INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.693 (2001)

TELECOMMUNICATION Amendment 1
STANDARDIZATION SECTOR
OF ITU (10/2003)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Amendment 1:

(to ITU-T Rec. X.693 | ISO/IEC 8825-4)
XER encoding instructions and EXTENDED-XER

CAUTION !
PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation.
[twill be replaced by the published version after editing. Therefore, there will be
differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of tele-
communications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU.
ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on
them with aview to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes
the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and |EC.

NOTE

In this Recommendation, the expression "Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation
is achieved when dl of these mandatory provisions are met. The words "shall" or some other obligatory
language such as "must” and the negative equivalents are used to express requirements. The use of such words
does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve
the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectua Property Rights, whether asserted by ITU members or others outside of the
Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB
patent database.

a ITU 2003

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior
written permission of 1TU.

DRAFT AMENDMENT 1
(to ITU-T Rec. X.693 | ISO/IEC 8825-4)

XER encoding ingtructions and EXTENDED-XER

Summary

An Amendment 1 is provided for ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T
Rec. X.690 | ISO/IEC 8825-1, ITU-T Rec. X.691 | ISO/IEC 8825-2 and ITU-T Rec. X.693 | ISO/IEC 8825-4. These
amendments provide the following:

— Correction of a bug in CXER resulting from alowing white-space between a minus sign and a
following | NTEGER or REAL vaue (CXER was not canonical). This is no longer permitted, in value
notation, XML Value Notation or in XER and CXER. This is a change (introduced by text in
amendment 1 to X.680) and not an addition.

— Addition of encoding instructions in an ASN.1 module, using either a type prefix or within an
encoding control section, in order to specify variations of the BASIC-XER encodings. These encoding
instructions are designed to support mappings from an XSD specification to an ASN.1 specification.
This provision has meant a change of terminology, where atype with 'T ...] " in front of it is a prefixed
type, and the ' ...] " notation may or may not be atag. This change of terminology resultsin changesto
the text (but not the substance) of the BER and PER specifications, so there is also an amendment 1 to
these specifications.

— The addition of NaN (Not-aNumber) and minus zero as new values for REAL (support for
encoding these new values is provided in Amendment 1 to ITU-T Rec. X.690 | ISO/IEC 8825-1 and to
ITU-T Rec. X.691 | ISO/IEC 8825-2, aswell asin Amendment 1 to ITU-T Rec. X.693 | ISO/IEC 8825-
4).

— The addition of new XML Vaue Notations for REAL, BOOLEAN, ENUVERATED, and | NTEGER that
use text rather than empty-element tags for the values. These are available in XML Vaue Notation and
in EXTENDED-XER, but not in BASIC-XER (for reasons of backwards-compatibility).

— Changes to the XML Value Notation for sequence-of (and the XER encodings) to provide
delimitation of values where they are not XML elements (this occurs with the additional XML Value
Notations, and only affects use of those additional XML Value Notations). This change is only
concerned with use of XML Value Notations that have been added by this amendment, and these are not
alowed in BASIC-XER, which is not affected.

This provides the necessary basic support for EXTENDED-XER.

This Amendment depends on ITU-T Rec. X.680 (2002)/Amd. 1 (2003) | ISO/IEC 8824-1:2002/Amd. 1:2003 and on
ITU-T Rec. X.681 (2002)/Amd. 1 (2003) | ISO/IEC 8824-2:2002/Amd. 1:2003 for the provision of alternative
encodings for some types and for syntax for the insertion of XER encoding instructions in an ASN.1 specification.
Many references from this amendment to clauses in these Recommendations | International Standards are to clauses
introduced by those amendments.

The bulk of this amendment is concerned with the specification of the syntax and semantics of (new) XER encoding
instructions, that can be used to require EXTENDED-XER encoders to provide specialized encodings for ASN.1
types. These specialized encodings are largely designed to support ITU-T Rec. X.694 | ISO/IEC 8824-5 (mapping
XSD into ASN.1).

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 1

INFORMATION TECHNOLOGY -
ASN.1 ENCODING RULES: XML ENCODING RULES (XER)

DRAFT AMENDMENT 1
(to ITU-T Rec. X.693 | ISO/IEC 8825-4)

XER encoding ingtructions and EXTENDED-XER

NOTE: All new or changed text in this document is highlighted in yellow in clauses being replaced (but not
in new clauses). When merging all such text into the base document the highlighting is to be removed.

Update the table of contents with the following:

CONTENTS

21 ldentical Recommendations| International Standards
2.2 Additional references

3.1 ASN.1Basic Encoding Rules (BER)

3.2 Additional definitions

8.1 Production of a complete BASIC-XER encoding
8.5 Encoding of the open type

8.6 Decoding of typeswith extension markers

9.1 General rulesfor canonical XER

9.4 Octetstring value

9.12 Open typevalue

10.1 General

10.2 EXTENDED-XER Conformance

10.3 Structure of an EXTENDED-XER encoding
14.1 Theencoding instruction assignment list

14.2 Identification of thetargetsfor an XER encoding instruction using a tar get list
14.21 General rules
14.2.2 Target identification using an ASN.1 type reference and identifiers
14.2.3 Target identification using a built-in type name
14.2.4 Useof identifiersin context
14.25 Useof imported typesidentification

151 Order inwhich multiple assignments are considered

15.2 Effect of assigning a negating encoding instruction

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 2

15.3
154
15.5
17.1
17.2
17.3
174
17.5
17.6
17.7
17.8
17.9
18.1
18.2
18.3
191
19.2
19.3
201
20.2
20.3
211
21.2
21.3
221
222
22.3
231
232
233
241
24.2
24.3
251
25.2
253
26.1
26.2
26.3

Multiple assignment of encoding instructionswith multiple categories

Multiple assignment of XER encoding instructions of the same category

Permitted combinations of final encoding instructions

The XML document e ement

The"
The"
The"
The"
The"
The"
The"
The"

TypeNameOr M odifiedTypeName" production

AttributelList" production

ExtendedXMLValue" production

ExtendedXML ChoiceValue" production

Extended XML SequenceValue' and " ExtendedXML SetValue" productions
ExtendedXM L SequenceOfValue' and " Extended XML SetOfValue" productions
ModifiedXM L IntegerValue' production

ModifiedXM L RealValue" production

General
Restrictions

Effect on encodings
General
Restrictions

Effect on encodings
General
Restrictions

Effect on encodings
General
Restrictions

Effect on encodings
General
Restrictions

Effect on encodings
General
Restrictions

Effect on encodings
General
Restrictions

Effect on encodings
General
Restrictions

Effect on encodings

General

Restrictions

Effect on encodings

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version

271 General

27.2 Restrictions

27.3 Effect on encodings
28.1 General

28.2 Restrictions

28.3 Effect on encodings
29.1 General

29.2 Restrictions

29.3 Effect on encodings
30.1 General

30.2 Restrictions

30.3 Effect on theencodings
311 General

31.2 Restrictions

31.3 Effect on encodings
321 General

32.2 Restrictions

32.3 Effect on encodings
331 General

33.2 Restrictions

333 Effect on encodings
34.1 General

34.2 Restrictions

34.3 Effect on encodings
35.1 General

35.2 Restrictions

35.3 Effect on encodings
36.1 General

36.2 Restrictions

36.3 Effect on encodings
371 General

37.2 Restrictions

37.3 Effect on encodings
38.1 General

38.2 Restrictions

38.3 Effect on encodings
39.1 General

39.2 Restrictions

39.3 Effect on encodings

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version

Al
A2
A3
A4
B.1
B.2
Cl1
C2

ASN.1description of therecord structure

ASN.1 description of arecord value

Basic XML representation of thisrecord value

Canonical XML representation of thisrecord value

Partial XML content

Recommended r estrictions on encodings producing partial XML element content
Introduction

Simple examples

C21 Abaseball card
C22 Anemployee

C3

M or e complex examples

C.31 Usingaunion of two simpletypes

C.32 Using atypeidentification attribute

C.33 Using enumeration values

C.34 Using an empty encoding for adefault value

C.35 Using embedded-values for notification of a payment due

Replace the Introduction with the following:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version

Introduction

The publications ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 |
ISO/IEC 8824-3, ITU-T Rec. X.683 | ISO/IEC 8824-4 together describe Abstract Syntax Notation One (ASN.1), a
notation for the definition of messages to be exchanged between peer applications.

This Recommendation | International Standard defines encoding rules that may be applied to values of ASN.1 types
defined using the notation specified in the Recommendations | International Standards listed above. Application of
these encoding rules produces a transfer syntax for such values. It isimplicit in the specification of these encoding
rulesthat they are also to be used for decoding.

There is more than one set of encoding rules that can be applied to values of ASN.1 types. This Recommendation |
International Standard defines three sets of encoding rules that use the Extensible Markup Language (XML). These
encoding rules al produce an XML document compliant to W3C XML 1.0. The first set is called the basic XML
Encoding Rules (BASIC-XER). The second set is called the Canonical XML Encoding Rules (CANONICAL-XER, or
CXER) because there is only one way of encoding an ASN.1 value using these encoding rules. (Canonical encoding
rules are generally used for applications using security-related features such as digital signatures.) The third set is
called the extended XML Encoding Rules (EXTENDED-XER). The extended XML Encoding Rules alow additional
encoders options, and take account of encoding instructions that specify variations of the BASIC-XER encodingsin
order to support specific styles of XML document (see below). The extended XML Encoding Rules are not
canonical, and there is no canonical form for these rules defined in this Recommendation | International Standard.

There are many aspects of an XML representation of data (such as the use of XML attributes instead of child
elements, or the use of white-space delimited lists) whose useis a matter of style and XML designer choice. If atype
defined in an ASN.1 specification is encoded by BASIC-XER or by CXER, then there is a single fixed style used for
the XML representation, with no user control of stylistic features. This ITU-T Recommendation | International
Standard specifies the syntax and semantics of XER encoding instructions which specify the stylistic features of the
XML in an EXTENDED-XER encoding. XER encoding instructions can also be used to determine the possible
insertion of XML processing instructions in an EXTENDED-XER encoding. XER encoding instructions are ignored
by BASIC-XER and by CXER, but are used by EXTENDED-XER.

NOTE — "Styligtic features’, such as use of attributes or white-space delimited lists, can aso affect the size of an encoding and the
ease with which it can be processed, so use of such features is not just a matter of style. Where such issues are important,
EXTENDED-XER with encoding instructions may be preferred over BASIC-XER or CXER.

Clause 8 specifiesthe BASIC-XER encoding of ASN.1 types.
Clause 9 specifiesthe CXER encoding of ASN.1 types.

Clause 10 specifies the EXTENDED-XER encoding of ASN.1 types, referencing later clauses which define the XER
encoding instructions.

Clauses 11 to 14 list and categorize the XER encoding instructions and specify the syntax for their assignment to an
ASN.1 type or component using either an XER type prefix (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 30.3) or an XER
encoding control section (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 50).

Clause 15 defines the order of precedence if XER encoding instructions are present in both an XER type prefix and in
an XER encoding control section

Clause 16 specifies the XER encoding instruction support for XML namespaces when using EXTENDED-XER.
Clause 17 specifies EXTENDED-XER encodings.

Clauses 18 to 39 specify:
a) thesyntax of each XER encoding instruction used in atype prefix or an encoding control section;

b) restrictions on the XER encoding instructions that can be associated with a particular ASN.1 type
(resulting from inheritance and multiple assignments);

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 6

c) modifications to the XER encoding rules that are required in an EXTENDED-XER encoding when an
XER encoding instruction is applied.

Annex A isinformative and contains examples of BASIC-XER and CXER encodings.

Annex B is informative and contains a description of the partial XML content that is produced when constructions
such as sequence and sequence-of have their surrounding tags removed, together with restrictions on EXTENDED-
XER specifications that enable easy determination of the ASN.1 component that an XML element is associated with.

Annex C is informative and contains examples of XER encoding instructions and of the corresponding
EXTENDED-XER encodings.

Replace clause 1 with the following:

1 Scope

This Recommendation | International Standard specifies a set of basic XML Encoding Rules (BASIC-XER) that may
be used to derive atransfer syntax for values of types defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec.
X.681 | ISO/IEC 8824-2. This Recommendation | International Standard also specifies a set of Canonical XML
Encoding Rules (CXER) which provide constraints on the basic XML Encoding Rules and produce a unigue encoding
for any given ASN.1 vaue. This Recommendation | International Standard further specifies a set of extended XML
Encoding Rules (EXTENDED-XER) which adds further encoders options, and also alows the ASN.1 specifier to vary
the encoding that would be produced by BASIC-XER. It isimplicit in the specification of these encoding rules that
they are also used for decoding.

The encoding rules specified in this Recommendation | International Standard:

— areused at the time of communication;

— are intended for use in circumstances where displaying of values and/or processing them using
commonly available XML tools (such as browsers) is the major concern in the choice of encoding
rules;

— dlow the extension of an abstract syntax by addition of extra values for all forms of extensibility
described in ITU-T Rec. X.680 | ISO/IEC 8824-1.

This Recommendation | International Standard also specifies the syntax and semantics of XER encoding instructions,
and the rules for their assignment and combination. XER encoding instructions can be used to control the
EXTENDED-XER encoding for specific ASN.1 types.

Replace subclause 2.1 with the following:

2.1 Identical Recommendations | International Standards

— ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.680 (2002)/Amd. 1 (2003) | ISO/IEC 8824-1:2002/Amd. 1:2003,
Information technology — Abstract Syntax Notation One (ASN.1): Specification of basic notation.
Amendment 1: Support for Encoding Instructions.

— ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.681 (2002)/Amd. 1 (2003) | ISO/IEC 8824-2:2002/Amd. 1:2003,
Information technology — Abstract Syntax Notation One (ASN.1): Information object specification.
Amendment 1: Support for Encoding Instructions.

— ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 7

ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology — ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER).

ITU-T Recommendation X.690 (2002)/Amd. 1 (2003) | ISO/IEC 8825-1:2002/Amd. 1:2003,
Information technology — ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER). Amendment 1: Support
for Encoding Instructions.

ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002, Information technology — ASN.1
encoding rules: Specification of Packed Encoding Rules (PER).

ITU-T Recommendation X.691 (2002)/Amd. 1 (2003) | ISO/IEC 8825-2:2002/Amd. 1:2003,
Information technology — ASN.1 encoding rules. Specification of Packed Encoding Rules (PER).
Amendment 1: Support for Encoding Instructions.

ITU-T Recommendation X.692 (2002) | ISO/IEC 8825-3:2002, Information technology — ASN.1
encoding rules: Encoding Control Notation (ECN) for ASN.1.

Replace subclause 2.2 with the following:

2.2 Additional references

IETF RFC 2045:1996, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies.

IETF RFC 2141:1997, URN Syntax.
IETF RFC 2396:1998, Uniform Resource Identifiers (URI): Generic Syntax.
IETF RFC 3061:2001, A URN Namespace of Object I dentifiers.

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character
Set (UCS) —Part 1: Architecture and Basic Multilingual Plane.

The Unicode Standard, Version 3.2.0, The Unicode Consortium. (Reading, MA, Addison-Wesley)

NOTE — The graphics characters (and their encodings) defined by the above reference are identical to those
defined by 1SO/IEC 10646-1, but the above reference is included because it also specifies the names of control
characters.
W3C XML 1.0:2000, Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation, Copyright © [6 October 2000] World Wide Web Consortium, (Massachusetts
Institute of Technology, Institut National de Recherche en Informatique et en Automatique, Keio
University), http://www.w3.or g/ TR/2000/REC-xml -20001006.

W3C XML Namespaces:1999, Namespaces in XML, W3C Recommendation, Copyright © [14
January 1999] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatigue et en Automatique, Keio University),
http: //mww.w3.or g/ TR/1999/REC-xml -names-19990114.

NOTE — The reference to a document within this Recommendation | International Standard does not give it, as a stand-
alone document, the status of a Recommendation or International Standard.

Replace clause 3 with the following:

3 Definitions

For the purposes of this Recommendation | International Standard, the definitions of ITU-T Rec. X.680 | ISO/IEC
8824-1 and the following definitions apply.

3.1 ASN.1 Basic Encoding Rules (BER)

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.690 |
ISO/IEC 8825-1:

3
b)

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version

datavaue;
dynamic conformance;

¢) encoding (of adatavalue);
d) receiver.

e) sender;

f) static conformance;

3.2 Additional definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

321 ASN.lschema: The definition of the content and structure of data using an ASN.1 type definition.
NOTE — This enables encoding rules to produce binary encodings of the values of an ASN.1 type, or encodings using XML.

Insert 4 new subclauses 3.2.1bis, 3.2.1ter, 3.2.1quat, and 3.2.1quin as follows:

3.2.1bis associated empty-element tag: the XML empty-element tag that can replace an associated preceding tag
and an associated following tag, when present.

NOTE — Some encoding instructions remove the associated tags of an "XMLValue".

3.2.1ter associated encoding instructions (for a type): A set of XER encoding instructions associated with a
type.

3.2.1quat associated following tag: the XML end-tag following the "XMLValue" of atype in the absence of
encoding instructions that remove the associated tags.

3.2.1quin associated preceding tag: the XML start-tag preceding the "XMLVauge" of atype in the absence of
encoding instructions that remove the associated tags.

Insert 16 new subclauses 3.2.2bis through, 3.2.2septdec as follows:

3.2.2bis canonical valid XML document (for an ASN.1 schema): An XML document which is well-formed (see
W3C XML 1.0) and whose content conforms to the CXER specification for the encoding of an ASN.1 type specified
by an ASN.1 schema.

3.2.2ter character-encodable type: an ASN.1 type to which an ATTRI BUTE encoding instruction can be applied
(see20.2.1).

3.2.2quat control namespace: a namespace that is used to identify attributes that perform functions or carry
valuesthat control an EXTENDED-XER encoding.

NOTE 1 — An example would be a type identification attribute. The control namespace defaults to the ASN.1 namespace specified
in 16.9, but can be changed by the GLOBAL-DEFAULTS encoding instruction.

NOTE 2 — The control namespace may also contain names for attributes that may be present, but which are ignored by
EXTENDED-XER decoders (see 10.2.10). An example of such an attribute name could be schemal ocation.

3.2.2quin enclosed (ASN.1) type: an ASN.1 type whose "XMLVaue' in a BASIC-XER encoding is enclosed
directly within the"XMLValue" of an ASN.1 type (the enclosing type).
NOTE — All types in a BASIC-XER or EXTENDED-XER encoding are enclosed types unless they are used as the root type (see
10.3.1b) inan encoding.

