where ∆si(P) denotes an update set defined 
by the program P of M on si (see Section 3.1.8). The meaning of an ASM is defined to be the set of all its runs. In the 
sequel, we restrict attention to runs starting in an initial state, also called regular runs. 

3.1.6 Transition Rules 

Transition rules specify update sets over ASM states. Complex rules are formed from elementary rules using various 
rule constructors. The elementary form of transition rule is called update instruction. 

• update instruction 

Rule ::= f(t1,...,tn) := t0          (n ≥ 0) 

Here, f is a non-static name of V denoting either a controlled or a shared function, predicate or domain, and 
t0,t1,...,tn are terms over V identifying, for a given state s, the location loc = <f,<s(t1),..., s(tn)>> to be changed and 
the new value s(t0) to be assigned, respectively. In other words, the above update instruction specifies the update 
set {<<f,<s(t1),..., s(tn)>>, s(t0)>}, consisting of a single update. Note that only locations related to (non-static) 
basic names may occur at the left-hand side of an update instruction. 

                                                                 
2 In the context of the SDL semantics, an inconsistent update set indicates an error in the semantic model. The ASM 
semantics ensures that such errors do not destroy the notion of state. 
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EXAMPLE (Update Instruction): 

Let t be a variable denoting a token, and ag be an agent. 

  t.owner := ag    specifies the update set {<<owner, <s(t)>>, s(ag)>} 
  ag.mode := undefined specifies the update set {<<mode, <s(ag)>>, s(undefined)>} 
 

The construction of complex transition rules out of elementary update instructions is recursively defined by means of 
ASM rule constructors. For the ASM model applied to define the SDL semantics, six different constructors are used. 
These constructors are listed below, with an informal description of their meaning. Here, Rule, Rulei denote transition 
rules, g denotes a Boolean term, and v,v1,...,vn denote free variables over the base set of M. The scope of a rule 
constructor is expressed by appropriate keywords, and can additionally be indicated by indentation. The closing 
keywords can be omitted, if no confusion arises. If closing keywords are omitted, the corresponding constructor extends 
as much as possible, but not over the next where-clause. 

• if-then-constructor 

Rule ::= if g then 
    Rule1 
   [else 
    Rule2] 
   endif 

The update set specified by Rule in a given state s is defined to be the update set of Rule1 or Rule2, depending on the 
value of g in state s. Without the optional else-part, the update set defined by Rule is the update set of Rule1 or the 
empty update set. Sometimes, elseif is used as abbreviation for else if. 

• do-in-parallel-constructor 

Rule ::= [do in-parallel] 
    Rule1 
    ... 
    Rulen 
   [enddo] 

The update set defined by Rule in state s is defined to be the union of the update sets of Rule1 through Rulen. In 
other words, the order in which transition rules belonging to the same block are stated is irrelevant. For brevity, the 
keywords do in-parallel and enddo may be omitted, where no confusion arises. Hence, an ASM program often 
appears as a collection of rules rather than a monolithic block rule. 

• do-forall-constructor 

Rule ::= do forall v: g(v) 
    Rule0(v) 
   enddo 

The effect of Rule is that Rule0 is fired simultaneously for all elements v of the base set of M for which the Boolean 
condition g(v) holds in state s, where v is a free variable in Rule0. More precisely, ∆s(Rule) is the union of all update 
sets ∆s(Rule0(v)) such that g(v) holds in state s. Recall that update sets are required to be finite, therefore, g(v) must 
hold for a finite number of values only. 

• choose-constructor 

Rule ::= choose v: g(v) 
    Rule0(v) 
   endchoose 

The effect of Rule is that Rule0 is fired for some element v of the base set of M for which the condition g(v) holds in 
state s, where v is a free variable in Rule0. More precisely, ∆s(Rule) is some update set ∆s(Rule0(v)) such that g(v) 
holds in state s, or the empty update set if no such v exists. 
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• extend-constructor3 

Rule ::= extend D with v1,...,vn 
    Rule0(v1,...,vn) 
   endextend 

The effect of Rule when fired at state s is that n reserve elements of s (see Section 3.1.2) are imported into the 
dynamic domain D (while being removed from the reserve), that v1,...,vn become bound to one of the imported 
elements each, and then Rule0(v1,...,vn) is fired. 

The extend constructor can be used to mimic object-based ASM definitions, where objects are dynamically created. 
Thus, for each object to be created, an element from the reserve is assigned to the corresponding domain, and 
initialised. 

