

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.141
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(02/2003)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3
(TTCN-3): Tabular presentation format

ITU-T Recommendation Z.141

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Testing and Test Control Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-computer interfaces for the management of telecommunications networks Z.360–Z.369

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.141 (02/2003) i

ITU-T Recommendation Z.141

Testing and Test Control Notation version 3 (TTCN-3):
Tabular presentation format

Summary

This Recommendation defines TFT, the Tabular Format for TTCN-3. TFT is the tabular presentation format
for TTCN-3 (Testing and Test Control Notation 3) Core Language defined in ITU-T Rec. Z.140. It is similar
in appearance and functionality to TTCN-2 defined in ITU-T Rec. X.292 for conformance testing. The tabular
format provides an alternative way of displaying the core language as well as emphasizing those aspects that
are particular to the requirements of a standardized conformance test suite.

While the core language may be used independently of the tabular presentation format, the tabular format
cannot be used without the core language. Use and implementation of the tabular presentation format shall be
done on the basis of the core language.

This Recommendation defines proformas, syntax mappings, additional static semantics, operational semantic
restrictions, display and other attributes. Together these characteristics form the tabular presentation format.

TFT inherits all the essential properties of the Core Language and is intended for specification of test suites
that are independent of platforms, test methods, protocol layers and protocols. TTCN-3 can be used for
specification of all types of reactive system tests over a variety of communication ports. Typical areas of
application are protocol testing (including mobile and Internet protocols), service testing (including
supplementary services), module testing, testing of CORBA-based platforms and APIs. The specification of
test suites for physical layer protocols is outside the scope of this Recommendation.

Since the first publication of ITU-T Recs Z.140 and Z.141 in July of 2001, several major updates to TTCN-3
Core Language have been made that are reflected in the TFT. The following changes are included in this
Recommendation:
1) corrections to examples and other editorials;
2) restructuring of the document for easier understandability;
3) Annex B, Operational Semantics, has been moved into a separate document;
4) user-defined functions have been extended;
5) bugs in the BNF has been corrected and the changes caused by the updates have been incorporated

into the BNF;
6) pattern matching mechanisms have been added;
7) the type system has been improved (including a better definition of type equivalence) and the new

char type added;
8) the import mechanism has been improved; and
9) named alts have been removed and replaced by altsteps, with an improved semantics.

Source

ITU-T Recommendation Z.141 was prepared by ITU-T Study Group 17 (2001-2004) and approved under the
WTSA Resolution 1 procedure on 13 February 2003.

The present Recommendation is part of a series of Recommendation covering the Testing and Control
Notation version 3, as identified below:

 Z.140: "TTCN-3 Core Language";

 Z.141: "TTCN-3 Tabular Presentation Format (TFT)";

 Z.142: "TTCN-3 Graphical Presentation Format (GFT)".

ii ITU-T Rec. Z.141 (02/2003)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2003

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.141 (02/2003) iii

CONTENTS
 Page
1 Scope .. 1

2 References... 1

3 Abbreviations.. 1

4 Introduction .. 1

5 Conventions .. 2
5.1 Syntactic metanotation ... 2
5.2 Specification text .. 3
5.3 Proformas ... 3
5.4 Core language... 3
5.5 General mapping rules.. 3

6 Proformas.. 4
6.1 Test Suite Control... 4
6.2 Test Suite Parameters ... 6
6.3 Module Imports .. 7
6.4 Simple Types .. 8
6.5 Structured Types... 9
6.6 SequenceOf Types.. 10
6.7 Enumerated Type.. 11
6.8 Port Types... 13
6.9 Component Types... 14
6.10 Constants .. 15
6.11 Signature... 16
6.12 Simple Templates ... 17
6.13 Structured Template ... 19
6.14 Function.. 20
6.15 Altstep... 22
6.16 Testcase .. 24

7 BNF productions... 27

 ITU-T Rec. Z.141 (02/2003) 1

ITU-T Recommendation Z.141

Testing and Test Control Notation version 3 (TTCN-3):
Tabular presentation format

1 Scope
This Recommendation defines the tabular presentation format of TTCN Version 3 (or TTCN-3).
This Recommendation is based on the TTCN-3 core language defined in ITU-T Rec. Z.140.

The specification of other formats is outside the scope of this Recommendation.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] ITU-T Recommendation Z.140 (2003), The Testing and Test Control Notation version 3
TTCN-3: Core language. This Recommendation is also available as ETSI standard
ES 201 873-1 V2.2.1 (2002-09).

[2] ETSI ES 201 873-4 (2003), Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics.

3 Abbreviations
This Recommendation uses the following abbreviations:

ASN.1 Abstract Syntax Notation One

ATS Abstract Test Suite

BNF Backus-Naur Form

MTC Master Test Component

PICS Protocol Implementation Conformance Statement

PIXIT Protocol Implementation eXtra Information for Testing

TTCN Testing and Test Control Notation

4 Introduction
The tabular presentation format for TTCN-3 (TFT) is a graphical format that is similar in
appearance and functionality to earlier versions of TTCN, which are conformance testing oriented.
The core language of TTCN-3 is defined in ITU-T Rec. Z.140 and provides a full text-based syntax,
static semantics as well as defining the use of the language with ASN.1. The operational semantics
are defined in ES 201 873-4 [2]. The tabular format provides an alternative way of displaying the
core language as well as emphasizing those aspects that are particular to the requirements of a
standardized conformance test suite.

2 ITU-T Rec. Z.141 (02/2003)

 Text Format

The shaded boxes are not defined
in this Recommendation.

TTCN-3
Core
Language

Presentation
formatn

TTCN-3 User

ASN.1
Types &
V l

Other Types
& Values n

Graphical
format

Other Types
& Values 2

Tabular
format

Figure 1/Z.141 – User's view of the core language and the various presentation formats

The core language may be used independently of the tabular presentation format. However, the
tabular format cannot be used without the core language. Use and implementation of the tabular
presentation format shall be done on the basis of the core language.

This Recommendation defines the:
a) proformas;
b) syntax mappings;
c) additional static semantics;
d) operational semantic restrictions;
e) display and other attributes.

Together these characteristics form the tabular presentation format.

5 Conventions
This clause defines the conventions, which have been used when defining the TTCN proformas and
the TTCN core language grammar.

5.1 Syntactic metanotation
Table 1 defines the metanotation used to specify the extended BNF grammar for TTCN (henceforth
called BNF).

Table 1/Z.141 – The TTCN.MP syntactic metanotation

::= is defined to be
abc xyz abc followed by xyz
| alternative
[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping
abc the non-terminal symbol abc
abc a terminal symbol abc
"abc" a terminal symbol abc

 ITU-T Rec. Z.141 (02/2003) 3

The BNF productions are defined in clause 7. Productions that are not defined in clause 7 can be
found in Annex A/Z.140.