3.2.2sex enclosing element (of an ASN.1 type): An "ExtendedXMLTypedVaue', "ExtendedXML ChoiceValue',
"ExtendedXMLNamedVaue' or "ExtendedXMLDeimitedltem” that has as its "ExtendedXMLVdue' the
"ExtendedXMLValue' encoding of the type (see17.1,17.5,17.6 and 17.7).

3.2.2sept enclosing type (of an ASN.1 type): an ASN.1 type whose "XMLVaue' in aBASIC-XER encoding directly
enclosesthe"XMLValue" of an ASN.1 type (an enclosed type).

NOTE — The enclosing type can be a sequence type, a set type, a choice type, a sequence-of type, a set-of type, an open type, or an
octetstring or bitstring type (with a CONTAI NI NG and without an ENCODED BY).

3.2.2oct final encoding instructions (for atype): The set of XER encoding instructions associated with atypeasa
result of the complete ASN.1 specification, and which are applied in producing encodings of that type.

3.2.2noninherited encoding instructions: XER encoding instructions that are associated with the type identified
by atype reference.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 9

3.2.2dec namespace-qualified name: A name in an XML document that has an XML namespace prefix or is an
XML element name in the scope of an XML default namespace declaration.
NOTE — XML default namespace declarations affect only XML element names, not the names of attributes. A namespace prefix
can be applied to either.

3.2.2unodec nil identification attribute: An XML attribute that can appear on any element to identify whether the
content has anil value (see clause 33).

3.2.2duodec partial XML element content: XML child elements defined by an ASN.1 type which is UNTAGGED,
and which provides part of the XML element content generated by the enclosing type.

NOTE - If the enclosing type isitself UNTAGGED, then that enclosing type may aso be generating only partiad XML element content.

3.2.2terdec prefixed encoding instructions: XER encoding instructions that are assigned using a type prefix.
NOTE — Prefixed encoding instructions can delete, replace, or add to the associated encoding instructions of a type.

3.2.2quatdec qualifying information: Information supplied as part of the specification of a target for the
assignment of an encoding instruction that identifies specific values of the target type.

3.2.2quindec targeted encoding instructions: XER encoding instructions that are assigned using a target list in an
XER encoding control section.

NOTE — Targeted encoding instructions can delete, replace, or add to the associated encoding instructions of atype.

3.2.2sexdec typeidentification attribute: An XML attribute that can appear on any element to identify the type of
that element (see clause 37).

3.2.2septdec Uniform Resource Identifier (URI): A globally unambiguous identifier, assigned according to any
one of anumber of URI schemes, used to provide identification of namespacesin EXTENDED-XER encodings.

NOTE — The URI scheme used by default for ASN.1 enables an ASN.1 object identifier value to be used to identify namespaces
(see 16.9and 29.1.5).
Replace subclause 3.2.3 with the following:

3.23 valid XML document (for an ASN.1 schema): An XML document which is well-formed (see W3C XML
1.0) and whose content conforms to the BASIC-XER, CXER or EXTENDED-XER specification for the encoding of
an ASN.1 type specified by an ASN.1 schema, possibly including XER encoding instructions.

Insert 4 new subclauses 3.2.3bis through 3.2.3quin as follows:

3.2.3bis XER encoding instructions: Encoding instructions that are associated with an ASN.1 type (or with a
component of an ASN.1 type) by assignment to that type (or component) in an XER type prefix (see ITU-T Rec.
X.680 | ISO/IEC 8824-1, 30.3) or an XER encoding control section (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause
50).

3.2.3ter XML attribute: Part of an EXTENDED-XER encoding consisting of an "XMLVaue" enclosed in quotation
marks or apostrophes, preceded by an (attribute) name and an equals sign.

3.2.3quat XML element: Part of an XML document specified in W3C XML 1.0.

NOTE — An XML eement is either an empty-element tag or starts with a start-tag and ends with an end-tag. Both the start-tag and
the empty-element tag can contain attribute encodings.

3.2.3quin XML element name: thelexical item following a'<" or "< lexical item in the associated tags.

Replace subclause 3.2.4 with the following:

324 XML document: A sequence of characters which conformstothe W3C XML 1.0 definition of document.
Insert 2 new subclauses 3.2.5 and 3.2.6 as follows:

325 XML processing instruction: Part of an XML document which carries information concerning the
processing of some or al of that document (seeW3C XML 1.0).

NOTE — The processing instruction identifies the type of processing for which it is applicable, and is ignored in other processing. It
could be used to identify a style-sheet that is to be applied if the document is presented for human viewing.

3.2.6 XML prolog: Theinitial part of an XML document (which does not carry information about the value of the
ASN.1 type that has been encoded).

Replace clause 4 with the following:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 10

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
CXER Canonical XML Encoding Rules
PDU Protocol Data Unit
ucs Universal Multiple-Octet Coded Character Set
URI Uniform Resource | dentifier
uTC Coordinated Universal Time
UTF-8 UCS Transformation Format, 8-bit form
XML Extensible Markup Language
XER XML Encoding Rules

Replace clause 5 with the following:

5 This clause was removed by Amendment 1
Replace subclauses 6.1, 6.2 and 6.3 with the following:

6.1 This Recommendation | International Standard specifiesthree sets of encoding rules:
— Basic XML Encoding Rules (BASIC-XER)
— Canonical XML Encoding Rules (CXER)
— Extended XML Encoding Rules (EXTENDED-XER)
6.2 The basic set of encoding rules specified in this Recommendation | International Standard is BASIC-XER,

which does not in general produce a canonical encoding, and which does not provide any user control over the style of
XML whichis produced.

6.3 A second set of encoding rules specified in this Recommendation | International Standard is CXER, which
produces encodings that are canonical. This is defined as a restriction of implementation-dependent choices in the
BASIC-XER encoding.

NOTE 1 — Any implementation conforming to CXER for encoding is conformant to BASIC-XER for encoding. Any implementation
conforming to BASC-XER for decoding is conformant to CXER for decoding. Thus, encodings made according to CXER are
encodings that are permitted by BASIC-XER.

NOTE 2 — CXER produces encodings that have applications when authenticators need to be applied to abstract values.
Insert a new subclause 6.3bis as follows:

6.3bis The third set of encoding rules specified in this Recommendation | International Standard is EXTENDED-
XER. Thisis defined as variations of the BASIC-XER encodings specified by XER encoding instructions (see 6bis)
associated with an ASN.1 type. In the absence of XER encoding instructions an EXTENDED-XER encoding differs
from aBASIC-XER encoding only because it provides more encoders options.

Replace subclause 6.4 with the following:

6.4 If atype encoded with CXER contains EVMBEDDED PDV, EXTERNAL or CHARACTER STRI NG types, then the
outer encoding ceases to be canonical unless the encoding used for all the EMBEDDED PDV, EXTERNAL and
CHARACTER STRI NGtypesis canonical.

Insert a new clause 6bis as follows:

6bis Encoding instructions specified by this Recommendation | I nternational Standard

6bis.l This Recommendation | International Standard specifies the syntax and semantics of XER encoding
instructions (see clauses 11 to 39). XER encoding instructions only affect EXTENDED-XER encodings.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 11

6bis.2 ASN.1formsabasic XML schema notation. The ASN.1 schema is used to define the content and structure
of data using ASN.1 and the BASIC-XER (and CXER) encoding rules. It can be used without XER encoding
instructions.

6bis.3 XER encoding instructions provide wider flexibility in the XML documents that can be specified.

6bis.4 XER encoding instructions are assigned to ASN. 1 type definitions or to type references using either or both
of XER type prefixes (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 30.3) and an XER encoding control section (see ITU-
T Rec. X.680 | ISO/IEC 8824-1, clause 50). If encoding instructions are associated with a type definition, they are
carried with the ASN.1 type (through its type reference) into other type definitions and other ASN.1 modules. When
EXTENDED-XER encodes a type that has XER encoding instructions associated with some or al of its parts, those
final encoding instructions are applied and modify the EXTENDED-XER encodings that are produced.

NOTE — The finad encoding instructions are also used when performing vaidation and/or decoding of an EXTENDED-XER
encoding.

Replace subclause 7.1 with the following:

7.1 Dynamic conformance for the basic XML Encoding Rules is specified by clause 8, and dynamic
conformance for the Canonical XML Encoding Rules is specified by clause 9, and dynamic conformance for the
extended XML Encoding Rulesis specified by clause 10.

Replace subclause 7.3 with the following:

7.3 Alternative encodings are permitted by the basic XML Encoding Rules and by the extended XML Encoding
Rules as an encoder’s option. Decoders that claim conformance to BASIC-XER shall support all BASIC-XER
encoding aternatives. Decoders that claim conformance to EXTENDED-XER shall support al EXTENDED-XER
encoding alternatives.

NOTE — This clause applies whether or not there are any final encoding instructions.

Replace subclause 8.1 and its subclauses with the following:

8.1 Production of a complete BASI C-XER encoding

811 A conforming BASIC-XER encoding isavalid XML document which shall consist (in order) of:
a an XML prolog (which may be empty) as specifiedin 8.2;
b) an XML document element which is the complete encoding of a vaue of a single ASN.1 type as
specifiedin 8.3.

8.1.2 The specification in 8.2 t0 8.6 completely defines the BASIC-XER encoding
NOTE — Other constructs of W3C XML 1.0, such as XML processing ingtructions, are not allowed by those subclauses, and are
never produced by a conforming BASIC-XER encoder.

8.1.3 The XML document shall be encoded using UTF-8 to produce a string of octets which forms the encoding
specified in this Recommendation | International Standard. The ASN.1 object identifier for these encoding rules is
specified in clause 40.

814 Where this Recommendation | International Standard uses the term "white-space”, this means one or more of
the following characters of the Unicode Standard: HORIZONTAL TABULATION (9), LINE FEED (10), CARRIAGE
RETURN (13), SPACE (32). The numbers in parentheses are the decimal value of the characters of the Unicode
Standard. The number and choice of charactersthat constitutes "white-space” is an encoder's option.

Insert a new subclause 8.1.5 as follows:

8.15 Where this Recommendation | International Standard uses the term "white-space with escapes’, this means
one or more of the characters listed in 8.1.4, with an encoder's option to represent any of these characters with an
escape sequence of the form "&#n;" or "&#xn;" (See ITU-T Rec. X.680 | ISO/IEC 8824 1, 11.15.8).

Replace subclause 8.3.1 with the following:

831 The XML document element shall be an "XMLTypedValue' as specified in ITU-T Rec. X.680 | ISO/IEC
8824-1, 15.2, with the changes and restrictions specified in the following subclauses of this clause 8.3.

Insert a new subclause 8.3.1bis as foll ows:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 12

8.3.1bis All occurrences of "ExternalTypeReference" within the "XMLTypedVaue' shal be replaced by the
"typereference” in that "Externa TypeReference”.

Replace subclause 8.3.1 with the following:

833 WherelTU-T Rec. X.680 | ISO/IEC 8824-1, 11.1.4, 11.11 and 11.13, permits the use of ASN.1 white-space
between lexical items or in "xmlbstring" or in "xmlhstring", the characters used shall be restricted to the "white-space"
specifiedin 8.1.4.

Insert a new subclause 8.3.3bis as follows:

8.3.3bis The "XMLBooleanVaue' specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 17.3, shal only be
"EmptyElementBoolean” and the "XML SequenceOfValue" and "XML SetOfValue' with a component that is a boolean
type shall be"ValuelLidt".

Replace subclause 8.3.4 with the following:

834 The "XMLIntegerVaue' specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.9, shal only be
"XMLSignedNumber".

Insert 2 new subclauses 8.3.4bis and 8.3.4ter as follows:

8.3.4bis The "XMLEnumeratedvVaue' specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.8, shall only be
"EmptyElementEnumerated” and the "XML SequenceOfVaue' and "XMLSetOfVaue' with a component that is an
enumerated type shall be"ValuelList".

8.3.4ter The "XMLSpecidRedVaue' specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 20.6, shall only be
"EmptyElementReal".

Insert a new subclause 8.5 as follows:

8.5 Encoding of the open type

Both alternatives of "XMLOpenTypeFieldva" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.6) can be used.

NOTE - The use of the "xmlhstring" aternative of "XMLOpenTypeFieldva" is not recommended in generdl, as there are no
mechanisms to identify the encoding rules being used to produce the "xmlhstring” in an instance of an encoding. Cases where this
aternative may be convenient are when the message being encoded in XER (e.g. for display purposes) is the result of a previous
binary encoding and has not been completely decoded, or when there are bilateral agreements.

Insert a new subclause 8.6 as follows:

8.6 Decoding of typeswith extenson markers

8.6.1 A BASIC-XER decoder shall accept as a vaid XML document BASIC-XER encodings of types with
extension markersin which unknown extensions are present.

8.6.2 Unknown extensions in a sequence or set type result in unexpected XML elements with names distinct from
any of the names of the next expected XML element.
NOTE — There may be multiple names for a known following XML eement when optionality is present, but the extension additions
will dways have names that differ from all of these.

8.6.3 Unknown extensions in a choice type result in a single unexpected XML element in place of an element
corresponding to one of the known choices. It will always have adifferent XML element name from that of any XML
element that encodes a known aternative of the choice type.

8.6.4 Unknown extensions in an enumerated type result in an XML element with an unexpected content, but with
no unexpected XML elements.

8.6.5 Unknown extensions arising from relaxation of a subtype constraint result in an encoding that can be avalid
encoding of any value of the unconstrained type. Such encodings can produce unexpected content, but no unexpected
XML elements.

Replace subclause 9.1 with the following:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 13

9.1 General rulesfor canonical XER

Replace subclause 9.1.2 with the following (retaining the NOTE):

9.1.2 Alllexicd itemsforming the "XMLTypedVaue" shall have no "white-space" between them (see8.3.3).
Replace subclause 9.3.1 with the following:

931 If the "XMLTypedValue' dternative of "XMLBItStringVaue' (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
21.9) can be used (as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.10), then it shall be used. Otherwise, the
"xmibstring" aternative shall be used with all "white-space" removed (see 8.3.3).

Replace subclause 9.4 with the following:

9.4 Octetstring value

If the "XMLTypedVaue" aternative of "XMLOctetStringVaue' (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 22.3) can
be used (as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 22.4), then it shall be used. Otherwise, the"xmlhstring”
aternative shall be used with al "white-space” removed (see 8.3.3), and al lettersin upper-case.

Replace subclause 9.6.1 with the following:

9.6.1 The set type shall have the elements in its "RootComponentTypelList" sorted into the canonical order
specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 8.4, and additionally for the purposes of determining the order in
which components are encoded when one or more component is a choice type with no ASN.1 tag, each such choice
type is ordered as though it has atag equal to that of the smallest tag in the "RootAlternativeTypeList" of that choice
type or any such choice types nested within it.

Replace subclause 9.7.1 with the following:

9.71 The order of the elements of an "XMLSetOfVaue" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 27.3) shall be
determined by sorting the character strings which represent the CXER encoding for each element as specified in 9.7.2
and 9.7.3.

Insert a new subclause 9.12 as follows:

9.12 Open typevalue
The"xmlhstring” alternative of "XMLOpenTypeFiddVal" shall not be used (see 8.5).

Insert the following 30 new clauses 10 through 39 before the existing clause 10 (note that the existing clause 10
isrenumbered as clause 40 by this amendment):

10 Extended XML encoding rules

10.1 General

10.1.1 The extended XML encoding rules (EXTENDED-XER) augment and modify BASIC-XER. They enable
ASN.1 to define the form and content of a much wider range of XML documents.

10.1.2 EXTENDED-XER extends BASIC-XER in three main ways.

a) It provides additional encoder's options (for example, for the insertion of XML Processing Instructions
or XML Comment, and for the use of identifiers for named bitsin abitstring value);

b) It specifies a set of encoding instructions that can be used to specify modification of the BASIC-XER
encoding of an ASN.1 type, including an encoding instruction to use simple text rather than empty-
element tags for boolean, integer (with named numbers), enumerated, specia values of real, and
bitstring (with named hits) types;

c) It requires decoders to ignore (in the absence of encoding instructions) attributes from the control
namespace that are unknown (for example, a schemaLocation attribute), and some known attributes that
other XML tools may insert which may have different values from those that a conforming encoder can
insert (for example, use of atypeidentification attribute). (See10.2.10.)

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 14

10.1.3 If an ASN.1 specification does not contain any XER encoding instructions, then every BASIC-XER encoding
of any abstract value of an ASN.1 typeisaso an EXTENDED-XER encoding of the same abstract value of that type.

NOTE - The opposite is not true. Even in the absence of XER encoding instructions, there are EXTENDED-XER encodings that
are not conforming BASIC-XER encodings (see 10.1.2aand 10.1.2c).

10.1.4 All occurrences of ASN.1 "Type" notation have an associated set (possibly empty) of XER encoding
instructions (the final associated encoding instructions). Encoding instructions are associated with a"Type" through:

@ (Inherited encoding instructions) The presence of associated encoding instructions on the "Type" used
in the definition of a"typereference” used asa"Type'; and

b) (Targeted encoding instruction) Assignment of one or more XER encoding instructions to an
occurrence of "Type" using an XER encoding control section (see I TU-T Rec. X.680 | ISO/IEC 8824-1,
clause 50); and

NOTE — An ASN.1 module can contain only one XER encoding control section, and hence only one XER
"EncodinglnstructionAssignmentList" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 50.2)

c) (Prefixed encoding instructions) Assignment of one or more XER encoding instructions to an

occurrence of "Type" using XER type prefixes (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 30.3); and

d) (Import-list encoding instructions) Assignment of one or more encoding instructions to al type
references imported from an identified ASN.1 module.

10.1.5 The effect of assigning an XER encoding instruction is to add, delete, or replace associated encoding
instructions (see clause 15 for the rules that apply for multiple assignments of XER encoding instructions).

10.1.6 The order (or manner) in which encoding instructions become part of (or are removed from) the set of
associated encoding instructionsis not significant in the application of the final encoding instructions.

10.1.7 Thefina encoding instructions affect the EXTENDED-XER encoding of types. They have no other impact,
and in particular are not associated with any value reference defined using the type, nor do they affect value mappings,
nor do they affect other encoding rules.

NOTE — There are, however, regquirements on the unambiguity of names that are affected by the presence of a fina NAME,

NAMESPACE, or UNTAGGED encoding instruction. These requirements can be interpreted either as restrictions on the way in which
types with such fina encoding instructions can be used, or as restrictions on the use of these encoding instructions.