• let-constructor 

Rule ::= let v = expression in 
    Rule0(v) 
   endlet 

The effect of Rule when fired in some state s is that v is bound to the value of expression, and that Rule0 is fired 
with this value. 

 

EXAMPLE (Transition Rule): 

The following transition rule defines the behaviour of agent ag when requesting shared access, i.e. when ag.mode = 
shared. The rule applies the if-then-constructor, the choose-constructor, and an update instruction. 

  if ag.mode = shared ∧  ag.Waiting then 
   choose t: t ∈ TOKEN ∧  t.Available 
    t.owner := ag 
   endchoose 
  endif 

The precise meaning of the rule is given by its update set with respect to a state s, which is either {<<owner, 
<s(t)>>, s(ag)>} for some token s(t) available in s, if all further predicates stated in the if-then-constructor hold in s, 
or the empty update set otherwise. 
 

3.1.7 Abbreviations 

Rules can be structured using abbreviations, consisting of rule macros and derived names, that may have 
parameters. This allows for hierarchical definitions, and the stepwise refinement of complex rules, which supports 
the understanding of ASM model definitions. 

Derived names are introduced as explained in Sections 3.1.1 and 3.1.3, i.e. by declaration and definition, or 
alternatively, in the compact form, by combining declaration and definition. 

• rule-macro-definition 

Let Rule0 denote a transition rule with free variables v1,...,vn of domains D1,...,Dn, n ≥ 0. The general form of a rule 
macro definition is: 

RuleMacroDefinition ::=  RuleMacroName(v1:D1,...,vn:Dn) ≡ 
          Rule0(v1,...,vn) 

Rule macro names are, by convention, written in small capitals, with a leading capital letter (as in SHAREDACCESS). 

• where-part 

                                                                 
3 Strictly speaking, extend can be defined in terms of the import constructor (not shown here); however, the import 
constructor is not used in this Recommendation. 
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By default, rule macros and derived names have a global scope. However, their scope can also be restricted to a 
particular transition rule Rule by using the where-part. 

Rule ::= Rule0 
    where 
     ( RuleMacroDefinition  |  DerivedNameDefinition )+ 
    endwhere 

• rule-macro-constructor 

Rule macros are applied in transition rules as follows: 

Rule ::= RuleMacroName(t1,...,tn) 

Formally, rule macros are syntactical abbreviations, i.e., each occurrence of a macro in a rule is to be replaced 
textually by the related macro definition (replacing formal parameters by actual parameters). 

 

EXAMPLE (Rule Macro): 

The transition rule from the previous example can be stated using rule macros, and be defined as a macro itself. 
Here, SHAREDACCESS is a macro definition with global scope that can be used in other places of the ASM model 
definition. GETTOKEN is a parameterised macro definition with a local scope restricted to the rule  SHAREDACCESS, 
with formal parameter a. When GETTOKEN is applied in SHAREDACCESS, a is replaced by the actual parameter ag. 

SHAREDACCESS ≡ 
  if ag.mode = shared ∧  ag.Waiting then 
   GETTOKEN(ag) 
  endif 
  where 
    GETTOKEN(a:AGENT) ≡ 
      choose t: t ∈ TOKEN ∧  t.Available 
       t.owner := a 
      endchoose 
  endwhere 
 

3.1.8 ASM Programs 

An ASM program P is given by a framed transition rule (or rule for short) of the following form: 

Rule 

As already mentioned, rule macro definitions may either have a local or a global scope. To have a global scope, the 
macro definitions can be given outside the ASM program, and can thus also be applied in the ASM program. 

In the basic ASM model there is just one ASM program, which is statically associated with an implicitly defined agent 
executing this program. In the next section, we will allow to define several ASM programs, and associate them with 
different agents that are introduced dynamically during abstract machine runs. 
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EXAMPLE (ASM Program): 

The ASM program P of the system RMS is defined as follows: 

 do in-parallel 
  SHAREDACCESS 
  EXCLUSIVEACCESS 
  RELEASEACCESS 
 enddo 
 where 
   SHAREDACCESS ≡ 
     if ag.mode = shared ∧  ag.Waiting then 
      choose t: t ∈ TOKEN ∧  t.Available 
       t.owner := ag 
      endchoose 
     endif 
   EXCLUSIVEACCESS ≡ 
     if ag.mode = exclusive ∧  ∀t ∈ TOKEN: t.Available then 
      do forall t: t ∈ TOKEN 
       t.owner := ag 
      enddo 
     endif 
   RELEASEACCESS ≡ 
     if ag.Busy ∧  ag.Stop then 
      do in-parallel 
       ag.mode := undefined 
       do forall t: t ∈ TOKEN ∧  t.owner = ag 
        t.owner := undefined 
       enddo 
      enddo 
     endif 
 endwhere 

The ASM program is defined by a single transition rule as shown in the frame. The transition rule uses the do-in-
parallel-constructor and 3 rule macros, which results in a hierarchical rule definition. 
 