5.2 Specification text
a) Bold text shall be used for references to proforma fields.
b) Italics text shall be used for references to the TTCN-3 core language BNF productions.
c) Bold courier new text shall be used for core language keywords.

5.3 Proformas
a) Bold text shall appear verbatim in each actual table in a TTCN-3 module.
b) Italics text shall not appear verbatim in a TTCN-3 module. This font is used to

indicate that actual text shall be substituted for the italicized symbol. Syntax requirements
for the actual text can be found either following the definition of the proforma or in the
TTCN-3 core language BNF. Square brackets before and after the Italics text indicates
that inclusion of the text into the given field of the proforma is optional.

5.4 Core language
a) Bold text of characters in quotes (e.g., "{") is used for reserved keywords and terminals in

the core language.
b) Italics text shall not appear verbatim in a TTCN-3 module. This font is used to indicate

that actual text shall be substituted for the italicized symbol. Syntax requirements for the
actual text can be found either following the definition of the proforma or in the TTCN-3
core language BNF.

c) The "..." notation is a place holder for any arbitrary contents that is not explicitly shown.

5.5 General mapping rules
The mapping between the tabular presentation format and the TTCN-3 core language consists of a
set of transformations. For every syntactical element within each proforma there is an associated
transformation. The transformations make it also possible to transform any core language module
into a tabular representation.

These transformations fall into two classes. The first class directly converts between a tabular
element and a core language construct with the same meaning. The second class converts between a
tabular element and an associated core language construct, which has no meaning at the core
language level.

A typical example for the first class of transformations would be an identifier field. This field can
be directly transformed from tabular to the core language and retains its meaning i.e., identifying
some language element.

The second class of transformations is typically some form of comment or directive as to how a
language element should be displayed in the presentation format. These elements have no direct
meaning in the core language and are expressed using the WithStatement.

4 ITU-T Rec. Z.141 (02/2003)

The syntax and semantics specified in this Recommendation are specific to the tabular presentation
format. In order to unambiguously identify within the core language which presentation format is
being used the following special display statement shall be specified as the first display statement
associated with the TTCN-3 core language module:

1:
2:
3:
4:
5:
6:
7:

module TTCN3ModuleId "{"
 ...
"}" with "{"
 display """ "presentation format" ":=" "ETSI Tabular version"
 MajorVersion "." MinorVersion """ ";"
 ...
"}"

NOTE – All WithStatements associated with a given proforma should be grouped together in a contiguous
list.

The Group fields in the proformas are never translated into WithStatements but are derived from
the actual group structure of the module specification.

6 Proformas

6.1 Test Suite Control

Test Suite Control

Module Name TTCN3ModuleId

Version [TabFreeText]

Date [TabFreeText]

Base Standard Ref [TabFreeText]

Test Standard Ref [TabFreeText]

PICS Ref [TabFreeText]

PIXIT Ref [TabFreeText]

Test Method(s) [TabFreeText]

Encoding [TabFreeText]

Comments [TabFreeText]

Local Def Name Type Initial Value Comments

[VarConstOrTimerIdentifier]

...

[ConstTypeOrTimer]

...

[Expression]

...

[TabFreeText]

...

Behaviour

ModuleControlBody

Detailed Comments [TabFreeText]

Figure 2/Z.141 – Test Suite Control proforma

6.1.1 Mapping
The Test Suite Control proforma is translated into three parts. The first part consists of the header
fields and the Detailed Comments field, which are converted to display attributes within the
WithStatement associated with the overall TTCN-3 module. The Module Name field is mapped to
the module identifier.

The second part consists of local constants, variables and timers defined in the control part. These
definitions can occur anywhere in the control part of the core language, but for the proforma they
are separated from the rest of the module control body and displayed in a separate table. The order
of the definitions shall be preserved, since the definitions can depend on each other. The Type
column shall be set to the keyword timer for all timers and to the constant type preceded by the
keyword const for all constants. The Comments fields of the local definitions table are converted
to display attributes within the WithStatement associated with the control part of the TTCN-3 core
module.

 ITU-T Rec. Z.141 (02/2003) 5

The third part is the control part of the TTCN-3 core language module minus the local constants,
variables and timers.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

module TTCN3ModuleId "{"
 control "{"
 var Type VarIdentifier [":=" Expression] ";"
 timer TimerIdentifier [":=" Expression] ";"
 const Type ConstIdentifier ":=" ConstantExpression;
 ModuleControlBody
 "}" with "{"
 { VarConstOrTimerCommentsAttribute }
 "}"
"}" with "{"
 ModuleAttributes
 [EncodeAttribute;]
"}"

Example:

Test Suite Control
Module Name Example1
Version 1.01
Date 19 July 2001
Base Standards Ref ITU-T Recommendation Q.123
Test Standards Ref ITU-T Recommendation Q.123.1
PICS Ref ITU-T Recommendation Q.123.2, Annex A
PIXIT Ref ITU-T Recommendation Q.123.2, Annex B
Test Method(s) local
Encoding BER
Comments ATS written by STF 133

Local Def Name Type Initial Value Comments
PI const float 3.14 the ratio
X float PI * 2 double PI
t1 timer 15 a 15 second timer

Behaviour
/* group1/ */
 /* group1_1/ */
 execute(test1);
 execute(test2);
 /* group1_2/ */
 execute(test3);
 execute(test4);
/* group2/ */
 execute(test5);
Detailed Comments detailed comments

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

module Example1 {
 control {
 const float PI := 3.14;
 var float x := PI * 2;
 timer t1 := 15;

 /* group1/ */
 /* group1_1/ */
 execute(test1());
 execute(test2());
 /* group1_2/ */
 execute(test3());
 execute(test4());
 /* group2/ */
 execute(test5());
 } with {
 display (PI) "comments := the ratio";
 display (x) "comments := double PI";
 display (t1) "comments := a 15 second timer";

6 ITU-T Rec. Z.141 (02/2003)

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

 }
} with {
 display "presentation format := ETSI Tabular version 1.0";
 display "module version := 1.01";
 display "module date := 19 July 2001";
 display "module base standards ref := ITU-T Recommendation Q.123";
 display "module test standards ref := ITU-T Recommendation Q.123";
 display "module pics ref := ITU-T Recommendation Q.123 Annex A";
 display "module pixit ref := ITU-T Recommendation Q.123 Annex A";
 display "module test method := local";
 display "module comments := ATS written by STF 133";
 display "module detailed comments := detailed comments";
 encode "BER";
}

6.2 Test Suite Parameters

Test Suite Parameters

Name Type Initial Value PICS/PIXIT Ref Comments

.

ModuleParIdentifier

.

.

ModuleParType

.

.

[ConstantExpression]

.

.

[TabFreeText]

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 3/Z.141 – Test Suite Parameters proforma

6.2.1 Mapping
All entries in the Test Suite Parameters proforma are mapped to the ModuleParLists in
ModuleParameterDefs of the associated TTCN-3 module. If there is more than one
ModuleParameterDef then all ModuleParLists are collected and represented in one Test Suite
Parameters proforma.