10.2 EXTENDED-XER Conformance

10.2.1 If an ASN.1 specification assigns XER encoding instructions in accordance with clauses 11 to 17 such that
an ASN.1 type or component has final encoding instructions that violate the restrictions specified in clauses 18
onwards, then that ASN.1 specification is not in conformity with this Recommendation | International Standard, even if
(without the XER encoding instructions) it would conform to all the requirements of ITU-T Rec. X.680 | ISO/IEC
8824-1.
NOTE — It is only occasiondly illega to assign an encoding instruction to a "Type", as it can be negated (removed from the set of
associated encoding ingtructions) by a further assgnment. 1t is the final encoding instructions that normally determine conformity of
the specification. In some (but not al) cases, afina encoding instruction that is not applicable to the type to which it is being applied
isignored. If the clauses specifying the syntax and application of encoding instructions identify circumstances where an encoding

ingtruction is ignored in the application of the final encoding instructions, then clauses specifying encodings do not normally mention
the possible presence of that fina encoding instruction.

10.2.2 A conforming EXTENDED-XER encoding of an ASN.1 type with no final encoding instructions shall be the
encoding produced by the basic XML encoding rules (BASIC-XER) specified in clause 8, with the additional
encoder's options specified in 10.2.5 and 10.2.6.

NOTE — EXTENDED-XER decoders are required by 10.2.4 to accept and process W3C XML document type declarations, but
these are not generated by conforming encoders, and do not form part of EXTENDED-XER encodings,

10.2.3 The EXTENDED-XER encoding of an ASN.1 type with final encoding instructions, or with components (at
any depth, and after resolving al type references) that have associated encoding instructions, shall be the encoding
specified in clause 17.

NOTE — The find encoding ingtructions are applied in an EXTENDED-XER encoding, and are also used by decoders and validators
of EXTENDED-XER encodings.

10.24 EXTENDED-XER decoders (whether MODI FI ED- ENCODI NGS was used or not — see clause 26) shall
process any document type declaration (see W3C XML 1.0, 2.8) that is present, in accordance with the requirements
for non-validating XML processors (see W3C XML 1.0, 5.1). This processing shall be performed (conceptually)

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 15

before applying all other decoding requirements in this Recommendation | International Standard. EXTENDED-XER
encoders shall not include a document type declaration.

10.2.5 An EXTENDED-XER encoder can (as an encoder's option) insert XML Processing Instructions or XML
Comment (in addition to any that might be required by clause 30) in the XML document element or XML prolog in
any position permitted by W3C XML 1.0. The syntactic form and semantics of XML Processing Instructions is
specified in W3C XML 1.0, 2.6. The syntactic form and semantics of XML Comment is specified in W3C XML 1.0,
2.5.

10.2.6 If there is no GLOBAL- DEFAULTS encoding instruction with a MODI FI ED- ENCODI NGS keyword (see clause
26) in the XER Encoding Control Section, then:

a the "XMLintegerVaue' (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.9) may be either
"XMLSignedNumber" or "EmptyElementlnteger", as an encoder's option; and

b) the "XMLBiItSringVaue' (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.9) may be any of the
alternatives of this production, as an encoder's option. |f the"XMLIdentifierList" is used, it shall bethe
"EmptyElementList".

10.2.7 If thereis a GLOBAL- DEFAULTS encoding instruction with a MODI FI ED- ENCODI NGS keyword (see clause
26) inthe XER Encoding Control Section, then:

a the"XMLBooleanVaue" (see TU-T Rec. X.680 | ISO/IEC 8824-1, 17.3) shall be "TextBoolean"; and
b) the "ExtendedXMLIntegerValue' (see 17.4) shal be the "ModifiedXMLIntegerVaue' aternative,
defined in 17.8; and

NOTE — This alows the use of atext value for "NamedNumber"s of an integer type, as an encoder's option, but
also modifies the syntax for numeric encodings of an integer value.

c) the"ExtendedXMLEnumeratedValue' (see 34.3) shall not be "EmptyElement Enumerated”; and

NOTE — In the absence of a GLOBAL- DEFAULTS of MODI FI ED- ENCODI NGS, it cannot be "TextEnumerated” (see
8.34bis and 34.3).

d) the"ExtendedXMLRealVaue" (see 17.4) shall be the "ModifiedXMLReaValue" aternative, defined in
17.9; and

e) the "XMLSpecidRealVaue' (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 20.6) shall be the "TextRed"
dternative; and

f) the dternative of "XMLIdentifierList" in the "XMLBItStringValue" (see ITU-T Rec. X.680 | ISO/IEC
8824-1, 21.9) shall be"TextList" (see10.2.8 b); and

g) the"XMLSequenceOfVaue' and "XMLSetOfVaue' (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 25.3 and
27.3) shdl be "XMLDeimiteditem" for al component types, with Table 5 ignored (see ITU-T Rec.
X.680 | ISO/IEC 8824-1, 25.5); and

h) the "xmlhstring" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.13) shall not contain "white-space" (see
8.1.4); and

i) all occurrences of "white-space” that is either outside XML tags or inside the values of XML attributes
can be "white-space with escapes’ (see 8.1.5) as an encoder's option.
NOTE — There are some encoding instructions (such as UNTAGGED) that cannot be used unless there is a GLOBAL- DEFAULTS of
MODI FI ED- ENCODI NGS.
10.2.8 If a GLOBAL- DEFAULTS encoding instruction with a MODI FI ED- ENCODI NGS keyword (see clause 26) is
present in the XER Encoding Control Section, then an EXTENDED- XER encoder can (as an encoder's option):
a) use the "Textinteger" dternative of "ModifiedXMLIntegerValue' (see 17.8), provided there is a
"NamedNumber" for the integer value in the type definition (see als0 10.2.7 b).
NOTE — The use of this encoding with named values that have been added in alater version can make the abstract
value represented unreadable by an implementation of an earlier version of the specification.
b) use"XMLIdentifierList" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.9) for an"XMLBItSrringVaue',
provided the bitstring value to be encoded does not contain any "one" bits that are not named bits (see
also 10.2.7 f);

NOTE — The use of this encoding with named hits that have been added in a later version can make the abstract
value represented unreadable by an implementation of an earlier version of the specification.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 16

10.2.9 Where encoder's options are permitted in an EXTENDED-XER encoding, conforming decoders and
vdidators shall accept all options.

10.2.10 Conforming decoders and validators shall accept, but may ignore, the presence of an attribute from the
control namespace in any XML element of an encoding unless its presence and use is as specified in clauses 37 and
38. Encoders shall not generate such attributes except as specified in clauses 37 and 38.
NOTE — Other XML tools may insert such attributes. In genera, an EXTENDED-XER decoder cannot easily determine the
permitted vaue and meaning of some attributes from the control namespace. Their presence and value may be of use to an
application if (for example) unexpected XML child elements are present that are (as a decoder's option) passed to the application -
rather than being ignored or producing afatal decoding error.
10.2.11 An ASN.1 specification isillegal unless it is possible, for all abstract values, for a decoder to determine
unambiguously (using only the name of the XML tag and the contents of any previous XML element) the ASN.1
component (or extension marker) that an XML element is associated with.
NOTE 1 — The association cannot depend on the content of the XML element, or on its attributes, or on ay subsequent XML
element.

NOTE 2 — This condition is always satisfied when there are no XER encoding instructions, but the inappropriate use of UNTAGGED to
remove associated tags round (for example) repetitions (sequence-of or set-of) and alternatives (choice) and the inappropriate use of
NAMVE can result inillegal specifications.

NOTE 3 — Subclause 10.2.11 is a necessary condition for valid encodings, but it is recognized that it is in general not possible for an
ASN.1 tool (or for a human author) to check for legdity based on this top-level statement alone. Annex B provides amodd of the
effect of the use of UNTAGGED, and rules that, if followed, can ensure legdlity of the specification as defined in 10.2.11.

10.2.12 If an ASN.1 specification contains "ObjectClassFieldType's that are open types (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 14.2), with table constraints or type constraints, such constraints shall all be ignored in
applying 10.2.11.

10.3 Structure of an EXTENDED-XER encoding

10.3.1 A complete EXTENDED-XER encoding isawell-formed XML document consisting (in order) of:
a an XML prolog (which may be empty as an encoder's option) as specified in 8.2; and

b) an XML document element which is the complete encoding of a value of a single ASN.1 type, called
the root type, as specified in clause 17.

10.3.2 The"XMLVaue' encodings used for BASIC-XER encodings are modified for EXTENDED-XER encodings
by the final encoding instructions for the "Type"s that they encode, and the final encoding instructions for their
components (to any depth), together with any GLOBAL- DEFAULTS encoding instructions.
NOTE — In an extreme case, the entire contents of the XML document element for a heavily nested ASN.1 structure can (through
the use of the UNTAGGED encoding instruction) consist of nothing more than alinear sequence of XML elements, where only the root
element has child dlements. The use of UNTAGGED is restricted to ensure that al such resulting linear sequences of XML elements
can be mapped without ambiguity to the components of an abstract value of the ASN.1 root type (see 10.2.11).
10.3.3 The XML document element in an EXTENDED-XER encoding consists of asingle XML element that shall
be an "ExtendedXML TypedVaue' for the type being encoded (the root type). It can include attributes in its start-tag
or empty-element tag, and can have a content that includes both child elements (see W3C XML) and untagged text.
The child elements may themselves have both attributes and a content that includes both child elements and untagged
text.

10.3.4 The abstract values of the components of an enclosing type are encoded as "ExtendedXMLVaue's (see
17.4), possibly modified by encoding instructions applied to them or to their own components. These
"BExtendedXMLValue's.

a) can be preceded by an XML start-tag and followed by an XML end-tag (called the associated tags) to
form an element within the "ExtendedXMLValue" of the enclosing type; or

b) can (by the use of an UNTAGGED encoding instruction on a type that is not character-encodable) form a
partial XML element content for the "ExtendedXMLValue" of the enclosing type; or

NOTE — Annex B describes the result of applying UNTAGGED as the production of partial XML element content
that can combine with other encodings to form the XML element content for some enclosing element whose type
has not been UNTAGGED.

c) can (by the use of an UNTAGGED encoding instruction on a character-encodabl e type) form the complete
"ExtendedXMLVaue" of the component; or

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 17

d) can (by the use of an ATTRI BUTE encoding instruction on a character-encodable type) form the
"CharacterEncodableValue' in the "QuotedValue" of an "Attribute" (see20.3.3).

1035 If an "ExtendedXMLVaue" is empty, and its associated tags have not been removed by the use of an
UNTAGGED encoding instruction, then the associated preceding and following tags can (as an encoder's option) be
replaced with an XML empty-element tag (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.8). This is called the
associated empty-€element tag.

10.3.6 The transformation specified in 10.3.5 is performed conceptually after completion of the entire encoding
process, and can be prevented by a PI - OR- COMVENT encoding instruction (see clause 30) producing one or more
XML Processing Instruction or XML Comment €l ements between the start-tag and end-tag.

10.3.7 The associated preceding tag, the associated following tag, and the associated empty-element tag arejointly
referred to asthe associated tags. The XML element names in the associated tags are called the associated tag names,
and are (in the absence of final NAME and NAMESPACE encoding instructions) identifiers, type reference names, or
"xmlasnltypename's (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.25).

11 Notation, character set and lexical itemsused in XER encoding instructions

111 The notation used in specifying the syntax of an "Encodinglnstruction” in an XER type prefix (see clause 13),
and in an "EncodinglnstructionAssignmentList” in an XER encoding control section (see clause 14) isthat defined by
ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 5.

11.2 ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 10, applies to an XER "Encodinglnstruction” and to an XER
"Encodingl nstructionAssignmentList".
NOTE — In particular, arbitrary ASN.1 white-space characters can appear between lexical items in both of these syntactic
congtructs unless the "&" notation is used (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 5.4).

11.3 The genera rules specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.1, dso apply to an XER
"Encodinglnstruction" and to an XER "Encodingl nstructionAssignmentList".

NOTE — In particular, ASN.1 comment can be included wherever ASN.1 white-space is allowed, and requirements for the insertion
of white-space or comment between lexical items that could otherwise be confused are those specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1.

114 Thefollowing lexical items are used in this Recommendation | I nternational Standard:

comment (seeITU-T Rec. X.680 | ISO/IEC 8824-1, 11.6)
cstring (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.14)
identifier (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.3)
modulereference (seel TU-T Rec. X.680 | ISO/IEC 8824-1, 11.5)
number (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.8)
typereference (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.2)
ke (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)
m (see I TU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)

e (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)
na (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.16)
ne (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)
e (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.26)
oy (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.21)
" S (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.22)

Additiond lexicd items ("modifiedX MLNumber" and "modifiedX ML RealNumber") are defined and used in 17.8.3 and
in17.9.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 18

12 Keywords

12.1 The words specified in 12.3 and 12.4 below are used in either or both of XER "Encodinglnstruction”s and
XER "Encodingl nstructionAssignmentList"s (in addition to some ASN.1 reserved words), and can appear in such
syntactic constructs only with the meaning assigned to them in the following clauses of this Recommendation |
International Standard, except as specified in 12.2.

122 Keywords are not reserved words, but if an ASN.1 "typereference” that is the same as a keyword listed in
12.3 isneeded in an XER "Encodinglnstruction” or an XER "Encodingl nstructionAssignmentList”, then the production
"ModuleAndTypeReference” (see 14.2.2) shall be used.

12.3 The keywords are:

AFTER- TAG DEFAULT- FOR- EMPTY REPLACE
AFTER- VALUE ELEVENT TEXT

ANY- ATTRI BUTES EMBED- VALUES UNCAPI TALI ZED
ANY- ELEMENT GLOBAL- DEFAULTS UNTAGGED
AS I'N UPPERCASED
ATTRI BUTE LI ST USE- NI L
BASEG4 LOWERCASED USE- NUMBER
BEFORE- TAG MODI FI ED- ENCODI NGS USE- CRDER
BEFORE- VALUE NAME USE- QNAMVE
CAPI TALI ZED NAMESPACE USE- TYPE
COLLAPSE NOT USE- UNI ON
CONTROL- NAMESPACE Pl - OR- COMMENT V\HI TESPACE
DECI MAL PREFI X

124 Additional keywords are used in the "BuiltinTypeName" production (see 14.2.3), but these are all ASN.1
reserved words (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.27) and can never be used in ASN.1 as a"typereference”.

13 Assigning an XER encoding instruction to an ASN.1 type using a type pr efix

131 Final encoding instructions for atype can:

a requirethe use of aternatives of an "ExtendedXMLValue" that are not "XMLValue" dternatives for that
type; or

NOTE - Alternatives of the "ExtendedXMLVaue' production include both the (unchanged) "XMLVaue'
production aternatives used in BASIC-XER, and alternative productions selected by XER encoding instructions.

b) change the associated tag name, the "AttributeName", or the value of the type identification attribute for
the encoding of that type; or

c) cause the "ExtendedXMLVaue' of a component of an ASN.1 type to be inserted as the
"CharacterEncodableVaue' in the "QuotedVaue' of an "Attribute”’ (see 20.3.3); or

d) specify the XML namespace name for type reference names and identifiers defined in an ASN.1
module and recommend a namespace prefix to be used with that namespace; or

e) specify when a namespace-qualified name (instead of an unqualified name) is to be used in an XML
element or asthe name of an XML attribute; or

f) specify the remova of the associated tags, generally resulting in either untagged text or in partial XML
element content (which can be preceded or followed by other partial XML element content — see
Annex B); or

g) specify theinsertion of one or more XML Processing Instructions or XML Comments (see clause 30):
1) beforethe associated preceding tag or the associated empty-element tag; or

2) between the associated preceding tag and the "ExtendedX ML Value'; or
NOTE — This prohibits the use of an associated empty-element tag.

3) between the "ExtendedXMLVaue" and the associated following tag; or
NOTE — This prohibits the use of an associated empty-€lement tag.

4) dfter the associated following tag.
NOTE — All the above prohibit the use of UNTAGGED to remove the associated tags (see 30.2.2).

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 19

132 XER encoding instructions can be assigned to ASN.1 types using either the "Encodinglnstruction’
production in an XER type prefix or the "EncodinglnstructionAssignmentList® production in an XER encoding
control section. Assignment using a type prefix is specified in this clause. Assignment using an XER encoding
control section is specified in clause 14.

NOTE — The effect of multiple assignments of encoding instructions of the same category is specified in clause 15.
13.3 The XER "Encodinglnstruction" production is:

Encodinglnstruction::=
Positivel nstruction |
Negatingl nstruction

Positivel nstruction ::=
AnyAttributel nstruction |
AnyElementlnstruction |
Attributel nstruction |
Base64! nstruction |
Decimallnstruction
DefaultFor Emptyl nstruction
EmbedValuesl nstruction
GlobalDefaultsl nstruction
Listlnstruction
Namel nstruction
Namespacel nstruction
PIOr Commentlnstruction
Textlnstruction
Untagged! nstruction
UseNillnstruction |
UseNumber I nstruction |
UseOrderInstruction
UseQNamel nstruction
UseTypel nstruction
UseUnionlnstruction
Whitespacel nstruction

Negatinglnstruction ::=
NOT Positivel nstruction |
Elementlnstruction

134 The "Elementinstruction” (see clause 24) is a strict synonym for NOT UNTAGGED, and is not discussed
further in this clause.
NOTE 1 — The ELEMENT synonym is provided to avoid the double negative, and for human readability of specifications. It will
normally be used (in opposition to the ATTRI BUTE encoding ingtruction) to identify the nature of top-level typesin the ASN.1 module.

Top-leve types that have neither ELEMENT nor ATTRI BUTE fina encoding instructions will be supporting types that do not directly
correspond to XML attributes or elements, and will usually be UNTAGGED.

NOTE 2 — There is no negating encoding instruction for ELEMENT. An ELEMENT encoding instruction can be cancelled by a
subsequent UNTAGGED encoding instruction, but such usage is not recommended.

135 Each use of a"Positivelnstruction” in an XER type prefix or in an encoding control section assignsthat XER
encoding instruction to the corresponding "Type".

13.6 If the "Type" in a "TypeAssgnment" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 15.1) has final encoding
instructions, all uses of the corresponding "typereference” (in the module containing the " TypeAssignment” or in some
other module) inherit its final associated encoding instructions, except that any final NAME and NAMESPACE encoding
instructions are not inherited.

NOTE - These two encoding instructions affect the XML name used in place of a type reference name. Where the type reference

name is used to define the type in a type assgnment or the type of a component, it is not appropriate to inherit such final encoding
instructions from its definition.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 20

13.7 An encoding instruction in atype prefix or in an encoding control section can be a positive instruction, used
to add or to replace an encoding instruction (use of "Positivelnstruction™), or a negating instruction used to cancel
(use of "Negatinglnstruction") one or more associated encoding instructions.