3.2 Distributed ASM 
Mathematical modelling of concurrent and reactive systems requires to extend the basic ASM model. In this section, the 
concept of distributed ASM, which generalises the basic ASM model presented in Section 3.1, is explained. 

A distributed Abstract State Machine M is defined over a given vocabulary V by its states S, its initial states S0 ⊆ S, its 
agents A, and its programs P. These items will be explained in the following subsections, as far as they differ from the 
basic ASM model. 

3.2.1 Vocabulary 

The vocabulary V of a multi-agent ASM M includes distinguished domain names 

controlled domain AGENT 
static domain PROGRAM 

representing a dynamic set A of agents and an invariant set P of ASM programs, respectively. Furthermore, V includes a 
distinguished function name 

controlled program: AGENT → PROGRAM 

and a special 0-ary function Self (see Section 3.2.2). 
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3.2.2 Agents and Runs 

A distributed ASM M may have any finite number of agents, where this number may vary dynamically depending on 
the given state. The behaviour of each agent is determined by some program of M, defined by a transition rule like in 
the basic ASM model. Agents operate concurrently by running their programs, and interact asynchronously through 
globally shared locations of a state, i.e. two or more agents may read and write the same location. Concurrent execution 
steps of the distributed ASM model are restricted to independent operations, where the admissible behaviour is defined 
in terms of partially ordered runs (see [3]). Intuitively, this notion of concurrency allows for true concurrency instead 
of approximating concurrency by an interleaving model. 

To assign a behaviour to an agent of M, the distinguished function program (see Section 3.2.1) yields, for each agent a 
of M, the program of P to be executed by a. The function program thus allows to define (or to redefine) the behaviour 
of agents dynamically; it is thereby possible to create new agents at run time. In a given state s of M, the agents of M are 
all those elements a of s such that a.program identifies a behaviour (as  defined by some program of P) to be associated 
with a. 

A special 0-ary function Self serves as a self reference identifying the respective agent calling Self: 

monitored Self: → AGENT 

For every agent, Self has a different interpretation. By using Self as an additional function argument, each agent a can 
have its own partial view of a given global state of M on which it fires the rule in a.program. 

 
 

EXAMPLE (Scheme of a distributed ASM): 

In the following figure, a particular distibuted ASM M, consisting of three agents ag1, ag2, and ag3 is illustrated. The 
function program associates, with each agent, one of the ASM programs P1, P2, and P3. Here, ag1 and ag2 are 
assigned the same program. Program P2 is currently not associated with any agent, however, this may change during 
execution, as program is a dynamic function. Each agent has its own partial view on a given global state s of M, in 
which it fires the rule of its current program. In the figure, this view is illustrated by the function view, which yields, 
for each agent, its local and its shared state. In fact, the current view of each agent is determined implicitly by the 
ASM model definition, including the ASM programs. 

Agents

s
view(ag2,s) view(ag3,s)

ag1

ag2

ag3

ag1.program

ag2.program

ag3.program

view(ag1,s)

P3

P2

P1

Global State
Programs

 
 

The semantic model of concurrency underlying the distributed ASM model defines behaviour in terms of partially 
ordered runs. A partially ordered run represents a certain class of (admissible) machine runs by restricting non-
determinism with respect to the order in which the individual agents may perform their computation steps, so-called 
moves.  To avoid that agents interfere with each other, moves of different agents need only be ordered if they are 
causally dependent (as detailed below). 

Partially Ordered Runs 

Regarding the moves of an individual agent, these are linearly ordered, whereas moves of different agents need only be 
ordered in case they are not independent of each other. Intuitively, independent moves model concurrent actions which 



 

ITU-T Z.100/Annex F.1 (11/2000) – Prepublished version 15 

are incomparable with regard to their order of execution. The precise meaning of independence is implied by the 
coherence condition in the formal definition of partially ordered runs (adopted from [3]). 