The PICS/PIXITref and Comments fields are mapped to display attributes qualified by the
parameter identifier within the WithStatements associated with the enclosing ParamDef. The
Detailed Comments field is mapped to a display attribute within the WithStatement associated with
the enclosing ParamDef.

1:
2:
3:
4:
5:
6:
7:
8:

module TTCN3ModuleId "{"
 parameters "{" ModuleParList "}"
 with "{"
 [ModuleParPicsPixitRefAttribute ";"]
 [ModuleParComments ";"]
 [DetailedComments ";"]
 "}"
"}"

Example:

Test Suite Parameters
Name Type Initial Value PICS/PIXIT Ref Comments

CAP_1 Boolean true A.1.3 option 1
implemented

Tall Float 600.0 A.1.4 overall module
timer

Detailed Comments detailed comments

 ITU-T Rec. Z.141 (02/2003) 7

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

module MyModule{
 parameters { boolean CAP_1 := true, float Tall := 600.0 }
 with {
 display (CAP_1) "pics/pixit ref := A.1.3";
 display (CAP_1) "comments := option 1 implemented";
 display (Tall) "pics/pixit ref := A.1.4";
 display (Tall) "comments := overall module timer";
 display "detailed comments := detailed comments";
 }
}

6.3 Module Imports

Imports

Source Name GlobalModuleId [recursive]

Source Language [LanguageSpec]

Group [GroupReference]

Source Ref [TabFreeText]

Encoding [TabFreeText]

Comments [TabFreeText]

Type Name

.

[ImportType]

.

.

ImportSpecification

.

Detailed Comments [TabFreeText]

Figure 4/Z.141 – Imports proforma

6.3.1 Mapping
The Imports proforma is mapped to an ImportDef statement in the TTCN-3 core language. The
Source Name, Source Language, Type and Name fields are directly used in the corresponding
core language ImportDef statement. The Source Ref, Comments and Detailed Comments fields
are translated into display attributes within the WithStatement associated with the ImportDef
statement. The Encoding field is translated into an encode attribute within the WithStatement
associated with the ImportDef statement.

If all definitions of a module are imported, then the ImportType shall be empty and the
ImportSpecification shall use the keyword all.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

module TTCN3ModuleId "{"
 ImportDef
 with "{"
 [ImportsSourceRefAttribute ";"]
 [CommentsAttribute ";"]
 [ImportsSourceDefinitionCommentsAttribute ";"]
 [DetailedCommentsAttribute ";"]
 [EncodeAttribute ";"]
 "}"
"}"

8 ITU-T Rec. Z.141 (02/2003)

Example:

Imports
Source Name ModuleA recursive
Source Language ASN.1:1997
Group
Source Ref EN 800 900 version 2
Encoding BER
Comments importing declarations from ATS

Type Name Comments
Constant all except foobar
Type MyType foobar
Group AtoU_CTR

Detailed Comments detailed comments

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

module MyModule {
 import from ModuleA recursive language "ASN.1:1997" {
 const all except foobar;
 type MyType;
 Group AtoU_CTR;
 } with {
 display "imports source ref := EN 800 900 version 2";
 display "comments := importing declarations from ATS";
 display "detailed comments := detailed comments";
 encode "BER";
 }
}

6.4 Simple Types

Simple Types

Group [GroupReference]

Name Definition Encoding Comments

.

SubTypeIdentifier

.

.

Type [ArrayDef]
[SubTypeSpec]

.

.

[TabFreeText]

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 5/Z.141 – Simple Types proforma

6.4.1 Mapping
The Simple Types proforma is mapped to a series of simple type definition statements on the same
group level. Simple type definitions are all SubTypeDef type definitions.

The Detailed Comments field is mapped to a display attribute within the WithStatement associated
with the enclosing group or the module. The Encoding and Comments fields are mapped to
encoding and display attributes respectively within the WithStatement associated with the respective
simple type definition.

1:
2:
3:
4:
5:
6:
7:
8:

module TTCN3ModuleId "{"
 type Type SubTypeIdentifier [ArrayDef] [SubTypeSpec] with "{"
 [EncodeAttribute ";"]
 [CommentsAttribute ";"]
"}" with "{"
 [SimpleTypesDetailedCommentsAttribute ";"]
"}"
"}"

 ITU-T Rec. Z.141 (02/2003) 9

Example:

Simple Types
Group SimpleTypes/

Name Definition Encoding Comments
EQ_NUMBER integer (1 .. 20) PER God knows
Detailed Comments detailed comments

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

module MyModule {
 group SimpleTypes {
 type integer EQ_NUMBER (1..20) with {
 encode "PER";
 display "comments := God knows";
 }
 } with {
 display "simple types detailed comments := detailed comments";
 }
}

6.5 Structured Types

Structured Type

Name StructTypeIdentifier[StructDefFormalParList]

Group [GroupReference]

Structure StructureType

Encoding [TabFreeText]

Comments [TabFreeText]

Field Name Field Type Field Encoding Comments

.

FieldIdentifier

.

.

.

.

Type [ArrayDef]

[SubTypeSpec]

[OptionalKeyword]

.

.

[TabFreeText]

.

.

.

.

[TabFreeText]

.

.

.

Detailed Comments [TabFreeText]

Figure 6/Z.141 – Structured Type proforma

6.5.1 Mapping
The Structured Type proforma is mapped to a structured type definition statement in TTCN-3. The
following types will use this proforma: RecordDef, UnionDef and SetDef.
The Comments and Detailed Comments fields are mapped to display attributes in the
corresponding WithStatement, and the Encoding field is mapped to an encode attribute in the
corresponding WithStatement. The Comments and Field Encoding fields of each field element are
mapped to a display and an encode attribute respectively, qualified by the FieldIdentifier in the
corresponding WithStatement.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

module TTCN3ModuleId "{"
 type StructureType StructTypeIdentifier [StructDefFormalParList] "{"
 {Type FieldIdentifier [ArrayDef] [SubtypeSpec] [OptionalKeyword]}
 "}" with "{"
 [EncodeAttribute ";"]
 [CommentsAttribute ";"]
 {FieldCommentsAttribute ";"}
 {FieldEncodeAttribute ";"}
 [DetailedCommentsAttribute ";"]
 "}"
"}"

10 ITU-T Rec. Z.141 (02/2003)

Example:

Structured Type
Name routing_label(SLSel_Type)
Group
Structure Record
Encoding BER
Comments header for routing info

Element Name Type Definition Field Encoding Comments
DestPC BIT_14 destination point code

OrigPC BIT_14 origination point code

SLSel SLSel_Type PER signalling link selection

Detailed Comments overrides previous definitions

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

module MyModule {
 type record routing_label(SLSel_Type) {
 BIT_14 DestPC,
 BIT_14 OrigPC,
 SLSel_Type SLSel
 } with {
 encode "BER";
 display "comments := header for routing info";
 display (DestPC) "comments := destination point code";
 display (OrigPC) "comments := origination point code";
 display (SLSel) "comments := signalling link selection";
 encode (SLSel) "PER";
 display "detailed comments := overrides previous definitions";
 }
}

6.6 SequenceOf Types

SequenceOf Types

Group [GroupReference]

Name Type Kind Length Encoding Comments

.