13.8 XER encoding instructions consist of four parts (some of which may be empty):

a@ NOT, indicating negation or removal of encoding instructions of a given category; and
NOTE — Thisis present for negating instructions (except "Elementlnstruction”) and absent for postive instructions.
b) akeyword identifying the category of the encoding instruction; and
NOTE — Thisis always present.
c) identification of atarget list for the assignment of the encoding instruction (possibly with qualifying
information restricting its application to a subset of the values of the type); and
NOTE — When used in a type prefix, the target list is dways the "empty" production, as the target for the
assignment is aways the type associated with the type prefix (see 13.12). Thetarget list is dso dways "empty" for
the GLOBAL- DEFAULTS encoding instruction.
d) syntax, specific to each encoding instruction category, providing details of the encoding instruction in
that category.

NOTE — When used in a negating ingtruction, this is always the "empty" production. It is dso absent from some
XER encoding ingtructions for which the keyword is a sufficient definition.

139 Some X ER encoding instructions reguire the specification of the abstract value of atype. This specification
uses the "Value" production (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.7). If a"valuereference" is used as"Vaue',
then this "valuereference” shall be defined in (or imported into) the ASN.1 module containing the XER encoding
instruction.

NOTE — This means that the value can be specified either directly using basic ASN.1 value notation, or by a value reference that
was specified using either basic ASN.1 value notation or XML value notation.

13.10 Table 1 lists in column 1 the alternatives in the "Positivelnstruction” productions. Column 2 gives the
clauses that specify the requirements for use of these encoding instructions and the modified encodings that they
produce. Column 3 givesthe category of the encoding instruction.

NOTE — These categories are introduced in order to provide clear statements on the result of multiple assignments of encoding
instructions from the same category.

Table 1- Encoding instructions and their defining clauses and categories

Encoding instruction Defining clause Category
AnyAttributeslnstruction Clause 18 Any-attributes instruction
AnyElementlnstruction Clause 19 Any-element instruction
Attributel nstruction Clause 20 Attribute instruction
Base64lnstruction Clause 21 Baseb4 instruction
Decimallnstruction Clause 22 Decimal instruction
DefaultForEmptylnstruction Clause 23 Default-for-empty instruction
ElementInstruction Clause 24 Element instruction
EmbedValueslnstruction Clause 25 Embed-values instruction
Global Defaultslnstruction Clause 26 Global -defaults instruction (but see 15.3)
ListInstruction Clause 27 List instruction
Namel nstruction Clause 28 Name instruction (but see 15.3)
Namespacel nstruction Clause 29 Namespace instruction
PiOrCommentlnstruction Clause 30 Pi-or-comment instruction (but see 15.3)
Textlnstruction Clause 31 Text instruction (but see 15.3)

Untagged| nstruction Clause 32 Untagged instruction

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 21

UseNillnstruction Clause 33 Use-nil instruction
UseNumberInstruction Clause 34 Use-number instruction
UseQNamel nstruction Clause 36 Use-gname instruction
UseTypel nstruction Clause 37 Use-typeinstruction
UseUnionlnstruction Clause 38 Use-union instruction
Whitespacel nstruction Clause 39 Whitespace instruction

13.11 Each of the dternatives of the "Positivelnstruction" production is in a defined category of encoding
instruction (or in some cases encompasses multiple categories). The category of each encoding instruction is
specified in column 3 of Table 1 (but see also 15.3 for encoding instructions that encompass multiple categories).

NOTE — The categories of encoding instructions are used in 15.4 to determine the effect of multiple assignment of encoding
instructions.

13.12 The '"TargetList" in all "Encodinglnstruction” constructions that appear in a type prefix shall be "empty" and
the target shall be the "Type" associated with the type prefix.

13.13 A negating instruction isin the same category as the corresponding positive instruction.

13.14 An ASN.1 type can never have associated with it more than one XER encoding instruction of a given
category (see 15.3 and 15.4), no matter how they are assigned. The result of multiple assignments of an XER
encoding instruction of agiven category is specified in clause 15.

14 Assigning an XER encoding instruction using an encoding control section

141 Theencoding instruction assignment list

1411 XER encoding instructions can be assigned to ASN.1 types using either the "Encodinglnstruction”
production in an XER type prefix or the "Encodingl nstructionAssignmentList" production in an XER encoding control
section. Assignment using atype prefix is specified in clause 13. Assignment using an XER encoding control section
isspecified in this clause.

14.1.2 The XER "Encodingl nstructionAssignmentList" production is:

EncodinglnstructionAssignmentList ::=
Encodingl nstruction
Encodingl nstructionAssignmentList ?

14.1.3 The"Encodinglnstruction” production is defined in 13.3.

14.1.4 Each use of an "Encodinglnstruction” in an encoding control section assigns that XER encoding instruction
to the occurrences of "Type" that are identified in the "TargetList" of the encoding instruction, or to the type
referencesin animportslist. The"TargetList" production and the targetsit identifies are specified in 14.2.

14.1.5 Subclauses 13.4 to 13.14 also apply to encoding instructions in an encoding control section. The clauses
defining the detailed syntax for each encoding instruction category are listed in Table 1. Categories of XER encoding
instructions are also listed in Table 1.

14.2 I dentification of the targets for an XER encoding instruction using a target list

14.2.1 General rules

14.2.1.1 The "Encodinglnstruction” aternatives specify the XER encoding instruction that is being assigned, and the
target(s) for that assignment within the ASN.1 module. All targets are an occurrence of the "Type" production within
the ASN.1 module.
NOTE — Multiple targets, in the same or in different ASN.1 type assignments, can be specified. A target that is the entire module,
or all occurrences within the module of a built-in type or constructor can also be specified. Thus (using an XER encoding control
section) a single "Encodinglnstruction” can be used to assign a particular XER encoding instruction to all the types in an ASN.1
module that require to have that encoding instruction assigned.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 22

14.2.1.2 Inidentifying the target(s) for the assignment of an XER encoding instruction, the production "TargetList" is
used. Thisisdefined in the following subclauses.
NOTE 1-— The"TargetList" production is referenced in clauses 18 onwards.

NOTE 2 — The "TargetList" production has an "empty" aternative. Thisis the only permitted aternative if the "Encodingl nstruction”
isused in atype prefix (see 13.12). This subclause 14.2 considers only the use of the "TargetList" in an encoding control section.

14.2.1.3 The"TargetList" productionis:

TargetlList ::=
Targets”, " + |
empty

Targets::=
Typel dentification |
BuiltInTypel dentification |
I dentifier slnContext |
ImportedTypesl dentification

14.2.1.4 If the "TargetList" isalist of one or more "Targets' productions, then each of the "Targets" identifies one or
more targets ("Type"s to which the encoding instruction is assigned), but can aso provide qualifying information for
the encoding instruction, restricting its application to encodings using a particular identifier in the target type
definition, or to the use of the empty element tags for control characters specified in ITU-T Rec. X.680 | ISO/IEC
8824-1, 11.15.5.

NOTE — The qudifying information is only present if the target is a boolean, bitstring, enumerated, integer, or restricted character
string type definition (see 14.2.2.9).

14.2.1.5 A "TargetList" of "empty" is permitted only in a type prefix (when it isthe only permitted alternative) and in
the GLOBAL- DEFAULTS encoding instruction. In atype prefix, it identifies the type associated with the prefix. In the
GLOBAL- DEFAULTS encoding instruction, it identifies all "Type"sin the module.

14.2.1.6 The XER encoding instruction (possibly with associated qualifying information) is assigned to al the types
identified by the "TargetList" as specified in 14.2.1.10 to 14.2.1.16.

NOTE - It would be unusual, but not illegal, for a given "Type" to be identified more than once in the target list. In such cases,
clause 15 gpplies.

14.2.1.7 (Tutorial) Identification of the target(s) (and possible qualifying information) by the "Targets' production
uses one of three basic forms;

a use of a "typereference" (see 14.2.2), possibly followed by a dot-separated list of identifiers,
identifying either:
1) the"Type" inatype assignment (no identifiers present); or
2) the "Type" in a component of a type definition (which can include top-level components
introduced by the COVPONENTS OF construct — see 14.2.1.12); or
3) oneof 1) or 2), plusafinal identifier (preceded by a colon, not a dot) for an identifier used in the
target type definition, providing the qualifying information.

b) useof ALL asthelast identifier in the @) form, identifying all of the "Type"stextually present in the type
definition (that is identified by the preceding type reference and dot-separated list of identifiers), or
qualifying information (preceded by a colon, not a dot) identifying al of the identifiers used for values
of a boolean, bitstring, enumerated, or integer type definition (that is identified by the preceding type
reference and dot-separated list of identifiers) or identifying all uses of the XML empty-element tags
used to represent some control characters (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.15.5).

c) useof a"BuiltinTypeName" (see 14.2.3), identifying all "Type"sin the module that are defined by use of
the corresponding built-in type name or constructor, possibly (in the case of BOOLEAN, BI T STRI NG,
ENUMERATED, | NTEGER and restricted character string types only) followed by qualifying information.

d) useof alist of "identifier"s followed by | N (or ALL followed by I N, or COVPONENTS followed by I N)
and the @) form above (see also 14.2.4), identifying:

1) the"Type" of theidentified components of the a) form; or
2) (useof ALL) all "Type"sthat textually occur within the "Type" identified by the @) form; or

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 23

3) (use of COVPONENTS) dl "Type's that are the top-level components of the "Type" identified by the
a) form.

e) useof "ImportedTypesldentification” (see 14.2.5) identifies all the "typereference’sin thel MPORTS list
that are imported from a specified module.
NOTE 1 — The term "type definition" used in @ and b) above emphasizes that only textually present identifiers can be used.
Identifiers cannot be used if the "Type" is atype reference.

NOTE 2 — In general a component can be referenced by use of @) or d) above. |f more than one component of atype is to be
referenced, then d) would be preferred asit is less verbose, otherwise a) would be preferred. Thisis amatter of style.

14.2.1.8 A bitstring or octetstring type with a contents constraint that contains a type shall be treated as atype with a
single component, using *" as the component identifier, for the purpose of assigning a targeted instruction to the
"Type" in the contents constraint.

14.2.1.9 A type definition that is a sequence-of or a set-of shall be treated as a type with a single component, using
" as the component identifier, for the purpose of assigning atargeted instruction to the "Type" that is the component
of the sequence-of or set-of.

NOTE - It is also possible to identify this Single component using the component identifier (if present).

14.2.1.10 If a target is the use of a dummy parameter of a parameterized type, the target inherits the final
encoding instructions of the actual parameter before encoding instructions targeting the dummy parameter are
assigned. The specification is legal only if the resulting final encoding instructions for al instantiations of the
parameterized type are legal.

NOTE 1 — If the parameterized type is exported, the final encoding instructions for its dummy parameters are carried with it.

NOTE 2 — There are no mechanisms provided to assign encoding instructions directly to the "Type" of an actual parameter in an
instantiation of a parameterized type.

14.2.1.11 If the target is a "SelectionType", the target inherits the final encoding instructions of the selected
aternative of the choice type referenced by the selection type, after which encoding instructions assigned to the
"SelectionType" are assigned.

14.2.1.12 If the target is a component produced as a result of the COVPONENTS OF transformation, the target
inherits the final encoding instructions of the component of the type referenced by the COVPONENTS OF, after which
encoding instructions assigned to the components produced by the COVPONENTS OF are assigned. Any encoding
instructions for the " Type" from which the components are extracted are ignored.

14.2.1.13 If the "Targets' production is"Typeldentification”, then the targetsit identifies is specified in 14.2.2.

14.2.1.14 If the "Targets' production is "BuiltinTypel dentification”, then the targets it identifies are specified in
14.2.3.

14.2.1.15 If the"Targets' production is"ldentifiersinContext”, then the targetsit identifies are specified in 14.2.4.

14.2.1.16 If the "Targets" production is "ImportedTypesldentification", then the targets it identifies are specified
in14.2.5.

14.2.1.17 EXAMPLE: The example below shows an ASN.1 type definition followed by two different ways
of assigning XER encoding instructions in an encoding control section, and finally, the same ASN.1 type definition
with the XER encoding instructions assigned using type prefixes. All three approaches result in the same
EXTENDED-XER encoding.

Thetype definitionis:

M- Type :: = SEQUENCE {
fieldl |NTEGER
field2 CHO CE {
first SEQUENCE COF | NTECER,
second SEQUENCE OF OBJECT | DENTIFIER } }

The XER encoding instructions in the encoding control section could be:

ATTRIBUTE fieldl IN My-Type
LI ST first IN My-Type.field2

Alternatively, they could be:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 24

ATTRI BUTE My-Type.fieldl
LI ST M- Type. fiel d2.first

The type definition with type prefixesis:

M- Type :: = SEQUENCE {
fieldl [ATTRIBUTE] | NTEGER,
field2 CHO CE {
first [LI ST] SEQUENCE OF | NTEGER,
second SEQUENCE OF OBJECT | DENTIFIER } }

14.2.2 Target identification using an ASN.1typereference and identifiers
14.2.2.1 The"Typeldentification" productionis:

Typel dentification ::=
ALL
ModuleAndTypeReference
ComponentReference ?
Qualifyingl nformationPart ?

ModuleAndTypeReference ::=
typereference |
modulereference" . " typereference

ComponentReference::=

ComponentldList

ComponentldList ::=
Componentid". " +

Componentld ::=
identifier |
myn |

ALL

QualifyinglnformationPart ::=

(jualifyi nglnformation

Qualifyinglnformation
identifier |
ALL
14.2.2.2 A "Typeldentification" of ALL identifiesal "Type'sin "TypeAssignment"sin the module.

14.2.2.3 The "ModuleAndTypeReference” production identifies the "Type" that is assigned to the "typereference”.
The "modulereference” in "ModuleAndTypeReference” shall be the module reference for the module containing the
"EncodinglnstructionAssignmentList”, and the "typereference" shall be a type reference that is defined in the module.
It shall be used if and only if the "typereference" consists of the same characters as one of the keywords specified in
12.3, otherwise the "typereference” aone shall be used.

14.2.2.4 A symbol"*" identifies the "Type" of the (sole) component of a sequence-of or set-of type, or thetypeina
contents constraint that containsa " Type".

NOTE — Thisform can be used even if the sequence-of or set-of component has an identifier, but the use of the identifier should be
preferred.

14.2.2.5 If ALL isused as a "Componentld", it shall be the last "Componentld" in the "ComponentldList" and shall not
be followed by "Qualifyinglnformation".

14.2.2.6 If the first "Componentld" in the "ComponentldList” (if present) is an identifier that is textually present (or
results from use of COVWONENTS OF) as a component identifier in the "Type' identified by the
"ModuleAndTypeReference”, then it identifies the "Type" of that component. If it is not an identifier that is textually
present (or results from use of COVWPONENTS OF) as a component identifier in the "Type" identified by the

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 25

"ModuleAndTypeReference”, then this occurrence of "Typeldentification” is not illegal, but does not identify any
target.

NOTE — This requires that the type referenced by the "ModuleAndTypeReference” be a sequence, set, choice, sequence-of or set-
of type definition, or a bitstring or an octetstring type definition with a contents congtraint that contains a"Type'".

14.2.2.7 If asubsequent "Componentld" (except the last) in the "ComponentidList" (if present) isan identifier that is
textually present as a component identifier in the "Type" identified by the previous "Componentld” then it identifies the
"Type" of that component. If it is not a component identifier that is textually present in the "Type" idertified by the
previous "Componentld", then this occurrence of "Typel dentification” is not illegal, but does not identify any target.

NOTE — The first use of "Componentld’ can refer to components introduced by a COMPONENTS OF. Components of those
components cannot be identified by subsequent *Componentld”s.

14.2.2.8 If thelast "Componentld" in the "ComponentldList” (if present) is:

a anidentifier that is textually present as a component identifier in the "Type" identified by the previous
"Componentld” then it identifies the "Type" of that component; the encoding instruction shall be
assigned to that "Type"; or

b) the keyword ALL; the encoding instruction shall be assigned to al "Type's that are textually present in
the type definition identified by the previous "Componentld”, which shall be a type with one or more
components.

14.2.2.9 The "QuadlifyingInformationPart" shall not be present unless the "ModuleAndTypeReference” with the
"ComponentReference” (if present) identifiestarget(s) that are:

a boolean types; or

b) bitstring types with named bits; or

c) enumerated types; or

d) integer typeswith named numbers; or
€) restricted character string types.

14.2.2.10 The "identifier" dternative of "Qualifyinginformation” shall not be used unless the
"ModuleAndTypeReference” with the "ComponentReference" (if present) identifies a single target that is not a
restricted character string type, or identifies atarget list al of whose types are the boolean type. The "identifier" shall
be an identifier in the target type definition if the target is not a boolean type, or shall be true or fal se. The
"identifier" is qualifying information that identifies that the encoding instruction applies only to encodings using that
identifier.

14.2.2.11 The true and f al se alternatives of "Qualifyinginformation" for a boolean type specify qualifying
information that identifies that the encoding instruction applies only to the encoding of the TRUE or the FALSE
abstract values, respectively.

14.2.2.12 The ALL alternative of "Qualifyinglnformation” shall not be used unless the target identifies (only) one
or more type definitions for the types listed in 14.2.2.9. It shall not be used if the target identifies one or more
restricted character string target(s), unless the encoding instruction being applied is NAMESPACE. It specifies
qualifying information that identifies that the encoding instruction appliesto al the identifiers in the type definitions,
or in the case of arestricted character string type, to all uses of the XML empty-element tags used to represent the
control characterslisted in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.15.5.

NOTE - It is not posshle to use qualifying information with an "identifier" to selectively affect the representation of control
characters. Only ALL ispossiblein this case.

14.2.3 Target identification using a built-in type name
14.2.3.1 The"BuiltInTypeldentification" productionis:

BuiltInTypel dentification ::=
BuiltinTypeName
BuiltlnTypeQualifyingl nformationPart ?

BuiltinTypeName::=
BI T STRI NG |
BOOLEAN |

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 26

CHARACTER STRI NG
CHO CE

EVBEDDED PDV
ENUMERATED
EXTERNAL

Gener al i zedTi ne |
I NSTANCE OF |
| NTEGER

NULL

oj ect Descri pt or
OBJECT | DENTI FI ER
OCTET STRI NG

REAL

RELATI VE- O D
SEQUENCE

SEQUENCE OF |
SET |

SET OF |
UTCTi e |
RestrictedCharacter StringType

BuiltInTypeQualifyingl nformationPart ::=

B'uiltl nTypeQualifyingl nformation

BuiltlnTypeQualifyingl nformation
identifier |
ALL
14.2.3.2 The "BuiltInTypeldentification" production specifies that the encoding instruction is to be applied to al
textual occurrences within the module of the corresponding built-in type or of atype defined using the corresponding
constructor.

14.2.3.3 The"RedtrictedCharacterStringType" isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 37.

14.2.3.4 The "BuiltinTypeQudifyinglnformationPart" shall not be present unless the "BuiltinTypeName" is BOOLEAN,
BI T STRI NG, ENUMERATED, | NTEGER, or arestricted character string type.