A run ρ of a distributed ASM M is given by a triple (Λ,A,σ) satisfying the following four conditions: 

1. Λ is a partially ordered set of moves, where each move has only finitely many predecessors; 

2. A is a function on Λ associating agents to moves such that the moves of any single agent of M are linearly ordered; 

3. σ assigns a state of M to each initial segment Y of Λ, where σ(Y) is the result of performing all moves in Y; if Y is 
empty, then σ(Y) ∈ S0; 

4. if y is a maximal element in a finite initial segment Y of Λ and Z = Y – { y }, then A(y) is an agent in σ(Z) and σ(Y) 
is obtained from σ(Z) by firing A(y) at σ(Z)  (coherence condition). 

Implications 

Partially ordered runs have certain characteristic properties that can be stated in terms of linearisations of partially 
ordered sets. A linearisation of a partially ordered set Λ is a linearly ordered set Λ’ with the same elements such that if y 
< z in Λ then y < z in Λ’. Accordingly, the semantic model of concurrency as implied by the notion of partially ordered 
run can further be characterised as follows [3]: 

• All linearisations of the same finite initial segment of a run of M have the same final state. 

• A property holds in every reachable state of a run ρ of M if and only if it holds in every reachable state of every 
linearisation of ρ. 

3.2.3 Distributed ASM Programs 

A distributed ASM M  has a finite set P of programs. Each program p ∈ P is given by a program name  and a transition 
rule (or rule for short). The program name uniquely identifies p within P, and is represented by a unary static function4. 
Programs are stated in the following form: 

ASM-PROGRAM: 
Rule 

Program names are, by convention, hyphenated and written in small capitals, with a leading capital letter (as in 
RESOURCE-MANAGEMENT-PROGRAM). 

By default, the following implicit constraint applies: 

 initially PROGRAM = {PROGRAM1,...,PROGRAMn} 

where PROGRAM1,...,PROGRAMn are the names of the programs that are defined in the ASM model. 

                                                                 
4 Strictly speaking, the program names of M are represented by a distinguished set of elements from the base set. 
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EXAMPLE (ASM Program): 

The distributed ASM program of the system RMS defines a single program as follows: 

 RESOURCE-MANAGEMENT-PROGRAM: 
 do in-parallel 
  SHAREDACCESS 
  EXCLUSIVEACCESS 
  RELEASEACCESS 
 enddo 
 where 
   SHAREDACCESS ≡ 
     if Self.mode = shared ∧  Self.Waiting then 
      choose t: t ∈ TOKEN ∧  t.Available 
       t.owner := Self 
      endchoose 
     endif 
   EXCLUSIVEACCESS ≡ 
     if Self.mode = exclusive ∧  ∀t ∈ TOKEN: t.Available then 
      do forall t: t ∈ TOKEN 
       t.owner := Self 
      enddo 
     endif 
   RELEASEACCESS ≡ 
     if Self.Busy ∧  Self.Stop then 
      do in-parallel 
       Self.mode := undefined 
       do forall t: t ∈ TOKEN ∧  t.owner = Self 
        t.owner := undefined 
       enddo 
      enddo 
     endif 
 endwhere 

The program of the distributed ASM has the name RESOURCE-MANAGEMENT-PROGRAM, and is defined as the 
single-agent ASM program before, with one difference: all occurrences of ag have been replaced by calls of the 
function Self. This allows to associate the program with different agents, while accessing the local state of these 
agents. 
 

3.3 The External World 
Following an open system view, interactions between a system and the external world, e.g. the environment into which 
the system is embedded, are modelled in terms of various interface mechanisms. Regarding the reactive nature of 
distributed systems, it is important to clearly identify and precisely state 

• preconditions on the expected behaviour of the external world, and 

• how external conditions and events affect the behaviour of an ASM model. 

This is achieved through a classification of dynamic ASM names into three basic categories of names, which extends 
the classification of names shown in Figure 3: 

• controlled names 

These domains, functions or predicates can only be modified by agents of the ASM model, according to the 
executed ASM programs. Controlled names are preceded by the keyword controlled at their point of declaration, 
and are visible to the environment. 

• monitored names 
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These domains, functions or predicates can only be modified by the environment, but are visible to ASM agents. 
Thus, a monitored domain, function or predicate may change its values from state to state in an unpredictable way, 
unless this is restricted by integrity constraints (see below). Monitored names are preceded by the keyword 
monitored at their point of declaration. 