StructTypeIdentifier

.

.

Type
[SubTypeSpec]

.

.

RecordOrSet

.

.

[StringLength]

.

.

[TabFreeText]

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 7/Z.141 – SequenceOf Types proforma

6.6.1 Mapping
The SequenceOf Types proforma is mapped to a series of SequenceOf type definition statements on
the same group level. This proforma shall be used for RecordOfDef and SetOfDef type definitions.

The Detailed Comments field is mapped to a display attribute within the WithStatement associated
with the enclosing group or the module. The Encoding and Comments fields are mapped to
encoding and display attributes respectively within the WithStatement associated with the respective
SequenceOf Type definition.

 ITU-T Rec. Z.141 (02/2003) 11

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

module TTCN3ModuleId "{"
 type record of [StringLength] Type StructTypeIdentifier [SubTypeSpec]
 with "{"
 [EncodeAttribute ";"]
 [CommentsAttribute ";"]
 "}"
 type set of [StringLength] Type StructTypeIdentifier [SubTypeSpec]
 with "{"
 [EncodeAttribute ";"]
 [CommentsAttribute ";"]
 "}"
"}" with "{"
 [SequenceOfTypesDetailedCommentsAttribute ";"]
"}"

Example:

SequenceOf Types
Group SequenceOfTypes/

Name Type Kind Length Encoding Comments
RecordOfIntegers integer(1..10) record 10 BER ten integers
SetOfBooleans boolean set 3 PER three

booleans
Detailed Comments example sequenceof types

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

module MyModule {
 group SequenceOfTypes {
 type record of length(10) integer RecordOfIntegers(1..10) with {
 encode "BER";
 display "comments := ten integers";
 }
 type set of length(3) boolean SetOfBooleans with {
 encode "PER";
 display "comments := three booleans";
 }
 } with {
 display "sequenceof types detailed comments := example sequenceof
types";
 }
}

6.7 Enumerated Type

Enumerated Type

Name EnumTypeIdentifier

Group [GroupReference]

Encoding [TabFreeText]

Comments [TabFreeText]

Enumeration Name Enumeration Value Comments

.

EnumerationIdentifier

.

.

[Number]

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 8/Z.141 – Enumerated Type proforma

12 ITU-T Rec. Z.141 (02/2003)

6.7.1 Mapping
The Enumerated Type proforma is mapped to an enumerated type definition statement in the
TTCN-3 core language. The Comments and Detailed Comments fields are mapped to display
attributes in the corresponding WithStatement, and the Encoding field mapped to an encode
attribute within the corresponding WithStatement. The Comments fields of each enumeration are
mapped to display attributes qualified by the EnumerationIdentifier in the corresponding
WithStatement.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

module TTCN3ModuleId "{"
 type enumerated EnumTypeIdentifier "{"
 EnumerationIdentifier ["(" Number ")"]
 {"," EnumerationIdentifier ["(" Number ")"]}
 "}" with "{"
 [EncodeAttribute ";"]
 [CommentsAttribute ";"]
 {NamedValueCommentsAttribute ";"}
 [DetailedCommentsAttribute ";"]
 "}"
"}"

Example:

Enumerated Type
Name Weekdays
Group
Encoding BER
Comments days of the week

Enumeration Name Enumeration Value Comments
Monday 1
Tuesday 2
Wednesday 3 half way there
Thursday 4
Friday 5 TGIF
Saturday 6
Sunday 7
Detailed Comments wish it were Friday

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

module MyModule {
 type enumerated Weekdays {
 Monday(1), Tuesday(2), Wednesday(3), Thursday(4), Friday(5),
 Saturday(6), Sunday(7)
 } with {
 encode "BER";
 display "comments := days of the week";
 display (Wednesday) "comments := half way there";
 display (Friday) "comments := TGIF";
 display "detailed comments := wish it were Friday";
 }
}

 ITU-T Rec. Z.141 (02/2003) 13

6.8 Port Types

Port Type

Name PortTypeIdentifier

Group [GroupReference]

Communication Model PortModelType

Comments [TabFreeText]

Type/Signature Direction Comments

.

TypeOrSignature

.

.

InOutOrInout

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 9/Z.141 – Port Type proforma

6.8.1 Mapping
The Port Type proforma is mapped to a port type definition in the TTCN-3 core language. The
Comments and Detailed Comments fields are mapped to display attributes in the corresponding
WithStatement. The Comments fields of the types and signature table are mapped to display
attributes in the corresponding WithStatement qualified by the type or signature identifier. There
will always be one row for every type or signature.

The Type/Signature field is set to the keyword all if all types or all procedure signatures defined
in the module can be passed over that communication port.

1:
2:
3:
4:
5:
6:
7:
8:
9:

module TTCN3ModuleId "{"
 type port PortTypeIdentifier PortModelType "{"
 PortTypeDef
 "}" with "{"
 [CommentsAttribute ";"]
 {TypeOrSignatureCommentsAttribute ";"}
 [DetailedCommentsAttribute ";"]
 "}"
"}"

Example:

Port Type
Name MyPortType
Group
Communication Model message
Comments example port type

Type/Signature Direction Comments
MsgType1 in first comment
MsgType2 in second comment
MsgType3 out
Detailed Comments detailed comment

14 ITU-T Rec. Z.141 (02/2003)

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

module MyModule {
 type port MyPortType message {
 in MsgType1;
 in MsgType2;
 out MsgType3;
 } with {
 display "comments := example port type";
 display (MsgType1) "comments := first comment";
 display (MsgType2) "comments := second comment";
 display "detailed comments := detailed comment";
 }
}

6.9 Component Types

Component Type

Name ComponentTypeIdentifier

Group [GroupReference]

Comments [TabFreeText]

Local Def Name Type Initial Value Comments

.

VarConstOrTimerIdentifier

.

.

TypeOrTimer

[ArrayDef]

.

.

[ConstantExpression |
Expression]

.

.

[TabFreeText]

.

Port Name Port Type Comments

.

PortIdentifier

.

.

PortType[ArrayDef]

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 10/Z.141 – Component Type proforma

6.9.1 Mapping
The Component Type proforma is mapped to a component type definition in the TTCN-3 core
language. The proforma is translated into three parts.

The first part consists of the header Comments and Detailed Comments fields, which are
converted to display attributes within the WithStatement associated with the component type
definition.