NOTE — Only the ALL form of "BuiltinTypeQualifyinglnformation” is permitted for a restricted character string type (see 14.2.2.10
and the next subclause).

14.2.3.5 The “identifier" dlternative of "BuiltinTypeQualifyinginformation” shal not be used unless the
"BuiltinTypeName' is BOOLEAN, and shall then be either true or fal se. It specifies qualifying information that
identifies that the encoding instruction applies only to the encoding of the TRUE or the FALSE abstract values,
respectively.

14.2.3.6 The ALL aternative of "BuiltinQualifyinglnformation" specifies qualifying information that identifies that
the encoding instruction applies to all identifiers used in any instance of use of the "BuiltinTypeName" within the
module (or to all values of the BOOLEAN type definition, or to all the empty-element tags used in values of the
specified restricted character string type- see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.15.5).

14.2.4 Useof identifiersin context
14.2.4.1 The"ldentifiersinContext" productionis:

IdentifiersinContext ::=

IdentifierList
I N

Typel dentification
IdentifierList ::=

identifier ", " + |

ALL |

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 27

COVPONENTS

14.2.4.2 "Typeldentification” is defined in 14.2.2, and identifies a type defined in a type assignment statement in the
module, or a component or sub-component of atype defined in the module. The "QualifyinglnformationPart" shall be
absent.

14.2.4.3 The"Type" identified by the "Typeldentification" shall be a sequence, set or choice type, and is called for the
purposes of this clause the identified "Type".

NOTE — The "Typeldentification” in "IdentifiersinContext" cannot be used for a sequence-of or set-of type. Such useis prohibited
for clarity, asit would be no less verbose than direct use of "Typeldentification" in "Targets'.

14.2.4.4 Each'identifier" in"IdentifierList" shall be the "identifier" of acomponent of the identified "Type'. The XER
encoding instruction is assigned to the "Type" of al the components of the identified "Type" that have a component
"identifier" inthe"ldentifierList".

14.2.4.5 The use of ALL for "IdentifierList" specifies that all textualy present components (and all textually present

components of those components, to any depth) in the identified "Type" are targets to which the XER encoding
instruction is being assigned.

14.2.4.6 The use of COVPONENTS for "ldentifierList" specifiesthat all components (at the first level) of the identified
"Type" aretargets to which the XER encoding instruction is being assigned.

14.25 Useof imported typesidentification
14.2.5.1 The"ImportedTypesldentification" production is:.

ImportedTypesl dentification ::=
ALL | MPORTS FROM moduler eference

14.25.2 The "modulereference’ shall be one of the "modulereference's used in one of the
"GlobalModuleReferences” of the imports clause of the module.

14.25.3 The XER encoding instruction is assigned to each of the "typereference's in the corresponding
"SymbolList", after the final encoding instructions produced by assignment in the exporting module have been
assigned.

14.2.5.4 If animported "typereference” is exported from this module, the final encoding instructions inherited by that
"typereference” in a module that imports it are those inherited in this importing module, and are not affected by
assignment of encoding instructions using an "ImportedTypesldentification”. This assignment affects only the use of
the type reference within this module.

15 Multiple assgnment of XER encoding instructions

15.1 Order in which multiple assignments are considered
1511 A "Type" whichisnot a"typereference” hasinitially an empty set of associated encoding instructions.

15.1.2 A "Type' which is a "typereference” (which may be imported) has initially the set of final encoding
instructions of the "Type" which was assigned to it when it was defined (possibly modified by encoding instructions
assigned to it in the imports list of an importing module— see 14.2.5).

15.1.3 Targeted encoding instructions for a "Type" (using an encoding control section) are assigned next, in the
order in which the targeted encoding instructions appear in the encoding control section. If the"Type" isidentified by
more than one element of a "TargetList" (see 14.2), then that shall be treated as multiple assignments of the same
encoding instruction to that "Type", in the order in which the elements occur in the "TargetList".
NOTE — The effect of 15.1.2 and 15.1.3 means that targeted assignment to a"Type" in a"TypeAssignment” is aways over-ridden
by atargeted assignment to a " Type" defined using the corresponding "typereference”, no matter which targeted assignment appears

first in the encoding control section. However, if a targeted assignment is made to al the components of a type, and also to an
individual component of that type, the effect will depend on the order of the encoding instructions in the encoding control section.

15.1.4 Prefixed encoding instructions (using a type prefix) assigned to a type are considered next, with the
rightmost (the innermost) prefixed encoding instruction considered first, and the leftmost (the outermost) prefixed
encoding instruction considered last.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 28

15.1.5 As specified in 14.2.1.10, encoding instructions are assigned to a dummy parameter only after the final
encoding instructions for the actual parameter have been determined.

15.1.6 Asspecifiedin 14.2.1.11 and 14.2.1.12, a"SelectionType" and the components produced by a COVPONENTS
OF transformation inherit first the final encoding instructions of the original type, and then have encoding instructions
targeted at them applied.

15.1.7 Each assignment of an encoding instruction produces a new set of associated encoding instructions, as
specified in 15.2 to 15.4.

15.2 Effect of assigning a negating encoding instruction

15.2.1 All assignments of a negating encoding instruction result in the removal (from the set of associated
encoding instructions) of any encoding instruction of the same category. If there are no associated encoding
instructions of a different category, the set becomes empty.

15.2.2 TheNOT GLOBAL- DEFAULTS encoding instruction shall never be assigned.

15.2.3 For those encoding instructions with multiple categories (see 15.3), a negating encoding instruction
removes al the encoding instructions in any of those categories.

NOTE — A negating encoding instruction never becomes part of the set of associated encoding instructions.

15.3 Multiple assignment of encoding instructions with multiple categories

15.3.1 TheNAME and TEXT encoding instructions (see clauses 28 and 31) can be assigned to atype to either:

a change the associated tag name (no "Qualifyinglnformation” present); or
NOTE — This applies only to the NAME encoding instruction.

b) change the "ExtendedXMLValue" encoding by providing a new name for a specified "identifier" present
in the type definition ("Qualifyinglnformation" present that isnot ALL); or

c) change the "ExtendedXMLValue" encoding by providing a modification to be applied to al "identifier's
present in the type definition ("Qualifyinglnformation” present that is ALL, with a target that is not a
restricted character string type).

15.3.2 Incase 15.3.1 b), the encoding instruction for a specified "identifier" is treated as a different category from
an encoding instruction for any other "identifier", and from an encoding instruction for 15.3.1 a).

15.3.3 Incase 15.3.1 ¢), the encoding instruction is expanded into a set of encoding instructions of type 15.3.1 b),
with one encoding instruction for each "identifier" present in the type definition.

15.34 The Pl - OR- COMMENT encoding instruction (see clause 30) has four categories, corresponding to the four
alternatives for "Position".

1535 Subject to 15.3.3 to 15.3.4, subclause 15.4 specifies the rules for multiple assignment of encoding
instructions.

15.3.6 Each of the aternatives of the GLOBAL-DEFAULTS encoding instruction is a separate category, but each
category of this encoding instruction shall be assigned at most once.

15.4 Multiple assignment of XER encoding instructions of the same category
NOTE — Multiple assgnment of XER encoding instructions of the same category is expected to be rare, except where an XML
encoding instruction is assigned globally, and an overriding (possibly negeating) encoding ingtruction is assigned to specific types or
components. This subclause specifies the rules if multiple assgnment of XER encoding instructions in the same category occurs.
This clause is aso referenced by 15.3.5 for the trestment of multiple assgnments of NAME, PI - OR- COMVENT, and TEXT encoding
instructions.

15.4.1 Assignments of positive encoding instructions result in the addition (to the set of associated encoding
instructions) of that XER encoding instruction if there are no other associated encoding instructions of the same
category.

15.4.2 Assignment of an ELEMENT encoding instruction is aways equivalent to assignment of a NOT UNTAGGED
encoding instruction.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 29

15.4.3 If thereis an encoding instruction of the same category in the set of associated encoding instructions, then
that encoding instruction is removed from the set, and the assigned XER encoding instruction is added.

NOTE — If encoding instructions are being assigned globaly in an encoding control section, with the intention of over-riding themin
specific cases, then the overriding has to be done using either a type prefix or a later encoding instruction in the encoding control
section, not an earlier one.

15.4.4 If atype that appears in a "ContentsConstraint” or in a "TypeConstraint" is to be encoded by EXTENDED-
XER, then the final encoding instructions (as determined by the above rules) are used in determining the encoding of
that type. If atype appearsin any other ASN.1 constraint, then all associated encoding instructions are discarded.

155 Permitted combinations of final encoding instructions

155.1 Table 2 specifies the permitted combinations of final encoding instructions for a "Type" when a GLOBAL-
DEFAULTS of MODI FI ED-ENCODI NGS has been used. Column 1 lists all encoding instructions. Column 2 lists al the
encoding instructions that can be used in combination with the column 1 encoding instruction as final encoding
instructions, but in many cases restrictions apply that are listed in the applicable clauses.

NOTE — GLOBAL-DEFAULTS isnot listed in the table, asthisis not assigned to atype.

Table 2—- Permitted combinations of final encoding instructionswith MODI FI ED- ENCODI NGS

Encoding instruction Permitted other encoding instructions

ANY- ATTRI BUTES (see clause 18) ELEMENT, NAME, NAMESPACE

ANY- ELEMENT (see clause 19) ELEMENT, NAME, NAMESPACE

ATTRI BUTE (see clause 20) BASE64, DECI MAL, ELEMENT, LIST, NAME, NAVESPACE,
TEXT, USE- NUMBER, USE- QNAME, USE- UNI ON, WHI TESPACE

BASE64 (see clause 21) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME,
NAMESPACE, PI - OR- COMMENT, UNTAGGED

DECI MAL (see clause 22) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME,
NAMESPACE, PI - OR- COMMENT, UNTAGGED

DEFAULT- FOR- EMPTY (see clause 23) BASEG64, DECI MAL, ELEMENT, EMBED- VALUES, LI ST,

NAME, NAMESPACE, PI-COR-COMMENT, TEXT, USE-NIL,
USE- NUMBER, USE- CRDER, USE- ONAME, USE- UNI ON,

VH TESPACE

ELEMENT (see clause24) Equivalent to NOT UNTAGGED

EMBED- VALUES (see clause 25) DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE, PI -
OR- COMMENT, USE-NI L, USE- ORDER

LI ST (see clause27) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME,
NAMESPACE, Pl - OR- COMVENT, UNTAGGED

NAME (see clause 28) No restrictions

NAMVESPACE (see clause 29) No restrictions

Pl - OR- COWENT (see clause 30) BASE64, DECI MAL, DEFAULT- FOR- EMPTY, ELEMENT,

EMBED- VALUES, LI ST, NAME, NAMESPACE, TEXT,
USE- NI L, USE- NUMBER, USE- ORDER, USE- QNANE,
USE- TYPE, USE-UNI ON, WH TESPACE

TEXT (see clause31) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME,
NAVESPACE, Pl - OR- COVMMENT, UNTAGGED

UNTAGGED (see clause 32) BASE64, DECI MAL, LIST, NAME, NAMVESPACE, TEXT, USE-
NUMBER, USE- QNAME, USE- UNI ON, WHI TESPACE

USE- NI L (see clause 33) DEFAULT- FOR- EMPTY, ELEMENT, EMBED- VALUES, NAME,

NAMESPACE, PI - OR- COMVENT, USE- CRDER

USE- NUMBER (see clause 34) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME,
NAVESPACE, Pl - OR- COVVENT, UNTAGGED

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 30

USE- ORDER (see clause 35)

DEFAULT- FOR- EMPTY, ELEMENT, EMBED- VALUES, NAME,
NAMESPACE, Pl - OR- COWWENT, USE-NIL.

USE- QNAME (see clause 36)

ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME,
NAMESPACE, Pl - OR- COWENT, UNTAGGED

USE- TYPE (see clause 37)

ELEMENT, NAME, NAMESPACE, PI - OR- COMVENT

USE- UNI ON (see clause 38)

ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NANME,
NAMESPACE, PI - OR- COMMENT, UNTAGGED

WHI TESPACE (see clause 39)

ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NANME,
NAMESPACE, PI - OR- COMMENT, UNTAGGED

155.2 Table 3 specifies the permitted combinations of final encoding instructions when a GLOBAL-DEFAULTS of
MODI FI ED-ENCODI NGS has not been used. Column 1 lists all encoding instructions that are permitted as fina
encoding instructions if a GLOBAL-DEFAULTS of MODI FI ED-ENCODI NGS has not been used. Column 2 either says
"Not permitted" or lists all the encoding instructions that can be used in combination with the column 1 encoding
instruction as final encoding instructions, but in many cases restrictions apply that are listed in the applicable clauses.
"Not permitted" means that that encoding instruction cannot be used as a final encoding instruction if a GLOBAL-
DEFAULTS of MODI FI ED-ENCODI NGS has not been used.

NOTE — GLOBAL-DEFAULTS isnot listed in the table, asthisis not assigned to a"Type".

Table 3— Permitted combinations of final encoding instructionswith no MODI FI ED- ENCODI NGS

Encoding instruction

Permitted other encoding instructions

ANY- ATTRI BUTES Not permitted

ANY- ELEMENT Not permitted

ATTRI BUTE BASE64, LI ST, NAME, TEXT, USE-NUMBER, WH TESPACE

BASE64 ATTRI BUTE, NAME, PI - OR- COUWENT

DECI MAL Not permitted

DEFAULT- FOR- EMPTY Not permitted

ELEMENT Not permitted

EVMBED- VALUES Not permitted

LI ST ATTRI BUTE, NAME, PI - OR- COVMVENT

NAVE ATTRI BUTE, BASE64, LI ST, PI-OR COMVENT, TEXT, USE-
NUMBER, WHI TESPACE

NAVESPACE

Not permitted

Pl - OR- COMMENT

BASE64, LI ST, NAME, TEXT, USE-NUMBER, WH TESPACE

TEXT ATTRI BUTE, NAME, PI- OR- COMENT
UNTAGGED Not permitted
USE-NI'L Not permitted
USE- NUVBER ATTRI BUTE, NAME, PI- OR- COWENT
USE- ORDER Not permitted
USE- QNAME Not permitted
USE- TYPE Not permitted
USE- UNION Not permitted

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version

31

WHI TESPACE ATTRI BUTE, NAME, PI - OR- COMVENT

16 XER encoding instruction support for XML namespaces and qualified names

16.1 W3C XML Namespaces defines concepts and rules governing necessary qualifiers and mechanisms to
ensure that an XML element name or attribute name can be correctly identified with a corresponding specification of
the associated semantics.

16.2 W3C XML Namespaces defines an XML namespace as a collection of unambiguous names, identified by a
URI, which are used in XML documents as €lement types and attribute names. The URI that identifies a namespaceis
called the namespace name. In this Recommendation | International Standard, namespaces are also used to qualify the
values of a type that has a final encoding instruction of USE- QNANVE (see clause 36) and that represents an XML

QName (see W3C XML Schema, Part 2, 3.2.18).

16.3 Type reference names and identifiers can (but need not) be assigned a namespace.

NOTE — This Recommendation | International Standard uses a hamespace name that is, by default, a form of URI basedon ASN.1
object identifiers (see clause 29). All other forms of URI can be used to assign a namespace name to the names in an ASN.1
module,

164 Whether or not a type is part of an XML namespace (and if so its namespace name) is determined by the
presence (or absence) of afinal NAMESPACE encoding instruction.

NOTE - A NAMESPACE encoding ingtruction can only be present if a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS encoding
ingtruction is aso present in the encoding control section (see 29.2.1).

16.5 A namespace is identified by the "NameSpaceSpecification" production that provides the Uniform Resource
Identifier for the namespace, and optionally a recommended namespace prefix. The "NameSpaceSpecification” is
specified in clause 29.

16.6 Names of XML elements and attributes in an EXTENDED-XER encoding are generated from several
sources. The subclauses of 16.8 list the sources of XML element and attribute names, identify what namespace they
are part of, and specify whether they are to be namespace-qualified names or not.

16.7 An XML element name, an XML attribute name, or a value of atype identification attribute may (but need
not) have a fina NAMESPACE encoding instruction on the "Type" that generates the name. If it does, then the name
shall be a namespace-qualified name in the encoding. (The namespace-qualification in an encoding can be done either
explicitly using a defined XML namespace prefix, or indirectly by establishing a default XML namespace for a scope
that includes the use of the name or of the value.) If there is no NAMESPACE encoding instruction on a " Type" that
generates a name, then the name is not a namespace-qualified name. Names that are not namespace-qualified names
are called unqualified names, and shall not occur in the scope of an established default XML namespace.

NOTE — BASIC-XER does not support XML namespaces, and hamespace-qualified names never occur in BASIC-XER encodings.

16.8 In the following subclauses, the term "ASN.1 namespace” refers to the namespace whose name and
recommended prefix are specified in 16.9. The term "assigned namespace” refers to the namespace assigned by the
NAMESPACE encoding instruction to atype. If generated names are not from the ASN.1 namespace, and there is no
such assignment of a namespace name, then the XML element names, XML attribute names, and values of type
identification attributes are unqualified names.

16.8.1 In al the subclauses of this 16.8, the element names and attribute names in the XML tags (whether XML
empty-element tags or start tags) are namespace-qualified namesin an encoding if and only if the generating "Type"
has a fina NAMESPACE encoding instruction.

16.8.2 Element names in XML empty-element tags used for control characters (see ITU-T Rec. X.680 | ISO/IEC
8824-1, 11.15.5) have no namespace unless one is assigned by the application of a NAMESPACE encoding instruction
to the restricted character string type with qualifying information of ALL.

16.8.3 Element namesin XML empty-element tags used for values of the integer, enumerated, bitstring types, and
specia values of real types (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.9, 19.8, 20.6 and 21.9) will aways be
unqualified names (see 16.7) in an encoding of these types.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 32

16.9 The namespace of the type identification attribute (see clause 37) and of the nil identification attribute (see
clause 33) isthe control namespace, which is, by default, the ASN.1 namespace, unless a different control namespace
is specified by a GLOBAL- DEFAULTS encoding instruction (see clause 26). The ASN.1 namespace has a name of
"urn:oid:2. 1.5 2.0.1" (see40.3), and arecommended namespace prefix of "asnl". (Seeas026.3.2.)

16.10 For an octetstring type with a contents constraint that specifies an EXTENDED-XER encoding, any abstract
value of the octetstring type shall be a complete EXTENDED-XER encoding of avalue of an ASN.1 type (see ITU-T
Rec. X.682 | ISO/IEC 8824-3, 11.5 and 11.6), and shall contain all necessary namespace declarations for all prefixed
and unprefixed qualified names present in the octetstring abstract value.