• shared names 

These domains, functions or predicates are visible to and may be altered by the environment as well as by the ASM 
agents. Therefore, an integrity constraint on shared domains, functions or predicates is that no interference with 
respect to mutually updated locations must occur. Hence, it is required that the environment itself acts like an ASM 
agent (or a collection of ASM agents). Shared names are preceded by the keyword shared at their point of 
declaration. 

names

  basic                                                             derived

                 static                   dynamic               static                    dynamic

                               controlled       shared      monitored
 

Figure 4: Extended classification of ASM names 

 

EXAMPLE (External World):  

The vocabulary V of the system RMS is extended by a classification of dynamic functions and predicates:  

  shared mode:   AGENT → MODE 
  controlled owner: TOKEN → AGENT 

  monitored Stop:  AGENT → BOOLEAN 

The function mode, which determines the current access mode, is shared. It may be affected by externally controlled 
‘set’ operations, switching it to one of the values exclusive or shared. Furthermore, it is reset internally when the 
resource is released (see Section 3.2.3). 

The predicate Stop represents an external stop request, such as an interrupt, and therefore is monitored. 
 

In general, the influence of the environment on the system through shared and monitored names may be completely 
unpredictable. However, preconditions on the expected environment behaviour may be expressed by stating integrity 
constraints, which are required to hold in all states and runs of M. Note that integrity constraints merely express 
preconditions on the environment behaviour, but not properties the system is supposed to have.  

Integrity constraints are stated in the following form: 

IntegrityConstraint ::= constraint ClosedFormula 
 

EXAMPLE (Integrity Constraints): 

The following integrity constraint states that stop requests are only generated for busy agents: 

  constraint ∀a ∈ AGENT: (a.Stop ⇒ a.Busy) 
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3.4 Real-time Behaviour 
By introducing a notion of real time and imposing additional constraints on runs, we obtain a specialised class of 
ASMs, called distributed real-time ASM, with agents performing instantaneous actions in continuous time. Essentially, 
that means that agents fire their rules at the moment they are enabled. 

To incorporate real-time behaviour into the underlying ASM execution model, we introduce a 0-ary monitored real-
valued function currentTime. Intuitively, currentTime refers to the physical time. As an integrity constraint on the 
nature of physical time, it is assumed that currentTime  changes its values monotonically increasing over ASM runs. 

monitored currentTime: → REAL 

Consider a given vocabulary V containing REAL (but not currentTime) and let V+ be the extension of V with the function 
symbol currentTime . Restrict attention to V+-states where currentTime evaluates to a real number. One can then define a 
run R of the resulting machine model as a mapping from the interval [0,∞) to states of vocabulary V+ satisfying the 
following discreteness requirement, where σ(t) denotes the reduct5of R(t) to V: 

1. for every t ≥ 0, currentTime  evaluates to t at state R(t); 

2. for every τ > 0, there is a finite sequence 0 = t0 < t1 <…< tn = τ such that if t i < α < β < ti+1 then σ(α) = σ (β). 

Exploiting the discreteness property, one effectively obtains some finite representation (history) for every finite (sub-) 
run by abstracting from those states which are not considered as significant such that they contribute any relevant 
information to a behaviour description. In particular, one can simply ignore all states which are identical to their 
preceding state except that currentTime  has increased. From the above definition of run it follows that only finitely 
many states are left. 

3.5 Example: The System RMS 
In this section, we assemble the pieces of the ASM model definition of the system RMS into their final version. For 
better reference, we also repeat the informal description. 

Informal Description 

In order to illustrate the ASM model, a simp le resource management system RMS consisting of a group of n > 1 agents 
competing for a resource, for instance, some device or service, is defined. Informally, this system is characterised as 
follows: 

• There is a set of m tokens, m < n, used to grant exclusive or non-exclusive (shared) access to the resource. 

• Depending on whether the desired access mode is exclusive or shared, an agent must own all tokens or one token, 
respectively, before he may access the resource. 

• An agent is idle when not competing for a resource, waiting when trying to obtain access to the resource, or busy 
when owning the right to access the resource. 

• Once an agent is waiting, it remains so until it obtains access to the resource. 

• A busy agent releases the resource when it is no longer needed, as indicated by a stop condition for that agent that 
is externally set. On releasing the resource, all tokens owned by the agent are returned. 

• Stop conditions are only indicated when an agent is busy. 

• Initially, all agents are idle, and all tokens are available. 