The second part consists of local constants, variables and timers defined in the component type.
These definitions can occur anywhere in the component type definition of the core language, but for
the proforma they are separated from the port instances and displayed in a separate table. The order
of their definition shall be preserved, since the definitions can depend on each other. The Type
column shall be set to the keyword timer for all timers and to the constant type preceded by the
keyword const for all constants. There will always be one row for every constant, variable or timer.
The Comments column of this table is converted to display attributes qualified by the local
definition's identifier within the WithStatement associated with the component type definition.

The third part consists of port instances defined in the component type. Any array definitions are
appended to the port type. There will always be one row for every port instance. The Comments
column of this table is converted to display attributes qualified by the PortIdentifier within the
WithStatement associated with the component type definition.

 ITU-T Rec. Z.141 (02/2003) 15

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

module TTCN3ModuleId "{"
 type component ComponentTypeIdentifier "{"
 var Type VarIdentifier [":=" Expression] ";"
 timer TimerIdentifier [":=" Expression] ";"
 const Type ConstIdentifier ":=" ConstantExpression ";"
 PortList
 "}" with "{"
 [CommentsAttribute ";"]
 {PortCommentsAttribute ";"}
 [DetailedCommentsAttribute ";"]
 "}"
"}"

Example:

Component Type
Name MyComponentType
Group
Comments an example component type

Local Def Name Type Initial Value Comments
PI const float 3.14 the ratio
X Float PI * 2 double PI
t1 Timer 15 min a 15 second timer

Port Name Port Type Comments
PCO1 MyMessagePortType first comment
PCO2 MyProcedurePortType second comment
Detailed Comments detailed comments

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

module MyModule {
 type component MyComponentType {
 const float PI := 3.14;
 var float x := PI * 2;
 timer t1 := 15;
 port MyMessagePortType PCO1;
 port MyProcedurePortType PCO2;
 } with {
 display "comments := an example component type";
 display (PI) "comments := the ratio";
 display (x) "comments := double PI";
 display (t1) "comments := a 15 second timer";
 display (PCO1) "comments := first comment";
 display (PCO2) "comments := second comment";
 display "detailed comments := detailed comments";
 }
}

6.10 Constants

Constants

Group [GroupReference]

Name Type Value Comments

.

ConstIdentifier |
ExtConstIdentifier

.

.

Type [ArrayDef]

.

.

ConstantExpression |
external

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 11/Z.141 – Constants proforma

16 ITU-T Rec. Z.141 (02/2003)

6.10.1 Mapping
The Constants proforma is mapped to a series of constant and external constant definition
statements on the same group level. The Detailed Comments field is mapped to a display attribute
within the WithStatement associated with the enclosing group or the module. The Comments fields
are mapped to display attributes within the WithStatement associated with the respective constant
definition. For an external constant the Value field is set to the keyword external.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

module TTCN3ModuleId "{"
 const Type ConstIdentifier[ArrayDef] ":=" ConstantExpression with "{"
 [CommentsAttribute ";"]
 "}"
 external const Type ConstIdentifier with "{"
 [CommentsAttribute ";"]
 "}"
"}" with "{"
 [ConstantsDetailedCommentsAttribute ";"]
"}"

Example:

Constants
Group Constants1

Name Type Value Comments
TOTO integer external defined somewhere else
SEL2 boolean (5 + TOTO) < 10 TOTO limit reached
T1 integer[1..3] {1,3,2}
Detailed Comments detailed comments

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

module MyModule {
 group Constants1 {
 external const integer TOTO with {
 display "comments := defined somewhere else";
 }
 const boolean SEL2 := (5 + TOTO) < 10 with {
 display "comments := TOTO limit reached";
 }
 const integer T1[1..3] := {1,3,2};
 } with {
 display "detailed comments := detailed comments";
 }
}

6.11 Signature

Signature Definition

Name SignatureIdentifier([SignatureFormalParList])

Group [GroupReference]

Return Type [Type] | noblock

Comments [TabFreeText]

Exception Type Comments

.

[ExceptionType]

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 12/Z.141 – Signature Definition proforma

 ITU-T Rec. Z.141 (02/2003) 17

6.11.1 Mapping
The Signature Definition proforma is mapped to a signature definition in the TTCN-3 core
language. The Comments and Detailed Comments fields are mapped to display attributes within
the corresponding WithStatement. The Comments fields of the exceptions table are mapped to
display attributes qualified by the exception type in the corresponding WithStatement. Non-blocking
procedures shall specify the keyword noblock as the return type.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

module TTCN3ModuleId "{"
 signature SignatureIdentifier "(" [SignatureFormalParList] ")"
 [return Type | noblock]
 [exception "(" ExceptionTypeList ")"]
 with "{"
 [CommentsAttribute ";"]
 [ExceptionCommentsAttribute ";"]
 [DetailedCommentsAttribute ";"]
 "}"
"}"

Example:

Signature Definition
Name read_syscall(integer fields, inout charstring buf, integer nbyte)
Group
Return Type integer
Comments reads from a file

Exception Type Comments
Integer error code of system call
MyException user defined
Detailed Comments required: unistd.h

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

module MyModule {
 signature read_syscall(in integer fields,
 inout charstring buf,
 in integer nbyte)
 return integer
 exception (integer, MyException)
 with {
 display "comments := reads from a file";
 display (integer) "comments := error code of system call";
 display (MyException) "comments := user defined";
 display "detailed comments := required: unistd.h";
 }
}

6.12 Simple Templates

Simple Templates

Group [GroupReference]

Name Type Derived Value Encoding Comments

.

TemplateIden
tifier

.

.

BaseTemplate

.

.

[DerivedDef]

.

.

TemplateBody

.

.

[TabFreeText]

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 13/Z.141 – Simple Template proforma

18 ITU-T Rec. Z.141 (02/2003)

6.12.1 Mapping
The Simple Templates proforma is mapped to a series of simple template definition statements on
the same group level. Simple template definitions are all template definitions that have a
SimpleSpec or ArrayValueOrAttrib as the TemplateBody. The corresponding types are defined in a
Simple Types, SequenceOf Type and Enumerated Type proforma.

The Detailed Comments field is mapped to a display attribute within the WithStatement associated
with the enclosing group or the module. The Comments and Encoding fields are mapped to display
and encode attributes qualified by the TemplateIdentifier within the WithStatement associated with
the respective simple template definition statement.