NOTE - Such an octetstring type is encoded as an "xmlhstring” or "Base640ctetStringValue'. Any namespace declarations present
in the XML document that contains the "xmlhstring" or "Base64OctetStringVaue' do not include in their scope the names present in
the octet string.

16.11 When an open type is encoded as an "xmlhstring" or ‘Base64XML OpenTypeFieldva", and the encoding
rules used for the contained type are EXTENDED-XER, the "xmlhstring" or the "Base64XML OpenTypeFieldva" shall
be the hexadecimal or base64 representation (respectively) of an octet string that is a complete EXTENDED-XER
encoding of avaue of the contained type, and shall contain all necessary namespace declarations for al prefixed and
unprefixed qualified names present init.

NOTE - Any namespace declarations present in the XML document that contains the "xmlhdring" or the
"Base64XMLOpenTypeFiedva™ do not include in their scope the names present in the octet string.

17 Specification of EXTENDED-XER encodings

The specification of EXTENDED-XER encodings uses the productions specified in the following subclauses. These
productions alow all of the syntax of the corresponding productions used by BASIC-XER (of the same name but with
"Extended” removed), but provide additiona syntax that is alowed in EXTENDED-XER encodings. The use of this
additional syntax is determined by the application of XER encoding instructions, and is specified in clauses 18 to 39.

NOTE — The dternative productions available are frequently restricted by the use or non-use of a GLOBAL- DEFAUL TS encoding
ingtruction with the MODI FI ED- ENCODI NGS keyword (see 10.2.7 and 10.2.8). In particular, the use of empty-element or text
encodings for some built-in typesis controlled by this.

17.1 The XML document element
1711 The XML document element shall be an "ExtendedXML TypedValue'.

17.12 "ExtendedXMLTypedVaue' is

ExtendedXML TypedValue::=
"<" & TypeNameOrM odifiedTypeNameAttributeList " >"
ExtendedXMLValue
"</ " & TypeNameOrModifiedTypeName" >" |
"<" & TypeNameOrModifiedTypeName "/ >"

NOTE — The differences from the "XMLTypedVaue' production are the inclusion of a possibly empty "AttributeList", and the use
of an "ExtendedXMLVdue" ingtead of an "XMLVauge" for the contents of the XML element.

17.1.3 "TypeNameOrModifiedTypeName" isdefined in 17.2.
17.1.4 "Attributelist" isdefined in 17.3.

1715 "ExtendedXMLVaue" isdefined in 17.4, and shall be the "ExtendedXMLVaue" of the type identified by the
"TypeNameOrModifiedTypeName".

17.1.6 The second aternative of "XMLTypedVaue' (use of an XML empty-element tag) can be used only if an
instance of the "ExtendedXMLValue" production is empty.

NOTE - If the "ExtendedXMLVaue' production was an "xmicstring” containing only "white-space”, this would not be empty, and
the second alternative could not be used.

17.2 The" TypeNameOr M odifiedTypeName" production
17.21 "TypeNameOrModifiedTypeName" is:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 33

TypeNameOr M odifiedTypeName: :=
NonParameterizedTypeName |
QualifiedOrUnqualifiedName

17.2.2 "NonParameterizedTypeName' is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.2, and is used (as
specified in that subclause and in ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.4 to 13.7) as an XML element name that
identifiesan ASN.1 type.

17.2.3 "QudifiedOrUnqualifiedName" is specified in 29.3.2. The '"QuaifiedOrUnqualifiedName" alternative shall
be used if and only if there is a final NAME or NAMESPACE encoding instruction applied to the type (see clause 28),
otherwise the "NonParameterizedTypeName" shall be used.

17.3 The"AttributeList" production
17.3.1 The"AttributeList" is.

AttributeList ::=
Attribute AttributelList |
empty

17.3.2 The"Attribute" isdefinedin 20.3.3.

17.3.3 The "AttributeList" shall be empty unless the application of final encoding instructions requires its use (see
clauses 20, 33, and 37).

17.3.4 The"Attribute'sin the "AttributeList" shall be preceded by "white-space” (see 8.1.4).

174 The"ExtendedXMLValue" production
1741 "ExtendedXMLValue'is:

ExtendedXMLValue::=
ExtendedXML BuiltinValue |
ExtendedXM L ObjectClassFieldValue |
empty

ExtendedXMLBuiltinValue::=
XMLBItStringValue |
XMLBooleanValue |
ExtendedXML Character StringValue |
ExtendedXML ChoiceValue |
XMLEmbeddedPDVValue |
Extended XML Enumer atedValue |
XML ExternalValue |
XML InstanceOfValue |
ExtendedXM L IntegerValue |
XMLNullValue |

XML Objectldentifier Value |

ExtendedXML OctetStringValue |

ExtendedXML RealValue |

XML RelativeOlDValue |

Extended XML SequenceValue |

Extended XM L SequenceOfValue |

ExtendedXML SetValue |

ExtendedXML SetOfValue |

ExtendedXM L PrefixedValue

ExtendedXM L Character StringValue ::=
ExtendedXM L RestrictedCharacter StringValue |
XMLUnrestrictedCharacter StringvValue

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 34

ExtendedXML RestrictedChar acter StringValue ::=
XMLRestrictedCharacter StringvValue |
Base64XM L RestrictedChar acter StringValue

ExtendedXM L ObjectClassFieldValue::=
ExtendedXML OpenTypeFieldVal |
XML FixedTypeFieldVal

ExtendedXML OpenTypeFieldval ::=
ExtendedXML TypedValue |
Base64XM L OpenTypeFieldVal |
xmlhstring

ExtendedXML OctetStringValue::=
ExtendedXML TypedValue |
Base64XM L OctetStringValue |
xmlhstring

ExtendedXMLRealValue::=
XML RealValue |
ModifiedXM L RealValue

ExtendedXM L IntegerValue::=
XMLIntegerValue |
ModifiedXMLIntegerValue

ExtendedXML PrefixedValue::=
ExtendedXMLValue

17.4.2 The dternatives of "ExtendedXMLBuiltinValue' whose production names do not start with "Extended”, and
their use to encode abstract values, are fully specified in ITU-T Rec. X.680 | ISO/IEC 8824-1 (see 16.10 and 16.2 of
that Recommendation | International Standard) and (for "XMLFixedTypeFieldva" and the third alternative of
"ExtendedX ML OpenTypeFiddVva") in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.6.

17.4.3 The "Base64XMLRestrictedCharacterStringValue" is defined in 21.3.5 and shall only be used as specified in
that sub-clause.

17.4.3 The"ExtendedXMLChoiceValue' isdefined in 17.5 and shall only be used as specified in that subclause.

1744 The "ExtendedXMLEnumeratedvVaue' is defined in 34.3 and shall only be used as specified in that
subclause.

17.45 The "ExtendedSequenceValue' and "ExtendedSetVaue' are defined in 17.6 and shal only be used as
specified in that subclause.

17.4.6 The "ExtendedSequenceOfVaue' and "ExtendedSetOfValue" are defined in 17.7 and shall only be used as
specified in that subclause.

17.4.7 The 'Base64XMLOctetStringValue" and "Base64XMLOpenTypeFiedva" are defined in 21.3.2 and 21.3.4
and shall only be used as specified inthose subclauses.

17.4.8 The"ModifiedXMLIntegerVaue" isdefined in 17.8 and shall only be used as specified in that subclause.
17.4.9 The"ModifiedXMLRedVaue' isdefinedin 17.9 and shall only be used as specified in that subclause.

17.4.10 The"empty" adternative of "ExtendedXMLVaue" shall only be used as specified in clause 23.
NOTE — The other dternatives of "ExtendedXMLVaue' can adso produce an "empty" lexica item. This subclause does not affect

the use of such occurrences.
175 The" ExtendedXML ChoiceValue' production
175.1 The"ExtendedXMLChoiceVaue' is;

ExtendedXML ChoiceValue ::=
"<" & TagNameAttributelList ">"
ExtendedXMLValue

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 35

"</" & TagName" >"
ExtendedXML Value

TagName::=
Identifier Or M odifiedl dentifier

Identifier Or M odifiedl dentifier ::=
identifier |
QualifiedOrUnqualifiedName

17.5.2 The'QualifiedOrUnqualifiedName" isdefined in 29.3.2. The "QualifiedOrUnqualifiedName" shall be used if
and only if there is afina NAME encoding instruction (see clause 28), or a fina NAMESPACE encoding instruction
applied to the type (see clause 29), otherwise the "identifier" shall be used.
NOTE — If "identifier" is used, then the encoding cannot include an XML default namespace declaration with a scope that includes
the use of that "identifier" (see 16.7).

17.5.3 The"AttributeList" and itsuseis defined in 17.3 and the clauses it references.

1754 The "ExtendedXMLVaue' in both dternatives of the "ExtendedXMLChoiceValug' shal be the
"ExtendedXMLValue" of the selected alternative of the choice type.

17.5.5 The second alternative of "ExtendedX ML ChoiceVaue" shal be used if either:

a the selected alternative of the choice type has an UNTAGGED final encoding instruction (see clause 32);
or

b) the choicetype has a USE-TYPE or USE-UNI ON final encoding instruction (see clauses 37 and 38).

NOTE — This means that the presence of these final encoding instructions results in the omission of XML tags as a choice
determinant, and choice determination has to occur by other means (see clauses 37 and 38 and annex B).

17.6 The" ExtendedXML SequenceValue" and " ExtendedXML SetValue" productions
17.6.1 The"ExtendedXML SequenceVaue' and "ExtendedXML SetValue' are:

ExtendedXML SequenceValue ::=
ExtendedXML ComponentValuel ist |
empty

ExtendedXML SetValue ::=
ExtendedXM L ComponentValuel ist
empty

ExtendedXML ComponentValuelist ::=
ExtendedXM L NamedValue |
ExtendedXM L ComponentValuelL ist ExtendedXM L NamedValue

ExtendedXM LNamedValue ::=
"<" & TagName AttributeList " >"
ExtendedXMLValue
"</" & TagName">" |
ExtendedXMLValue

17.6.2 The "empty" aternatives of "ExtendedX ML SequenceVaue' and "ExtendedX ML SetValue' shal only be used
if no component of the sequence or set type (to any depth), after resolution of al type references and after application
of all final encoding instructions, produces an "ExtendedX MLNamedValue".

NOTE - Thisincludes (but is not limited to) the cases in which al components: are marked DEFAULT or OPTI ONAL and dl vaues
are omitted; have a final UNTAGGED encoding ingtruction and their values have an empty encoding; have a final ATTRI BUTE
encoding instruction. It also includes combinations of the above, and the case in which the type notation is SEQUENCE {} or SET
{}.

176.3 The "TagName' is defined in 17.5.1. The "QualifiedOrUnqualifiedName” in the
"IdentifierOrModifiedldentifier" form of "TagName" shall be used if and only if there is a final NAVE or NAMESPACE
encoding instruction applied to the type (see clause 29), otherwise the "identifier" shall be used.

17.6.4 The"AttributeList" and itsuseisdefined in 17.3 and the clauses it references.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 36

1765 The "ExtendedXMLVaue' in both aternatives of the "ExtendedXMLNamedValue' shal be the
"ExtendedXMLVaue" of the component of the sequence or set type.

17.6.6 The second alternative of "ExtendedX ML SequenceVaue' and "ExtendedXML SetVaue' shall be used if and
only if the alternative has an UNTAGGED final encoding instruction (see clause 32).

17.7 The" ExtendedXML SequenceOfValue' and " ExtendedXM L SetOfValue" productions
17.7.1 The"ExtendedXML SequenceOfValue' and "ExtendedX ML SetOfVaue' are:

ExtendedXM L SequenceOfValue ::=
ExtendedXML ValueList |
ExtendedXM L DelimitedltemList |
empty |
ExtendedXML ListValue

ExtendedXM L SetOfValue ::=
ExtendedXMLValueList |
ExtendedXML DelimitedltemList |
empty |
ExtendedXMLListValue

ExtendedXMLValueList ::=
ExtendedXML ValueOr Empty |
ExtendedXML ValueOr Empty ExtendedXML Valuel ist

ExtendedXMLValueOrEmpty ::=
ExtendedXMLValue |
"<" & TypeNameOrModifiedTypeName "/ >"

ExtendedXML DelimitedltemList ::=
ExtendedXM L Delimitedltem
Extended XML Delimitedltem ExtendedXM L DelimitedltemL ist

ExtendedXM L Delimitedltem::=
"<" & TypeNameOrModifiedTypeName AttributelList ">"
ExtendedXMLValue
"</ " & TypeNameOrModifiedTypeName " >" |
"<" & ldentifierOrModifiedl dentifier AttributeList ">"
ExtendedXMLValue
"</ " & ldentifier OrModifiedl dentifier " >" |
ExtendedXMLValue

17.7.2 The use of the dternatives of "ExtendedXML SequenceOfVaue', "ExtendedXMLSatOfValue' and of
"ExtendedXMLValuelist" shal be in accordance with the use of the corresponding alternatives of
"XMLSequenceOfValue", "XMLSaOfValue' and of "XMLVauelList" (respectively) as specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clauses 25 and 27, except that if a GLOBAL- DEFAULTS encoding instruction with a MODI FI ED-
ENCODI NGS keyword is present, "ExtendedXMLValuelList" shall never be used (see als010.2.7 g).

17.7.3 The"ExtendedXMLListValue' isdefined in 27.3.2. These aternatives of "ExtendedX ML SequenceOfVauge"
and "ExtendedX ML SetOfValue" shall be used only if thereisafina LI ST encoding instruction (see clause 27) on the
sequence-of or set-of type.

17.7.4 Thefirst aternative of the "ExtendedX ML Delimiteditem" shall be used if and only if the sequence-of or set-
of type does not contain an “identifier" and the component does not have a final UNTAGGED encoding instruction. The
following subclauses apply.

17.7.4.1 If the component of the sequence-of or set-of type is a "typereference” or an "Externa TypeReference"
(possibly with one or more "TypePrefix"s), then the "TypeNameOrModifiedTypeName" shall be the "typereference” or
the "typereference” in the "External TypeReference”, respectively, possibly modified in accordance with any final NAVE
and NAMESPACE encoding instructions applied to the component (see clause 28).

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 37

17.7.4.2 1f the component of the sequence-of or set-of type (after ignoring any occurrences of "TypePrefix") isnot a
"typereference” or an "ExternaTypeReference’, then the "TypeNameOrModifiedTypeName" shal be the
"xmlasnltypename" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 4, corresponding to the built-in type of
the component, possibly modified in accordance with any final NAMESPACE encoding instruction applied to the
component (see clause 29).

17.75 The second aternative of the "ExtendedXMLDelimiteditem"” shall be used if and only if the sequence-of or
set-of type contains an "identifier" and the component does not have a final UNTAGGED encoding instruction. The
"IdentifierOrModifiedldentifier" shall be that "identifier", possibly modified in accordance with any fina NAMVE and
NAMESPACE encoding instructions applied to the component (see clauses 28 and 29).

17.7.6 The third aternative of "ExtendedXMLDelimiteditem” shall be used if and only if the component of the
sequence-of or set-of type has a final UNTAGGED encoding instruction (see clause 32).

17.7.7 The "ExtendedXMLVadue" in al the dternatives of the "ExtendedXMLDelimiteditem” shal be the
"ExtendedXMLVaue" of the repeated component of the sequence-of or set-of type.

1778 The "TypeNameOrModifiedTypeName' in the "ExtendedXMLVdueOrEmpty" shal be the
"xmlasnltypename" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 4, corresponding to the built-in type of
the component, possibly modified in accordance with any final NAMESPACE encoding instruction applied to the
component (see clause 29).

17.8 The"ModifiedXMLIntegerValue' production
17.8.1 The"ModifiedXMLIntegerValue" is:

ModifiedXMLIntegerValue::=
ModifiedXML SignedNumber |
TextInteger

ModifiedXM L SignedNumber ::=
modifiedXM L Number |
"-" & modifiedXMLNumber |
"+" & modifiedXMLNumber

17.8.2 This dternative of "ExtendedXMLIntegerValue" (see 17.4) shal only be used if a GLOBAL- DEFAULTS
encoding instruction with a MODI FI ED- ENCODI NGS keyword is assigned.

17.8.3 The"modifiedXMLNumber" lexical item shall consist of one or more digits.
NOTE 1 — The "modifiedXMLnumber" lexical item is mapped to an integer value by interpreting it as decima notation.
NOTE 2 — This lexicd item differs from "number" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.8) lexica item, only because it
permits any number of leading "0" digits.
1784 Any positive integer value can be encoded using either the first or the third aternative of
"ModifiedXMLSignedNumber", as an encoder's option. A negative integer value shall be encoded using the second
dternative. Theinteger value zero can be encoded using any of the three alternatives, as an encoder's option.

17.85 "Textinteger" is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.9, and provides an aternative encoding
(as an encoder's option) for integer values that have a"NamedNumber" definition.

179 The"ModifiedXMLRealValue' production
17.9.1 The"ModifiedXMLRealVaue' is:

ModifiedXMLRealValue::=
ModifiedXMLNumericRealValue |
XML SpecialRealValue |
XML DecimalMinusZer oRealValue

ModifiedXMLNumericRealValue ::=
modified XM L RealNumber |
"-" & modifiedXM L RealNumber |
"+" & modifiedXML RealNumber

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 38

17.9.2 Thisalternative of "ExtendedXMLRealValue" (see17.4) shall only be used if a GLOBAL- DEFAULTS encoding
instruction with a MODI FI ED- ENCODI NGS keyword is assigned.

17.9.3 The"modifiedXMLReaNumber" lexical item shall consist of an integer part that is a series of one or more
digits, and optionally a decimal point (.). The decimal point can optionally be followed by afractional part that is one
or more digits. The integer part, decimal point or fractional part (whichever is last present) can optionaly be
followed by an e or E and an optionally-signed exponent which is one or more digits.

NOTE — Thislexica item differs from the "reslnumber” (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.9) lexica item only because it
permits any number of leading zeros in the exponent.

1794 Any positive rea value and the real vaue plus zero can be encoded using either the first or the third
aternative of "ModifiedXMLNumericReaValue", as an encoder's option. Any negative real value shall be encoded
using the second alternative of "ModifiedXMLNumericRealValue'. Therea value minus zero shall be encoded using
the second alternative.

1795 The 'XMLDecimalMinusZeroRedValue" is defined in 22.3.2 and shall only be used as specified in that
subclause.

NOTE — The DECI MAL encoding ingtruction defined in 22.3.2 provides this production as an aternative representation for the
positive zero abstract real value, but requires that the minus zero abstract value be excluded from the type to which it is applied.

18 The ANY- ATTRI BUTES encoding instruction

18.1 General
18.1.1 The"AnyAttributeslnstruction” is:

AnyAttributesl nstruction ::=
ANY- ATTRI BUTES

TargetList
NamespaceRestriction ?