                                                                 
5 That is, for a given value t, we obtain σ(t) from R(t) by ignoring the interpretation of the function name currentTime . 
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Vocabulary 

static domain TOKEN 

shared mode: AGENT → MODE 
controlled owner: TOKEN → AGENT 

monitored Stop: AGENT → BOOLEAN 

Derived Names 

MODE =def {exclusive, shared} 

Idle(a:AGENT): BOOLEAN    =def a.mode = undefined ∧  ∀t ∈ TOKEN: t.owner ≠ a 
Waiting(a:AGENT): BOOLEAN  =def a.mode ≠ undefined ∧  ∀t ∈ TOKEN: t.owner ≠ a 
Busy(a:AGENT): BOOLEAN   =def a.mode ≠ undefined ∧  ∃t ∈ TOKEN: t.owner = a 
Available(t:TOKEN): BOOLEAN =def t.owner = undefined 

Integrity Constraints 

constraint ∀a ∈ AGENT: (a.Stop ⇒ a.Busy) 

Initial Constraints 

initially |AGENT| > 1 
initially | TOKEN | < |AGENT| 
initially ∀a ∈ AGENT: a.program = RESOURCE-MANAGEMENT-PROGRAM 
initially ∀a ∈ AGENT: a.Idle ∧  ∀t ∈ TOKEN: t.Available 

ASM Programs  

RESOURCE-MANAGEMENT-PROGRAM: 
 

do in-parallel 
  SHAREDACCESS 
  EXCLUSIVEACCESS 
  RELEASEACCESS 
enddo 
where 
  SHAREDACCESS ≡ 
    if Self.mode = shared ∧  Self.Waiting then 
     choose t: t ∈ TOKEN ∧  t.Available 
      t.owner := Self 
     endchoose 
    endif 
  EXCLUSIVEACCESS ≡ 
    if Self.mode = exclusive ∧  ∀t ∈ TOKEN: t.Available then 
     do forall  t: t ∈ TOKEN 
      t.owner := Self 
     enddo 
    endif 
  RELEASEACCESS ≡ 
    if Self.Stop then 
     Self.mode := undefined 
     do forall t: t ∈ TOKEN ∧  t.owner = Self 
      t.owner := undefined 
     enddo 
    endif 

endwhere 
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3.6 Predefined Names 
To define an ASM model, in particular the ASM model capturing the semantics of SDL, certain names and their 
intended interpretation are predefined. These names are grouped and listed in this section (where D refers to the 
syntactic category of domains). For prefix, infix and postfix operators, an underline (“_”) is used to indicate the position 
of their arguments. Moreover, the precedence of the operators is indicated by prec(n), where n is a number. Higher 
numbers mean tighter binding. Monadic operators have a tighter binding than binary ones. Binary operators are 
associative to the left. 

 
ASM-specific Domains  
static domain X ASM base set (meta domain) 
static domain BOOLEAN Boolean values 
static domain NAT Integer values 
static domain REAL Real values 
shared domain AGENT ASM agents  
static domain PROGRAM ASM programs  
static domain TOKEN Syntax tokens (character strings) 
_ * Domain constructor: finite sequences of 
_ + Domain constructor: non-empty, finite sequences of 
_ -set Domain constructor: finite sets of 
_ × _   prec(7) Tuple domain constructor 
_ ∪ _   prec(6) Union domain constructor 
 
ASM-specific Functions  
static undefined: → X Indicator for undefined values 
monitored Self: → AGENT Self reference for ASM agents 
controlled program: AGENT → PROGRAM Program of an ASM agent 
monitored currentTime: → REAL The current system time. 
 
Boolean Functions and Predicates  
static True: → BOOLEAN Predefined literal. 
static False: → BOOLEAN Predefined literal 
_ = _   prec(4) Equality 
_ ≠ _   prec(4) Inequality 
_ ∧  _   prec(3) Logical and 
_ ∨  _   prec(2) Logical or 
_ ⇒ _   prec(1) Implication 
_ ⇔ _   prec(1) Logical equivalence 
¬ _ Negation 
∃x ∈ D: P(x)   prec(0) Existential quantification (at least one element) 
∃!x ∈ D: P(x)   prec(0) Unique existential quantification (exactly one element) 
∀x ∈ D: P(x)   prec(0) Universal quantification 
 
Terms   
X 0-ary function application 
f(t1,..., tn) Function application with n argument expressions 
if Formula then Term else Term endif Conditional expression; again we use elseif instead of else if 
s-_(_) Tuple selection function (see Tuples below) 
mk-_(...) Tuple construction (see Tuples below) 
inv-_(...) The inverse of a function or map,  

inv-Fun(x) =def take({ a ∈ D: Fun(a) =x }) 
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Functions and Relations on Integers  
_ > _, _ ≥ _, _ <_ , _ ≤ _   prec(4) Comparison operators 
_ + _   prec(6) Addition 
_ - _   prec(6) Subtraction 
_ *_   prec(7) Multiplication 
_ / _   prec(7) Division 
0, 1, ... Integer literals  
 