1:
2:
3:
4:
5:
6:
7:
8:

module TTCN3ModuleId "{"
 template BaseTemplate[DerivedDef] := TemplateBody with "{"
 [EncodeAttribute ";"]
 [CommentsAttribute ";"]
 "}"
"}" with "{"
 [SimpleTemplatesDetailedCommentsAttribute ";"]
"}"

Example:

Simple Templates
Group SimpleTemplates1

Name Type Derived Value Encoding Comments
MyTemplate1 MyType1 3 BER foobar
MyTemplate11
(integer index)

MyType1 MyTemplate1 3*index PER the current
index

Detailed Comments an example

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

module MyModule {
 group SimpleTemplates {
 template MyType1 MyTemplate1 with {
 encode "BER";
 display "comments := foobar";
 }
 template MyType1 MyTemplate11(integer index)
 modifies MyTemplate1 := 3 * index
 with {
 encode "PER";
 display "comments := the current index";
 }
 } with {
 display "simple templates detailed comments := an example";
 }
}

 ITU-T Rec. Z.141 (02/2003) 19

6.13 Structured Template

Structured Template

Name TemplateIdentifier[(TemplateFormalParList)]

Group [GroupReference]

Type/Signature TypeIdentifier | SignatureIdentifier

Derived From [TemplateRef]

Encoding [TabFreeText]

Comments [TabFreeText]

Element Name Element Value Element Encoding Comments

.

FieldReference

.

.

FieldValueOrAttrib

.

.

[TabFreeText]

.

.

[TabFreeText]

.

Detailed Comments [TabFreeText]

Figure 14/Z.141 – Structured Template proforma

6.13.1 Mapping
The Structured Template proforma is mapped to a TTCN-3 structured template definition statement.
Structured template definitions are all template definitions that have a FieldSpecList as the template
body. The corresponding types are defined in a Structured Type proforma.

The Comments and Detailed Comments fields are mapped to display attributes within the
WithStatement associated with the structured template definition. The Encoding field is mapped to
an encoding attribute within the WithStatement associated with the structured template definition.

The Comments fields of the elements table are mapped to display attributes qualified by the field
reference within the WithStatement associated with the structured template definition. The Element
Encoding fields are mapped to encoding attributes qualified by the field reference within the
WithStatement associated with the structured template definition.

1:
2:
3:
4:
5:
6:
7:
8:
9:

module TTCN3ModuleId "{"
 template BaseTemplate [DerivedDef] ":=" TemplateBody with "{"
 [EncodeAttribute ";"]
 [CommentsAttribute ";"]
 [FieldEncodeAttribute ";"]
 [FieldCommentsAttribute ";"]
 [DetailedCommentsAttribute ";"]
 "}"
"}"

Example:

Structured Template
Name MyStructuredTemplate11(integer para1, boolean para2)
Group
Type/Signature MyStructuredType
Derived From MyStructuredTemplate1
Encoding BER
Comments example structured template

Element Name Element Value Element Encoding Comments
field1 13 first field
field2 para2 PER second field
field3 para1 third field
Detailed Comments detailed comments

20 ITU-T Rec. Z.141 (02/2003)

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

module MyModule {
 template MyStructuredType MyStructuredTemplate11(integer para1,
 boolean para2)
 modifies MyStructuredTemplate1 := {
 field1 := 13,
 field2 := para2,
 field3 := para1
 } with {
 encode "BER";
 display "comments := example structured template";
 display (field1) "comments := first field";
 encode (field2) "PER";
 display (field2) "comments := second field";
 display (field3) "comments := third field";
 display "detailed comments := detailed comments";
 }
}

6.14 Function

Function

Name FunctionIdentifier([FunctionFormalParList])

Group [GroupReference]

Runs On [ComponentType]

Return Type [Type]

Comments [TabFreeText]

Local Def Name Type Initial Value Comments

.

VarConstOrTimerIden
tifier

.

.

TypeOrTimer

.

.

[Expression |

ConstantExpression]

.

[TabFreeText]

.

Behaviour

.

FunctionStatement | external

.

Detailed Comments [TabFreeText]

Figure 15/Z.141 – Function proforma

6.14.1 Mapping
The Function proforma is mapped to a TTCN-3 function definition statement or external function
definition. It is translated into three parts.

The first part consists of the header fields. The Comments and Detailed Comments fields are
mapped to display attributes within a WithStatement associated with the function definition.

The second part consists of local constants, variables and timers defined in the function definition.
These definitions can occur anywhere in the function body of the core language, but for the
proforma they are separated from the rest of the function body and displayed in a separate table.
The order of definitions shall be preserved, since the definitions can depend on each other. The
Type column shall be set to the keyword timer for all timers and to the constant type preceded by
the keyword const for all constants. The Comments fields are converted to display attributes
qualified by the local identifier within the WithStatement associated with the function definition.
The third part consists of the function body of the TTCN-3 core language minus the local constants,
variables and timers.

 ITU-T Rec. Z.141 (02/2003) 21

For an external function the behaviour only contains the keyword external.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

module TTCN3ModuleId "{"
 function FunctionIdentifier "(" [FunctionFormalParList] ")"
 [runs on ComponentType]
 [return Type] "{"
 var Type VarIdentifier [":=" Expression] ";"
 timer TimerIdentifier [":=" Expression]";"
 const Type ConstIdentifier ":=" ConstantExpression ";"
 {FunctionStatement}
 "}" with "{"
 [CommentsAttribute ";"]
 [VarConstOrTimerCommentsAttribute ";"]
 [DetailedCommentsAttribute ";"]
 "}"
"}"

Example:

Function
Name MyFunction(integer para1)
Group
Runs On MyComponentType
Return Type boolean
Comments example function definition

Local Def Name Type Initial Value Comments
MyLocalVar boolean false local variable
MyLocalConst const float 60 local constant
MyLocalTimer timer 15 * MyLocalConst local timer

Behaviour
if (para1 == 21) {
 MyLocalVar := true;
}
if (MyLocalVar) {
 MyLocalTimer.start;
 MyLocalTimer.timeout;
}
return (MyLocalVar);
Detailed Comments detailed comments

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

module MyModule {
 function MyFunction(in integer para1)
 runs on MyComponentType
 return boolean {
 var boolean MyLocalVar := false;
 const float MyLocalConst := 60;
 timer MyLocalTimer := 15 * MyLocalConst;

 if (para1 == 21) {
 MyLocalVar := true;
 }
 if (MyLocalVar) {
 MyLocalTimer.start;
 MyLocalTimer.timeout;
 }
 return (MyLocalVar);
 } with {
 display "comments := example function definition";
 display (MyLocalVar) "comments := local variable";
 display (MyLocalConst) "comments := local constant";
 display (MyLocalTimer) "comments := local timer";
 display "detailed comments := detailed comments";
 }
}

22 ITU-T Rec. Z.141 (02/2003)

6.15 Altstep

Altstep

Name AltstepIdentifier([AltstepFormalParList])

Group [GroupReference]

Purpose [TabFreeText]

Runs On [ComponentType]

Comments [TabFreeText]

Local Def Name Type Initial Value Comments

.

VarConstOrTimerIdentifier

.

.

TypeOrTimer
[ArrayDef]

.

.

[Expression |

ConstantExpression]

.

.

[TabFreeText]

.

Behaviour

.

AltGuardList

.

Detailed Comments [TabFreeText]

Figure 16/Z.141 – Altstep proforma

6.15.1 Mapping
The Altstep proforma is mapped to a TTCN-3 altstep definition statement. It is translated into three
parts.