NamespaceRestriction ::=
FROM URIList |
EXCEPT URIList

URIList ::=
QuotedURI or Absent |
URIList QuotedURIor Absent

QuotedURIor Absent ::=

QuotedURI |
ABSENT

18.1.2 The"TargetList" productionisdefined in 14.2.
18.1.3 The"QuotedURI" isdefined in 29.1.1.

18.1.4 This encoding instruction is assigned to an ASN.1 type that is a sequence-of or set-of type with a
UTF8St ri ng component whose value provides zero, one or more attribute names and values (one in each
UTF8St ri ng), each of which is subject to any "NamespaceRestriction" that is present (see 18.2).

NOTE — Although sequence-of may be used for the specification of the attributes, this use of sequence-of does not imply that order
is semantically significant, and the encoding/decoding process may result in a different order of the components of the sequence-of.

18.1.5 The content of each UTF8St ri ng is encoded as an "Attribute" of the enclosing XML element. The name of
the sequence-of or set-of component isignored.

18.1.6 The FROMand EXCEPT clauses (if present) identify lists of namespace names, or the specia keyword
ABSENT.

18.1.7 FROMrestricts attribute names to be namespace-qualified names from one of the specified namespaces. |If
ABSENT is present in the "URIList", unqualified names can also be used.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 39

18.1.8 EXCEPT dlows namespace-qualified names from any namespaces except those listed. It also alows
unqgualified names unless ABSENT is present in the "URIList".

18.2 Restrictions

18.21 An ASN.1 type shall not have this final encoding instruction unless it is a set-of or sequence-of type with a
component that isaUTF8St ri ng type.

18.2.2 A typewiththisfina encoding instruction shall only be used as a component of an enclosing sequence or set
type, and the component shall not be marked OPTI ONAL or DEFAULT. There shall only be one such component in the

enclosing type.

18.2.3 A sequence-of or set-of type with thisfinal encoding instruction is required to have a constraint applied to it
that imposes the format and content specified in 18.2.6 to 18.2.11 on each occurrence of the UTF8Stri ng, by
reference to this clause 18 or otherwise.

NOTE - It is recommended that the constraint on the sequence-of or set-of type be expressed as:

(CONSTRAI NED BY
{/* Each UTF8String shall conformto the "AnyAttributeFornat" specified in
ITUT Rec. X 693 | |1SOIEC 8825-4, clause 18. */})

18.24 There shall be no final UNTAGGED encoding instruction on either the type that has this final encoding
instruction or on the enclosing type.

18.2.5 Each "URIList" shal contain a most one occurrence of ABSENT and shall not contain two identical
"QuotedURI"s,

18.2.6 Theformat of each UTF8St ri ng shall conform to the production " AnyAttributeFormat":

AnyAttributeFormat ::=
URI ?
NCName& "=" & xmlcstring

18.2.7 See 29.1.4 for the definition of the "URI" production, and 29.1.7 for the definition of the "NCName"
production. The"xmlcstring” lexical itemisdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.15.

18.2.8 If thereis a"NamespaceRestriction” of FROM then the"URI" in "AnyAttributeFormat" shall bethe "URI" in a
"QuotedURI" inthe "URIList", and may be absent only if the keyword ABSENT occursin the "URILigt".

18.2.9 If there is a "NamespaceRestriction" of EXCEPT, then the "URI" in "AnyAttributeFormat" shal not be the
"URI" ina"QuotedURI" inthe "URILigt", and shal not be absent if the keyword ABSENT occursinthe "URIList".

18.2.10 The "xmlcstring" shall be a syntactically correct XML attribute value (defined in W3C XML, clause 3)
preceded and followed by either a single APOSTROPHE (38) character or by a single QUOTATION MARK (34)
character.

18.2.11 Application of this encoding instruction and the ATTRI BUTE encoding instruction to different components
of the enclosing type shall not violate 20.3.11.

18.2.12 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULT MODI FI ED- ENCODI NGS
encoding instruction in the encoding control section.

18.2.13 A type with this final encoding instruction shall not also have any of the final encoding instructions LI ST,
Pl - OR- COMVENT or UNTAGGED.

NOTE - The following find encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, DEFAULT- FOR- EMPTY, EMBED- VALUES,
TEXT, USE- NI L, USE- NUMBER, USE- ORDER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

18.2.14 There shall be no qualifying information in the " TargetList".

18.3 Effect on encodings
18.3.1 If thetypeisencoded as atop-level type, this encoding instruction shall be ignored.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 40

18.3.2 The "ExtendedKMLNamedVaue' for this component shal not be included in the
"ExtendedX ML SequenceValue" or "ExtendedXML SetVaue" of the enclosing sequence or set type. Instead, the value
of the enclosing type shall be encoded using the value of each UTF8St ri ng as an "Attribute" (see clause 20) of the
enclosing element as specified below.

18.3.3 Theencoder shal:

a) treat each "URI" that ispresent in aUTF8St r i ng as requiring that the following "NCName" (the attribute
name) be namespace-qualified with the namespace specified by the "URI", and treat the absence of a
"URI" ina UTF8St ri ng as specifying that the following "NCName" shall not be namespace-qualified,
and shall then remove the"URI" from the UTF8St ri ng; and

b) insert into the encoding any necessary namespace declarations with scopes that include the inserted
attributes, in order to ensure that the required namespace-qualification of the "NCName"s identified in
a) above can be achieved; and

C) insert each UTF8String (after the "URI" has been removed) as an attribute in the enclosing element,

inserting namespace prefixes as necessary before each "NCName" in order to ensure that the
requirements of a) above are satisfied.

18.3.4 Theorder of all attributesin the enclosing element (resulting from the presence of one or more components
of the enclosing typewith afinal ATTRI BUTE or ANY- ATTRI BUTES encoding instruction) is an encoder's option.

18.3.5 An EXTENDED-XER decoder shall generate a UTF8St r i ng in the format of 18.2.6 for each attribute in the
enclosing element that is not from the control namespace, and whose name is not that of the identifier (possibly
modified in accordance with any final NAME or NAMESPACE encoding instructions) of another component of the
enclosing type that has afinal ATTRI BUTE encoding instruction.

19 The ANY- ELEMENT encoding instruction

19.1 General
19.1.1 The"AnyElementinstruction” is.
AnyElementlnstruction ::=
ANY- ELEMENT

TargetList
NamespaceRestriction ?

19.1.2 The"TargetList" productionisdefined in 14.2.
19.1.3 The"NamespaceRestriction" isdefined in 18.1.

19.1.4 This encoding instruction enables an ASN.1 type that is a UTF8St ri ng to provide the specification of a
single XML element.
NOTE — The content and attributes of the XML element are unrestricted. It may have attributes or child elements, and names of
child dements and attributes may be qualified or unqualified, and are not affected by any "NamespaceRestriction".
19.15 If there is a "NamespaceRestriction”, then the element name is required to satisfy the
"NamespaceRestriction" (see 18.1.6 to 18.1.8) but is otherwise unrestricted.

19.1.6 The UTF8String with this final encoding instruction may be the root type of the encoding, or may be a
component of a choice, sequence, set, sequence-of or set-of type. If it isatop-level type, the type reference nameis
ignored. If it isacomponent, the component name isignored.

19.2 Restrictions

19.2.1 AnASN.1type shal not have thisfina encoding instruction unlessit isaUTF8St ri ng type. The component
is required to have a restriction applied to it that imposes the format and content specified in 19.2.4 to 19.2.9 by
reference to this clause 19 or otherwise.

NOTE — It is recommended that the constraint on the UTF8St ri ng be expressed as:
(CONSTRAI NED BY

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 41

{/* Shall conformto the "AnyEl enent Format" specified in
ITUT Rec. X. 693 | |SOIEC 8825-4, clause 19. */})

19.2.2 Thereshall befinal noUNTAGGED encoding instruction on the type.

19.2.3 Each "URIList" shall contain af most one occurrence of ABSENT and shal not contain two identical
"QuotedURI"s.

19.2.4 Theformat of the abstract values of the UTF8St r i ng shall conform to the production " AnyElementFormat":

AnyElementFormat ::=
xmlcstring

19.25 The "xmlcstring" shall be a syntactically correct XML element defined in W3C XML 1.0 and W3C XML
Namespaces.

19.2.6 It shal use only namespace prefixes that are declared in namespace declarations present in the "xmlcstring".
If there are unprefixed qualified names, a corresponding default namespace declaration shall be present.

19.2.7 Thevaueof theUTF8St ri ng shall not cause 10.2.11 to be violated.

19.2.8 If there is a "NamespaceRestriction” of FROV then the (outermost) element name in "AnyElementFormat”
shall be the "URI" in a "QuotedURI" in the "URIList", and may be absent only if the keyword ABSENT occurs in the
"URILig".

19.2.9 If thereisa"NamespaceRestriction" of EXCEPT, then the (outermost) e ement namein " AnyElementFormat"
shall not be the "URI" in a"QuotedURI" in the "URIList", and shall not be absent if the keyword ABSENT occursin the
"URILig".

19.2.10 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED-
ENCODI NGS encoding instruction in the encoding control section.

19.2.11 A type with this fina encoding instruction shall not also have any of the final encoding instructions
ATTRI BUTE, BASE64, DEFAULT- FOR- EMPTY, PI - OR- COMVENT, UNTAGGED or WHI TESPACE.
NOTE - The following finad encoding instructions can never occur together with this final encoding instruction because their

application to the type is forbidden: ANY- ATTRI BUTES, DECI MAL, EMBED- VALUES, LI ST, TEXT, USE- NI L, USE- NUMBER, USE-
ORDER, USE- QNAME, USE- TYPE, USE- UNI ON.

19.2.12 Thereshall be no qudifying information in the "TargetList".

19.3 Effect on encodings

19.3.1 An EXTENDED-XER encoder shall include the abstract value of the UTF8St ri ng in the encoding as an XML
eement in place of an XML element that would otherwise be generated for this component (ignoring the identifier of the
component), or for the root type. The element included shall be identical to the abstract value of the UTF8St ri ng, except as
specified in 19.3.2

19.3.2 Any namespace declarations that are present in the first start-tag (or empty-element tag) of the element and
areidentical to namespace declarationsthat are in-scope at the point of insertion may (but need not) be removed, as an
encoder's option.

NOTE - Changing, moving, or deleting other namespace declarations in the UTF8St r i ng has not been allowed, as such actions may

affect the namespace and qudification of XML QNames present in element content or attribute values, and it is generaly not
possible for an encoder to determine whether such content or attribute values are QNames or not.

19.3.3 An EXTENDED-XER decoder shall generate the format of 19.2.4 from the incoming XML document, as
the abstract value of the UTF8St ri ng.

19.34 The decoder shall include, in the first start-tag (or empty-element tag) in the abstract value of the
UTF8St ri ng, namespace declaration attributes for all namespace declarations that are in scope for the el ement being
decoded but that are not present in the start-tag of that element.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 42

20 The ATTRI BUTE encoding instruction

20.1 General
20.1.1 The"Attributelnstruction” is:

Attributel nstruction ::=
ATTRI BUTE

TargetList
20.1.2 The"TargetList" productionisdefinedin 14.2.

20.1.3 This encoding instruction specifies that a character-encodable ASN.1 type is to be encoded as an XML
attribute.

NOTE — A particular (but important) case of a character-encodable type is a choice type (al of whose alternatives are character-
encodable types) that has afinal USE-UNI ON encoding instruction.

20.2 Restrictions

20.21 An ASN.1 type shall not have this final encoding instruction unless it has at least one "ExtendedXMLValue"

encoding (taking account of encoder's options), for each of its abstract values, that does not contain any XML tagsand
does not rely on the use of "xmlhstring” (if the typeis an open type or octetstring type) or "xmlbstring" (if thetypeisa
bitstring type) or on a final UNTAGGED, ATTRI BUTE, or ANY- ATTRI BUTES encoding instruction applied to its

components (if thetypeis a sequence or set type) to achieve this.

NOTE 1 — Thisimplies that a restricted character string type with a final ATTRI BUTE encoding instruction has to be restricted so
that it does not contain any of the control characters listed in 1ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 3 (Escape sequences for
control charactersin an "xmlcstring"), or has to have afina BASE64 encoding instruction.

NOTE 2 — This does not include open types, or octetstring and bitstring types with CONTAI NI NG without ENCODED BY, because
their "ExtendedXMLValue" can contain tags unless they are encoded as an "xmlhstring”.

NOTE 3 — It is recognized that some ASN.1 tools may not be able to statically check that the above restriction will be satisfied for
all abstract values, but conforming encoders cannot generate encodings in which the "ExtendedXMLVaue' violates this restriction
(see 20.3.14).

20.2.2 A typewith thisfinal encoding instruction shall only be used as a component of a sequence or set type
NOTE — The component may be OPTI ONAL or DEFAULT.

20.2.3 There shall be no final UNTAGGED encoding instruction on either the type that has this final encoding
instruction or on the enclosing type that containsit as a component.

20.2.4 If the final encoding instructions on other components of the enclosing type include either this encoding
instruction or the ANY-ATTRI BUTES encoding instruction, 20.3.11 shall not be violated.

20.25 A type with this fina encoding instruction shall not aso have any of the final encoding instructions ANY-
ELENMENT, DEFAULT- FOR- EMPTY, Pl - OR- COVVENT or UNTAGGED.

NOTE - The following fina encoding instructions can never occur together with this find encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, EMBED- VALUES, USE- NI L, USE- ORDER, USE- TYPE.

20.2.6 Thereshal be no qualifying information in the "TargetList".

20.3 Effect on encodings
20.3.1 If thetypeisencoded asatop-level type, this encoding instruction shall be ignored.

20.3.2 The "ExtendedKMLNamedVaue' of this component shal not be included in the
"ExtendedX ML SequenceVaue' or "ExtendedXML SetValue" of the enclosing sequence or set type. Instead, the value
of the component (if present) shall be encoded asan "Attribute” (see 20.3.3 to 20.3.15) of the enclosing element.

20.3.3 The"Attribute" productionis:

Attribute::=
AttributeName

QuotedValue

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 43

AttributeName::=
Identifier Or M odifiedl dentifier
ControlAttributeName

QuotedValue::=
DoubleQuotedValue
SingleQuotedValue

DoubleQuotedValue::=
""" & CharacterEncodableValue & """

SingleQuotedValue::=
"*" & CharacterEncodableValue& "' "

ControlAttributeName ::= QualifiedName
Character EncodableValue ::= ExtendedXM L Value

20.3.4 The "IdentifierOrModifiedldentifier" production is defined in 17.5.1, and its wse in the context of this
encoding instruction isdefined in 17.6.3.

20.3.5 The "Control AttributeName" production is not directly used by this clause. All "QualifiedName's in this
production are from the control namespace (see 16.9). Such attributes are only generated in accordance with clauses
33 and 37), but unexpected control attributes are required to be accepted by decoders (see 10.2.10).

20.3.6 The"QualifiedName" isdefinedin 29.3.2.
20.3.7 The"ExtendedXMLVaue' isdefinedin 17.4.

20.3.8 The "AttributeName" shall be either the "identifier" of the component that has thisfinal encoding instruction
or, if there are final NAME or NAMESPACE encoding instructions, the "QualifiedOrUnqualifiedName" determined by
those encoding instructions as specified in clauses 28 and 29.

20.3.9 The "CharacterEncodableVaue" in the "QuotedVaue' of the attribute (see 20.3.3) shall be the
"ExtendedXMLVadue" of thistype, possibly modified as specified in 20.3.12 to 20.3.15.

20.3.10 The order in which "Attribute's appear in an "AttributeList" is an encoder's option, whether these are
generated by this encoding instruction or by the ANY- ATTRI BUTES encoding instruction.

NOTE - No semantics can be placed on the order of attributes in any EXTENDED-XER encoding. This restriction is required by
W3C XML 1.0, 3.1.

20.3.11 When an "AttributeList" in an instance of an encoding contains multiple attributes, then for any two
"Attribute’sin thelist:

a) if the"AttributeName's of the two attributes are both unqualified names, then they shall be different;

b) if the "AttributeName's of the two attributes are both namespace-qualified names, then they shall either
have different namespace names, or shall be different names in the same namespace.

It is an illegal use of encoding instructions if this condition is violated by the application of fina encoding
instructions for any abstract value of the top-level type that is being encoded.

20.3.12 If the "QuotedvVdue' is a "DoubleQuotedvValue', and the "ExtendedXMLVaue' in the
"CharacterEncodableVdue' contains a QUOTATION MARK (34) character, then that character shall be replaced by
the characters:

" ;

or, as an encoder's option, by an escape sequence of the form &#n; or &#xn; , specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 11.15.8.

20.3.13 If the "Quotedvaue' is a "SingleQuotedvaue' and the "ExtendedXMLVdue' in the
"CharacterEncodableValue" contains an APOSTROPHE (38) character, then that character shall be replaced by the
characters:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 44

'

or, as an encoder's option, by an escape sequence of the form &#n; or &#xn; , specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 11.15.8.

20.3.14 The "ExtendedXMLVdue" in the "CharacterEncodableValue" shall be one of the encodings of the character-
encodable type that does not contain XML tags.

20.3.15 If the "ExtendedXMLVaue' contains HORIZONTAL TABULATION (9), LINE FEED (10), or CARRIAGE
RETURN (13) characters, then these characters shall be replaced in the "ExtendedXMLValue" by escape sequences of
theform "&#n; " or "&#xn; " specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.15.8.

21 The BASE64 encoding instruction

21.1 General
21.1.1 The"Baset4Instruction” is:

Base64l nstruction ::=
BASEG64

TargetList
21.1.2 The"TargetList" productionisdefinedin 14.2.

21.1.3 This encoding instruction can be assigned to an OCTET STRI NG, to an open type or to any restricted
character string type.

21.1.4 Application of thisfinal encoding instruction to an octet string type or an open type removes the option of a
hexadecimal encoding, but alows the option of a Base64 encoding (as specified in IETF RFC 2045, 6.8). Application
of thisfinal encoding instruction to arestricted character string type requires that the value of the restricted character
string type be encoded as a Base64 encoding.

21.2 Restrictions

21.2.1 If the final encoding instructions for an ASN.1 type contain a BASE64 encoding instruction then the type
shall be:

d anCOCTET STRING, or
b) anopentype; or
c) arestricted character string type.

21.2.2 A type with this final encoding instruction shall not have any of the fina encoding instructions ANY-
ELEMENT or WHI TESPACE.

NOTE - The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, DECI MAL, EMBED- VALUES, LI ST, TEXT, USE- NI L, USE- NUMBER, USE-
ORDER, USE- QNANE, USE- TYPE, USE- UNI ON.