Functions on Sequences  
static empty: → D * Empty sequence 
static head: D * → D Head of the sequence (undefined when empty) 
static tail: D * → D * Tail of the sequence (undefined when empty) 
static last: D * → D Last element of a sequence (undefined when empty) 
static length: D* → NAT Length of a sequence 
static < >: D n → D *   Sequence constructor; arguments are listed inside the brackets, 

separated by commas 
_ ∩ _   prec(6) Concatenation of sequences 
toSet: D * → D-set Conversion of the elements of a sequence into a set. 
_ [ _ ] Access an element of a list; the index within the brackets must be of 

type NAT 
_ in _   prec(4) Element of? 
< <result> | <var> in <seq> : <cond> > Sequence comprehension; acts like a filter on <seq>, i.e. order-

preserving 
< <var> in <seq> : <cond> > =def  
     < <var> | <var> in <seq> : <cond> > 

Abbreviated sequence comprehension 

< <result> | <var> in <seq> > =def  
     < <result> | <var> in <seq> : True > 

Abbreviated sequence comprehension 

 
Functions on Sets  
_ ∪ _   prec(6) Set union 
_ ∩ _   prec(7) Intersection 
_ \ _   prec(6) Set subtraction 
_ ∈ _   prec(4) Element of? 
_ ∉ _   prec(4) Not element of? 
_ ⊆ _   prec(4) Subset of? 
_ ⊂ _   prec(4) Proper subset of? 
| _ | Size of a set 
U _ Big union: union of all sets included within the argument set 
∅ Empty set 
static { }: D n → D-set   Set constructor; comma-separated list of arguments in the brackets 
take: D-set → D Select an arbitrary element from the set, or undefined for an empty set 
_ .. _   prec(5) Integer range from the first value to the second. Empty set when the 

second expression is smaller than the first one. 
{ <result> | <var> ∈ <set> : <cond> } Set comprehension, acts like a filter on <set> 
{ <var> ∈ <set> : <cond> } =def  
     { <var> | <var> ∈ <set>: <cond> } 

Abbreviated set comprehension 

{ <result> | <var> ∈ <set> } =def  
     { <result> | <var> ∈ <set>: True } 

Abbreviated set comprehension 

Patterns and Case-expressions 

Patterns provide a means to easily access the structure of values. The following patterns are provided: 

• Variables: A variable matches any value. However, if the variable is already bound, it only matches itself. 

• Anonymous variables: Anonymous variables are denoted by “*”. They are a shorthand for introducing an unused 
variable. 
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• Constructor: A constructor is given by its name and the arguments, that are again patterns. It matches any value that 
is constructed using that constructor and with the arguments matching their corresponding pattern. 

• Named Pattern: The notation Variable = Pattern introduces a name for (the value matching) the pattern. 

Patterns are used to describe functions on the syntax tree. The non-terminal names of the grammar are used as the 
constructor functions. 

A case expression is used to determine a value depending on pattern matching. 

CaseExpression ::= case Term of 
       | Pattern1: Term1 
       | Pattern 2: Term2 
       ... 
       [ otherwise Term0 ] 
      endcase 

If the value of Term matches at least one Pattern i, then the result of the case expression is given by the Termi. If no 
pattern matches, the result is Term0 (if present). Otherwise, the result is undefined. 

Union Domains 

Union domains simply contain the values of their constituent domains. 

D =def D1 ∪ D2 

Tuples 

For every declared tuple domain, several implied constructor and selector functions are defined. A definition  

D =def D1 × D2
* × D3-set × D1 × (D1 ∪ D2) 

also defines the following functions: 

mk-D: D1 × D2
* × D3-set × D1 × (D1 ∪ D2) → D 

s-D1: D → D1 
s-D2-seq: D → D2

* 
s-D3-set: D → D3-set 
s2-D1: D → D1 
s-implicit: D → (D1 ∪ D2) 

When the tuple includes the same domain more than once, selector functions similar to s2-D1 are defined. For union, the 
special selector function s-implicit is defined. 