The first part consists of the header fields. The Purpose, Comments and Detailed Comments
fields are mapped to display attributes within a WithStatement associated with the altstep definition.

The second part consists of local constants, variables and timers defined in the altstep definition.
These definitions can occur anywhere in the altstep body of the core language, but for the proforma
they are separated from the rest of the altstep body and displayed in a separate table. The order of
definitions shall be preserved, since the definitions can depend on each other. The Type column
shall be set to the keyword timer for all timers and to the constant type preceded by the keyword
const for all constants. The Comments fields are converted to display attributes qualified by the
local identifier within the WithStatement associated with the altstep definition.
The third part consists of the AltGuardList of the altstep of the TTCN-3 core language.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

module TTCN3ModuleId "{"
 teststep AltstepIdentifier "(" [AltstepFormalParList] ")"
 [runs on ComponentType] "{"
 AltGuardList
 "}" with "{"
 [PurposeAttribute ";"]
 [CommentsAttribute ";"]
 [VarConstOrTimerCommentsAttribute ";"]
 [DetailedCommentsAttribute ";"]
 "}"
"}"

 ITU-T Rec. Z.141 (02/2003) 23

Example:

Altstep
Name MyAltstep(integer para1)
Group
Runs On MyComponentType
Purpose to do something
Comments example altstep definition

Local Def Name Type Initial Value Comments
MyLocalVar Boolean false local variable
MyLocalConst const float 60 local constant
MyLocalTimer Timer 15 * MyLocalConst local timer

Behaviour
[] PCO1.receive(MyTemplate(para1, CompVar) {
 verdict.set(inconc);
}
[] PCO2.receive {
 repeat;
}
[] CompTimer.timeout {
 verdict.set(fail);
 stop;
}
Detailed Comments detailed comments

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

module MyModule {
 altstep MyTeststep(integer para1) runs on MyComponentType {
 var boolean MyLocalVar := false;
 const float MyLocalConst := 60;
 timer MyLocalTimer := 15 * MyLocalConst;

 [] PCO1.receive(MyTemplate(para1, CompVar)) {
 verdict.set(inconc);
 }
 [] PCO2.receive {
 repeat;
 }
 [] CompTimer.timeout {
 verdict.set(fail);
 stop;
 }
 } with {
 display "purpose := to do something";
 display "comments := example altstep definition";
 display (MyLocalVar) "comments := local variable";
 display (MyLocalConst) "comments := local constant";
 display (MyLocalTimer) "comments := local timer";
 display "detailed comments := detailed comments";
 }
}

24 ITU-T Rec. Z.141 (02/2003)

6.16 Testcase

Testcase

Name TestcaseIdentifier([TestcaseFormalParList])

Group [GroupReference]

Purpose [TabFreeText]

System Interface [ComponentType]

MTC Type ComponentType

Comments [TabFreeText]

Local Def Name Type Initial Value Comments

.

VarConstOrTimer
Identifier

.

.

TypeOrTimer

.

.

[Expression |

ConstantExpression]

.

.

[TabFreeText]

.

Behaviour

.

FunctionStatement

.

Detailed Comments [TabFreeText]

Figure 17/Z.141 – Testcase proforma

6.16.1 Mapping
The Testcase proforma is mapped to a TTCN-3 testcase definition statement. It is translated into
three parts.

The first part consists of the header fields. The Purpose, Comments and Detailed Comments
fields are mapped to display attributes within a WithStatement associated with the test case
definition.

The second part consists of local constants, variables and timers defined in the testcase definition.
These definitions can occur anywhere in the testcase body of the core language, but for the
proforma they are separated from the rest of the testcase body and displayed in a separate table. The
order of the definitions shall be preserved, since the definitions can depend on each other. The Type
column shall be set to the keyword timer for all timers and to the constant type preceded by the
keyword const for all constants. The Comments fields are converted to display attributes qualified
by the local identifier within the WithStatement associated with the testcase definition.
The third part consists of the testcase body of the TTCN-3 core language minus the local constants,
variables and timers.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

module TTCN3ModuleId "{"
 testcase TestcaseIdentifier [TestcaseFormalParList]
 [runs on ComponentType]
 [system ComponentType] "{"
 var Type VarIdentifier [":=" Expression] ";"
 timer TimerIdentifier [":=" Expression] ";"
 const Type ConstIdentifier ":=" ConstantExpression;
 {FunctionStatement}
 "}" with "{"
 [CommentsAttribute ";"]
 [PurposeAttribute ";"]
 [VarConstOrTimerCommentsAttribute ";"]
 [DetailedCommentsAttribute ";"]
 "}"
"}"

 ITU-T Rec. Z.141 (02/2003) 25

Example:

Testcase
Name MyTestcase(integer para1)
Group
Purpose do something useful
System Interface MyComponentType
MTC Type MyComponentType
Comments example testcase definition

Local Def Name Type Initial Value Comments
MyLocalVar Boolean false local variable
MyLocalConst const float 60 local constant
MyLocalTimer Timer 15 * MyLocalConst local timer

Behaviour
default.activate { [expand] OtherwiseFail(); }; /* Default activation */
ISAP1.send(ICONreq {}); /* Inline template definition */
alt {
 [] MSAP2.receive(Medium_Connection_Request()) { /* use of a template */
 MSAP2.send(MDATreq Medium_Connection_Confirmation());
 alt {
 [] ISAP1.receive(ICONconf {}); {
 ISAP1.send(Data_Request(TestSuitePar));
 alt {
 [] MSAP2.receive(Medium_Data_Transfer()) {
 MSAP2.send(MDATreq cmi_synch1());
 ISAP1.send(IDISreq {});
 }
 [] ISAP1.receive(IDISind {}) {
 verdict.set(inconclusive);
 stop();
 }
 }
 }
 [] MSAP2.receive(MDATind_Connection_Request()) {
 verdict.set(inconclusive);
 stop();
 }
 [] ISAP1.receive(IDISind {}) {
 verdict.set(inconclusive);
 stop();
 }
 }
 }
 [] ISAP1.receive(IDISind {}) {
 verdict.set(inconclusive);
 stop();
 }
}
Detailed Comments detailed comments

26 ITU-T Rec. Z.141 (02/2003)

Maps to:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:

module MyModule {
 testcase MyTestcase(in integer para1)
 runs on MyComponentType
 system MyComponentType {
 var boolean MyLocalVar := false;
 const float MyLocalConst := 60;
 timer MyLocalTimer := 15 * MyLocalConst;
 var default MyDefault := activate(OtherwiseFail());