Abstract Syntax Rules 

Abstract syntax rules from the language definition are directly translated to the ASM notation, using certain conventions 
that will be explained by examples. Basically, an abstract syntax rule can be understood as declaring one or more (tuple) 
domains, and defining functions to construct and select values of the component domains. However, syntax nodes have 
an identity as opposed to ordinary tuples. There are syntax rules introducing named constructors as well as named and 
unnamed unions. Rules introducing constructors are composed of terminal and non-terminal symbols, they have the 
form 

Symbol :: Symbol1  Symbol2
+  Symbol3-set  [Symbol4] 

which is translated to 
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Symbol-aux =def Symbol1 ×  Symbol2
* ×  Symbol3-set ×  Symbol4 

controlled domain Symbol 
controlled contents-Symbol: Symbol → Symbol-aux 
s-Symbol1(x: Symbol): Symbol1 =def s-Symbol1(x.contents-Symbol) 
s-Symbol2-seq(x: Symbol): Symbol2

* =def s-Symbol2-seq(x.contents-Symbol) 
s-Symbol3-set(x: Symbol): Symbol3-set=def s-Symbol3-set(x.contents-Symbol) 
s-Symbol4(x: Symbol): Symbol4 =def s-Symbol4(x.contents-Symbol) 

Moreover, there is an abbreviation mk-Symbol. This abbreviation amounts to creating a new object of domain Symbol 
using the extend primitive and to set the contents-Symbol value of the newly produced object to the result of mk-
Symbol-aux. Note that this kind of abbreviation is not a function, but in fact a rule item. Therefore, it must be used only 
within rules. The fact that the optional Symbol4 is not present is expressed in the ASM model by leaving the 
corresponding value undefined. 

An empty sequence of symbols (constructor with no parts) is denoted by ( ). 

The equality for syntax values is always a structural equality, i.e. the contents of the symbols are compared instead of 
the symbols themselves. 

The syntax rules introducing named unions, i.e., synonyms, have the form 

Symbol = Symbol1 | Symbol2 | ... | Symboln  (n ≥ 1) 

which is translated to 

Symbol =def Symbol1 ∪ Symbol2 ∪...∪ Symboln 

Note that since Symbol is a union domain, the expansion yields a domain definition, but no functions mk- or s-. 

In some cases, it is not necessary to refer to synonyms. Here, unnamed unions may be introduced by 

Symbol :: Symbol1 { Symbol21 | ... | Symbol2n } 

instead of introducing synonyms: 

Symbol :: Symbol1 Symbol2 
Symbol2 = Symbol21 | ... | Symbol2n  

For each SDL keyword KEYWORD, there is an associated keyword domain Keyword  with just one value: 

static domain Keyword  

It is required that all keyword domains are mutually disjoint. 

Given the abstract grammar, there is a derived domain called DefinitionAS1, which is composed of all abstract syntax 
symbol domains as follows: 

DefinitionAS1 =def Symbol1 ∪ Symbol2 ∪...∪ Symboln 

where Symbol1,Symbol2,...,Symboln is the list of all terminal and non-terminal symbols of the abstract grammar. 

There is a similar domain DefinitionAS0 for the concrete grammar (AS0). 

To navigate downward in a given abstract syntax tree, the functions s- can be used. To navigate upward, two parent 
functions are defined. 

controlled parentAS1: DefinitionAS1 → DefinitionAS1 
controlled parentAS0: DefinitionAS0 → DefinitionAS0 

Moreover, two functions are defined to find the parent of a particular kind. 
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parentAS0ofKind(from: DefinitionAS0, x: DefinitionAS0-set): DefinitionAS0 =def 
 if from = undefined then undefined 
 elseif from ∈ x then from 
 else parentAS0ofKind(from.parentAS0, x) 
 endif 
parentAS1ofKind(from: DefinitionAS1, x: DefinitionAS1-set): DefinitionAS1 =def 
 if from = undefined then undefined 
 elseif from ∈ x then from 
 else parentAS1ofKind(from.parentAS1, x) 
 endif 

The functions isAncestorAS1 and isAncestorAS0 determine if the first node is an ancestor of the second one: 

isAncestorAS1(n: DefinitionAS1 ,n': DefinitionAS1): BOOLEAN =def 
n = n'.parentAS1 ∨  isAncestorAS1(n, n'.parentAS1) 

isAncestorAS0(n: DefinitionAS0 ,n': DefinitionAS0): BOOLEAN =def 
n = n'. parentAS0 ∨  isAncestorAS0(n, n'.parentAS0) 

The top node of the current abstract or concrete syntax tree is denoted by the following 0-ary functions: 

controlled rootNodeAS1: → DefinitionAS1 
controlled rootNodeAS0: → DefinitionAS0 

The abstract syntax tree can be modified using the following derived function: 

replaceInSyntaxTree: DefinitionAS0 × DefinitionAS0 × DefinitionAS0 → DefinitionAS0 

The first parameter of the function is the old sub-tree, the second one is the new sub-tree and the third parameter is the 
old tree. The function returns the new tree, where all old sub-trees are replaced by the new sub-tree. 