 ISAP1.send(ICONreq:{}); /* Inline template definition */
 alt {
 /* use of a template */
 [] MSAP2.receive(Medium_Connection_Request()) {
 MSAP2.send(MDATreq:Medium_Connection_Confirmation());
 alt {
 [] ISAP1.receive(ICONconf:{}) {
 ISAP1.send(Data_Request(TestSuitePar));
 alt {
 [] MSAP2.receive(Medium_Data_Transfer()) {
 MSAP2.send(MDATreq:cmi_synch1());
 ISAP1.send(IDISreq:{});
 }
 [] ISAP1.receive(IDISind:{}) {
 verdict.set(inconc);
 stop;
 }
 }
 }
 [] MSAP2.receive(MDATind_Connection_Request()) {
 verdict.set(inconc);
 stop;
 }
 [] ISAP1.receive(IDISind:{}) {
 verdict.set(inconc);
 stop;
 }
 }
 }
 [] ISAP1.receive(IDISind:{}) {
 verdict.set(inconc);
 stop;
 }
 }
 } with {
 display "purpose := do something useful";
 display "comments := example testcase definition";
 display (MyLocalVar) "comments := local variable";
 display (MyLocalConst) "comments := local constant";
 display (MyLocalTimer) "comments := local timer";
 display "detailed comments := detailed comments";
 }
}

 ITU-T Rec. Z.141 (02/2003) 27

7 BNF productions

1. TabFreeText ::= [ExtendedAlphaNum]
2. GroupReference ::= {GroupIdentifier "/"}+
3. EncRuleIdentifier ::= Identifier
4. CommentsAttribute :: = display """ "comments" ":=" TabFreeText """
5. DetailedCommentsAttribute :: = display """ "detailed comments" ":="

TabFreeText """
6. TTCN3ModuleId ::= ModuleIdentifier [DefinitiveIdentifier]
7. ModuleAttributes ::= TabularPresentationFormatAttribute ";"

 ModuleVersionAttribute ";"
 ModuleDateAttribute ";"
 ModuleBaseStandardRefAttribute ";"
 ModuleTestStandardRefAttribute ";"
 ModulePICSRefAttribute ";"
 ModulePIXITRefAttribute ";"
 ModuleTestMethodAttribute ";"
 ModuleCommentsAttribute ";"
 ModuleDetailedCommentsAttribute ";"

8. TabularPresentationFormatAttribute ::=
 display """ "presentation format := ETSI Tabular version" MajorVersion
"." MinorVersion """

9. MajorVersion ::= Number
10. MinorVersion ::= Number
11. ModuleVersionAttribute ::=

 display """ "module version" ":=" TabFreeText """
12. ModuleDateAttribute ::=

 display """ "module date" ":=" TabFreeText """
13. ModuleBaseStandardRefAttribute ::=

 display """ "module base standards ref" ":=" TabFreeText """
14. ModuleTestStandardRefAttribute ::=

 display """ "module test standards ref" ":=" TabFreeText """
15. ModulePICSRefAttribute ::=

 display """ "module pics ref" ":=" TabFreeText """
16. ModulePIXITRefAttribute ::=

 display """ "module pixit ref" ":=" TabFreeText """
17. ModuleTestMethodAttribute ::=

 display """ "module test method" ":=" TabFreeText """
18. ModuleCommentsAttribute ::=

 display """ "module comments" ":=" TabFreeText """
19. ModuleDetailedCommentsAttribute ::=

 display """ "module detailed comments" ":=" TabFreeText """
20. ModuleParPicsPixitRefAttribute ::=

 display "(" ModuleParIdentifier ")"
 """ "pics/pixit ref" ":=" TabFreeText """

21. ModuleParComments ::=
 display "(" ModuleParIdentifier ")"
 """ "comments" ":=" TabFreeText """

22. ImportsSourceRefAttribute ::=
 display """ "imports source ref" ":=" TabFreeText """

23. ImportsSourceDefinitionCommentsAttribute ::=
 display "(" ImportIdentifier ")"
 """ "comments" ":=" TabFreeText """

24. ImportSpecification ::= ((Identifier | FullGroupIdentifier) | AllKeyword)
[ExceptionsDef]
/* STATIC SEMANTIC: FullGroupIdentifier shall only be used for group
 imports. */

25. EncodeAttribute ::= encode """ TabFreeText """
26. SimpleTypesDetailedCommentsAttribute ::=

 display """ "simple types detailed comments" ":=" TabFreeText """
27. StructureType ::= record | union | set
28. FieldCommentsAttribute ::=

 display "(" FieldIdentifier ")" """ "comments" ":=" TabFreeText """

28 ITU-T Rec. Z.141 (02/2003)

29. FieldEncodeAttribute ::=
 encode "(" FieldIdentifier ")" """ TabFreeText """

30. SequenceOfTypesDetailedCommentsAttribute ::=
 display """ "sequenceof types detailed comments" ":=" TabFreeText """

31. NamedValueCommentsAttribute ::=
 display "(" NamedValueIdentifier ")"
 """ "comments" ":=" TabFreeText """

32. TypeOrSignatureCommentsAttribute ::=
 display "(" TypeOrSignatureIdentifier ")"
 """ "comments" ":=" TabFreeText """

33. PortCommentsAttribute ::=
 display "(" PortIdentifier ")"
 """ "comments" ":=" TabFreeText """

34. ConstantsDetailedCommentsAttribute ::=
 display """ "simple types detailed comments" ":=" TabFreeText """

35. ExceptionCommentsAttribute ::=
 display "(" Type ")"
 """ "comments" ":=" TabFreeText """

36. VarConstOrTimerCommentsAttribute ::=
 display "(" VarConstOrTimerIdentifier ")"
 """ "comments" ":=" TabFreeText """

37. PurposeAttribute ::= display """ "purpose" ":=" TabFreeText """
38. SimpleTemplatesDetailedCommentsAttribute ::=

 display """ "simple templates detailed comments" ":=" TabFreeText """

Printed in Switzerland
Geneva, 2003

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.141 (02/2003) Testing and Test Control Notation version 3 (TTCN-3): Tabular presentation format
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Abbreviations
	4 Introduction
	5 Conventions
	5.1 Syntactic metanotation
	5.2 Specification text
	5.3 Proformas
	5.4 Core language
	5.5 General mapping rules

	6 Proformas
	6.1 Test Suite Control
	6.1.1 Mapping

	6.2 Test Suite Parameters
	6.2.1 Mapping

	6.3 Module Imports
	6.3.1 Mapping

	6.4 Simple Types
	6.4.1 Mapping

	6.5 Structured Types
	6.5.1 Mapping

	6.6 SequenceOf Types
	6.6.1 Mapping

	6.7 Enumerated Type
	6.7.1 Mapping

	6.8 Port Types
	6.8.1 Mapping

	6.9 Component Types
	6.9.1 Mapping

	6.10 Constants
	6.10.1 Mapping

	6.11 Signature
	6.11.1 Mapping

	6.12 Simple Templates
	6.12.1 Mapping

	6.13 Structured Template
	6.13.1 Mapping

	6.14 Function
	6.14.1 Mapping

	6.15 Altstep
	6.15.1 Mapping

	6.16 Testcase
	6.16.1 Mapping

	7 BNF productions