21.2.3 Thereshal be no qualifying information in the "TargetList".

21.3 Effect on encodings

21.3.1 This encoding instruction affects only the "ExtendedXMLValue" of the type to which it is applied. It
requires the use of either the first or the second dternative of "ExtendedXMLOctetStringValue" and
"ExtendedX ML OpenTypeFieldva" (as an encoder's option), forbidding the third alternative (see 17.4). It requires use
of the second aternative of "ExtendedX ML RestrictedCharacterStringValue" (see17.4).

21.3.2 The"Base64XMLOctetStringValue" is.

Base64XM L OctetStringValue ::=
XML Baseb4String

The"XMLBase64String” isdefined in 21.3.6.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 45

21.3.3 ITU-T Rec. X.680 | 1SO/IEC 8824-1, 22.4, applies.
2134 The"Base64XMLOpenTypeFiddva" is

Base64XML OpenTypeFieldVal ::=
XML Base64String

21.3.5 The"Base64XML RestrictedCharacterStringValue' is:

Base64XM L RestrictedChar acter StringValue ::=
XML Base64String

21.3.6 The"XMLBase64String" is:

XML Base64String ::=
XMLRestrictedCharacter StringValue

The "XMLRestrictedCharacterStringValue" shall be the Content-Transfer-Encoding specified in IETF RFC 2045, 6.8,
except that the 76 character limit does not apply, and "white-space with escapes’ (see 8.1.5) isallowed in any position
within the"XMLBase64String".
NOTE - IETF RFC 2045 mandates the presence of line breaks dividing the encoding into lines of at most 76 characters, but this is
not required in EXTENDED-XER encodings. It also allows "white-space” to be inserted in any position within the base64 encoding..

21.3.7 |If applied to arestricted character string type, then each character in the character string shall be encoded
with UTF-8 (see ISO 10646, Annex D). The resulting octets for the entire character string shall then be encoded into
characters as specified in IETF RFC 2045, 6.8, and the resulting characters shall form the "ExtendedXMLVaue'.

22 The DECI MAL encoding instruction

22.1 General
22.1.1 The"Decimalnstruction” is:

Decimallnstruction ::=
DECI MAL

TargetlList
22.1.2 The"TargetList" production isdefinedin 14.2.
22.1.3 The purpose of this encoding instruction is to modify the encoding of a rea type so that the exponential

notation is forbidden and a hyphen followed by "0" denotes the value plus zero instead of the value minus zero.
NOTE — The vaue minus zero cannot be represented.

22.2 Restrictions
22.2.1 Thisencoding instruction shall only be assigned to areal type.

22.2.2 The red type to which this encoding instruction is applied shall be restricted in such a way that the values
minus zero, M NUS- | NFI NI TY, PLUS- I NFI NI TY, and NOT- A- NUVMBER are not permitted and thebase is 10.
NOTE — It is recommended that this be done by applying the following constraints:
(W TH COMPONENTS {..., base(10)})
(ALL EXCEPT (-0 | MNUS-INFINITY | PLUS-INFINITY | NOT-A- NUMBER))

22.2.3 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI Fl ED-
ENCODI NGS encoding instruction in the encoding control section.

22.24 A type with this final encoding instruction can have any other final encoding instructions permitted for that
type.
NOTE - The following fina encoding instructions can never occur together with this fina encoding instruction because their

application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, BASE64, EMBED- VALUES, LI ST, TEXT, USE-
NI L, USE- NUMBER, USE- ORDER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

22.25 There shall be no qualifying information in the " TargetList".

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 46

22.3 Effect on encodings

22.3.1 The"modifiedXMLReaNumber" (see 17.9.3) shall not contain an e or E followed by an exponent.

NOTE - All abstract values, including those that are very large or very smdl real numbers, are therefore encoded as an integer part
optionally followed by a decimd point and a fractiond part.

22.3.2 The rea value plus zero can be encoded, as an encoder's option, as "XMLDecimalMinusZeroRed Vaue",
defined asfollows:

XMLDecimalMinusZeroRealValue ::=
"-" & modifiedXML RealNumber

where the "modifiedX ML RealNumber" isrestricted by 22.3.1 and contains no digits except the digit zero.

NOTE - The above cannot be confused with the real value minus zero, because the value minus zero is removed by the mandatory
restriction that applies to the real type (see 22.2.2).

23 The DEFAULT- FOR- EMPTY encoding instruction

23.1 General
23.1.1 The"DefaultForEmptylnstruction” is:

DefaultFor Emptylnstruction::=
DEFAULT- FOR- EMPTY

TargetList
AS Value

23.1.2 The"TargetList" productionisdefinedin 14.2.

23.1.3 This encoding instruction specifies an abstract value that can be encoded in an EXTENDED-XER encoding
(as an encoders option) as the "empty" aternative of "ExtendedXMLVaue' for atype (see17.4) that is encoded asthe
sole content of an XML element.

NOTE — This defaulting mechanism supports the presence of an XML element with no content (typically, but not necessarily,

encoded as an empty-element tag). It is distinct from the use of ASN.1 DEFAULT, which relates to the absence of the
"ExtendedXMLNamedVaue" of a component of a sequence or set.

23.1.4 The"TargetList" shall not use the keyword ALL and shall identify asingle target.
23.1.5 Therearefivedistinct cases where this encoding instruction can be used, identified below.

23.1.5.1 The first case is when it is assigned directly to a character-encodable type that is not UNTAGGED (see
clause 32). If the enclosing element has empty content, then that empty content represents the specified "Vaue" of
the character-encodable type (which is the governor for "Vaue").

23.15.2 The second case is when it is assigned to a (NOT UNTAGGED, NOT EMBED-VALUES and NOT USE-NI L)
sequence type that contains an UNTAGGED character-encodable component whose encoding forms the sole content
(for all abstract values of the sequence type) of the enclosing element of the sequencetype. If the enclosing element
of the seguence type has empty content, then that empty content represents the specified "Vaue" of the character-
encodable component (which is the governor for "Value").

NOTE — The character-encodable component may be the sole content because it is the only component, or it may be the sole
content because all other components have a final ATTRI BUTE (see clause 20) or ANY-ATTRI BUTES (see clause 18) encoding
ingruction.

23.1.5.3 The third case is when it is assigned to a (NOT UNTAGGED and NOT USE-NI L) sequence type with a fina
EMBED- VALUES encoding instruction (see 25.3.1.4). If the enclosing element of the sequence type has empty
content, then that empty content represents an abstract value of the sequence type that would otherwise produce
content that is solely the specified "Value' of asole UTF8St ri ng in the EMBED- VALUES sequence-of (UTF8St ri ng is
the governor for "Value").

23.1.5.4 The fourth case iswhen it is assigned to a (NOT UNTAGGED, NOT EMBED-VALUES) sequence type with afina
USE- NI L encoding instruction (see clause 33) whose OPTI ONAL component is a character-encodable type. If the
enclosing element of the sequence type has a nil identification attribute with value t r ue, the DEFAULT-FOR-EMPTY
does not affect the meaning of the encoding. If the enclosing element of the sequence type has a nil identification

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 47

atribute with value f al se (or has no nil identification attribute), and has empty content, then that empty content
represents the specified "Value" of the OPTI ONAL component (whose typeis the governor for "Vaue").

23.1.5.5 The fifth case is when it is assigned to a (NOT UNTAGGED) sequence type with a final EMBED- VALUES
encoding instruction (see 25.3.1.4) and a finad USE- NI L encoding instruction (see clause 33) whose OPTI ONAL
component is a sequence type. |If the enclosing element of the sequence type has a nil identification attribute with
vaue t r ue, the DEFAULT-FOR-EMPTY does not affect the meaning of the encoding. If the enclosing element of the
sequence type has a nil identification attribute with value f al se (or has no nil identification attribute), and has empty
content, then that empty content represents an abstract value of the sequence type that would otherwise produce
content that is solely the specified "Vaue' of a sole UTF8String in the EMBED- VALUES sequence-of (the
UTF8St ri ng isthe governor for "Vaue").

23.1.6 "Vdue'isdefinedin ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.7.

NOTE — This permits use of a vaue reference defined in or imported into the module. The value reference can be defined using
XML Vaue Notation, but such notation cannot be used directly in "DefaultForEmptylnstruction”.

23.2 Restrictions

23.2.1 If the final encoding instructions for an ASN.1 type that is a NOT UNTAGGED character-encodable type
contain a DEFAULT- FOR- EMPTY encoding instruction then that type shall not be a component (of an ASN.1 SEQUENCE
or SET) with an ASN.1 DEFAULT value.

NOTE — This redtriction is not grictly necessary, but is imposed to avoid confusion between the norma ASN.1 and the
EXTENDED-XER defaulting mechanisms.

23.2.2 Thisencoding instruction shall only be assigned to:
a) acharacter-encodable type without afinal UNTAGGED encoding instruction; or

b) aNOT UNTAGGED sequence type, without a final EMBED- VALUES, or USE- NI L encoding instruction, one
of whose components is a character-encodable type with a final UNTAGGED encoding instruction and all
other components (if any) have afinal ATTRI BUTE Or ANY- ATTRI BUTES encoding instruction; or

C) aNOT UNTAGGED sequence type, without a final USE- NI L encoding instruction, but with afinal EVBED-
VALUES encoding instruction (see25.3.1.4); or

d) aNOT UNTAGGED sequence type, without a final EMBED- VALUES encoding instruction, but with a final
USE- NI L encoding instruction, whose OPTI ONAL component is a character-encodable type; or

€) a NOT UNTAGGED sequence type with a final EMBED- VALUES encoding instruction and with a final
USE- NI L encoding instruction, whose OPTI ONAL component is a sequence type.

23.2.3 If 23.2.2 @) applies, and "empty" isavalid "ExtendedXMLValue" for one of the abstract values (V, say) of the
(possibly constrained) type, and V is different from the "Value" in the "DefaultForEmptylnstruction”, then there shall
be at least one aternative encoding for V.

23.24 If 23.2.2 b) or d) applies, and "empty" isavalid "ExtendedXMLVaue" for one of the abstract values (V, say)
of the UNTAGGED component (case b) or of the OPTI ONAL component, (case d), and V is different from the "Vaue'
in the "DefaultForEmptyl nstruction", then there shall be at |east one alternative encoding for V.

NOTE - It is recognized that some ASN.1 tools may not be able to statically check that the above restrictions will be satisfied for al
abstract values, but conforming encoders cannot generate encodings in which the "ExtendedXMLVaue' violates this restriction.

23.25 If 23.2.2 c) applies, the SEQUENCE type shall be constrai ned so that (without DEFAULT-FOR-EMPTY) thereis
no abstract value that would produce an empty content for the enclosing element.

23.2.6 If acharacter-encodable type (case 23.2.2 a) with thisfinal encoding instruction has an enclosing typethat is
a sequence-of or set-of type with a final LI ST encoding instruction, or that is a choice type with a USE-UNI ON
encoding instruction, then thisfinal encoding instruction shall be ignored.

23.2.7 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI Fl ED-
ENCODI NGS encoding instruction in the encoding control section.

23.2.8 A type with this final encoding instruction shall not have any of the final encoding instructions ANY-
ELEMENT, ATTRI BUTE or UNTAGGED.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 48

NOTE - The following fina encoding instructions can never occur together with this final encoding ingtruction because their
application to the type is forbidden: ANY- ATTRI BUTES, USE- TYPE.

23.29 There shall be no qualifying information in the "TargetList".

23.3 Effect on encodings

23.3.1 This encoding instruction affects only the "ExtendedXMLVaue" of the type that is the governor of "Vaue",
(see 23.1.5).

23.3.2 The 'ExtendedXMLVaue" encoding of the abstract value specified by "Vaue' shall, as an encoder's option,
be either

a) the "ExtendedXMLValue" encoding of that value which would be produced if the DEFAULT- FOR- EMPTY
was hot present (the normal encoding); or

b) “empty".
NOTE — Decoders are required o accept both the normal encoding and the "empty" encoding as a denctation of the default-for-
empty vaue.

23.3.3 If 23.2.2 @) applies, and "empty" isavalid "ExtendedXMLVdue' for one of the abstract values (V, say) of the
type, and V is different from the "Vaue' specified in the "DefaultForEmptylnstruction™, then any one of the alternative
encodingsfor V shall be used (as an encoder's option) instead of "empty".

23.34 If 23.2.2 b) or d) applies, and "empty" isavalid "ExtendedXMLVaue" for one of the abstract values (V, say)
of the UNTAGGED component (case b) or the OPTI ONAL component (case d), and V is different from the "Value"
specified in the "DefaultForEmptylInstruction”, then any one of the aternative encodings for V shall be used (as an
encoder's option) instead of "empty".

23.35 If 23.2.2 ¢) applies, the effect of this encoding instruction is specified in 25.3.1.4 and 25.3.1.5.
23.3.6 If 23.2.2 €) applies, the effect of this encoding instruction is specified in 25.3.1.6.

24 The ELEMENT encoding instruction

24.1 General
24.1.1 The"Elementinstruction” is:

Elementlnstruction ::=
ELEMENT

TargetList
24.1.2 The"TargetList" production isdefinedin 14.2.

24.1.3 Thisencoding instruction is synonymous with NOT UNTAGGED, and does not imply any semantics other than
NOT UNTAGGED.

24.2 Restrictions
24.2.1 Thereshadl be no qualifying information in the "TargetList".

24.2.2 This encoding instruction should not be used as a prefixed encoding instruction in combination with any of
the prefixed encoding instructions ANY- ATTRI BUTES, ANY- ELEMENT or ATTRI BUTE to avoid confusing the reader.

24.3 Effect on encodings

This encoding instruction negates an UNTAGGED encoding instruction, and does not otherwise affect encodings.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 49

25 The EMBED- VALUES encoding instruction

25.1 General
25.1.1 The"EmbedValueslnstruction” is:

EmbedValueslnstruction ::=
EMBED- VALUES

TargetList
25.1.2 The"TargetList" productionisdefinedin 14.2.

25.1.3 This encoding instruction enables the first component of a (NOT UNTAGGED) sequence type to provide
character strings to be inserted before the first XML element, after the last XML element, and between the XML
elements, that form the "ExtendedXMLVaue' encoding of the sequence type.

25.1.4 If afinal USE- NI L encoding instruction is also present, and the OPTI ONAL component supporting USE- NI L
is absent in a particular abstract value, then there will be no XML elements for components of the sequence type, and
no character string are provided for that abstract value. Otherwise, for all abstract values, the number of character
strings provided is required to be equal to one greater than the number of elements in the encoding of the sequence
type. Someor al of the character strings may be empty.

25.2 Restrictions

25.2.1 An ASN.1 type shal not have this fina encoding instruction unless it is a sequence type. The first
component of the sequence shall be a SEQUENCE OF UTF8St ri ng and shall not be marked OPTI ONAL or DEFAULT.

25.2.2 There shall be no final UNTAGGED encoding instruction (see clause 32) on either the sequence-of type or on
the component of the sequence-of.

25.2.3 There shall be no final UNTAGGED encoding instruction on any component of the sequence type that is a
character-encodable type.

25.2.4 |f the sequence type aso has afinal USE- NI L encoding instruction, the OPTI ONAL component supporting the
USE- NI L encoding instruction shall not be a character-encodable type (see also 33.2.4).

25.2.5 None of the components of the sequence shall be marked DEFAULT unless they have a final ATTRI BUTE
encoding instruction. If there are components of a SEQUENCE or SET type (at any depth) that, through the use of
UNTAGGED, can produce elements in the "ExtendedXMLValue' that are immediate child elements of the sequence
type, these shall not be marked DEFAULT.

25.2.6 The sequence type shall berestricted in such away that:

a if the type has also afinal USE- NI L encoding instruction and the OPTI ONAL component supporting
USE- NI L isabsent, the number of repetitions of the sequence-of component isrequired to be zero;

b) otherwise, the number of repetitions of the sequence-of component in every abstract value equals one
plus the number of XML elements in the "ExtendedXMLValue' of the sequence type, determined after
application of all final encoding instructions to the other components of the sequence, and ignoring the
first component.

NOTE - It is recommended that the constraint on the sequence type be expressed as:
(CONSTRAINED BY {/* Shall conformto ITUT Rec. X. 693 | 1SOIEC 8825-4, clause 25
*1})
25.2.7 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI Fl ED-
ENCODI NGS encoding instruction in the encoding control section.

25.2.8 A typewith thisfina encoding instruction shall not have a final UNTAGGED encoding instruction.

NOTE - The following final encoding instructions can never occur together with this encoding instruction because their application to
the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, LI ST, TEXT, USE- NUVBER, USE- QNANE,
USE- TYPE, USE- UNI ON, WHI TESPACE.

25.2.9 Thereshal be no qualifying information in the "TargetList".

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 50

25.3 Effect on encodings

25.3.1 An encoder shal first produce a partia "ExtendedXMLVadue' encoding of the enclosing sequence type,
ignoring the first component. It shall then modify this encoding as specified in the following subclauses.

NOTE — The UTF8St ri ng values that are being inserted may be "empty".

25.3.1.1 Thefirst UTF8St ri ng vauein the sequence-of shall be inserted (subject to 25.3.1.6) at the beginning of the
partial encoding, before the start-tag of the first XML element (if any).

25.3.1.2 Each successive UTF8St ri ng value (if any) shall be inserted between the end-tag of an XML eement and
the start-tag of the following XML element, proceeding from the first element to the last element.

NOTE - The aboveimpliesthat no UTF8St ri ng vaueisinserted inside any of these elements, even if they have child elements.

25.3.1.3 Thelast UTF8St ri ng value (if thereis one) shall beinserted at the end of the partial encoding, after the end-
tag of thelast XML element.

25.3.1.4 If no XML elements are present in the partial encoding, and there is also a final DEFAULT- FOR- EMPTY
encoding instruction (see clause 23) on the sequence type, and the value of the first (and only) UTF8St ri ng in the
sequence-of is identical to the "Value" specified in the DEFAULT- FOR- EMPTY encoding instruction, an encoder can
optionally encode the UTF8St ri ng as an empty string (but see25.3.1.6).

25.3.1.5 If no XML elements are present in the partial encoding, and there is also a final DEFAULT- FOR- EMPTY
encoding instruction on the sequence type, and the encoding is empty, a decoder shall interpret it as an encoding for
the "Value" specified in the DEFAULT- FOR- EMPTY encoding instruction and assign this abstract value to the first (and
only) UTF8St ri ng in the sequence-of (but see 25.3.1.6).

NOTE — This means that a value with no XML elements present and with a single empty UTF8String value cannot be encoded.
The sequence type is required to be constrained to prohibit such values (see 23.2.5).

25.3.1.6 If the type also has a final USE- NI L encoding instruction and the OPTI ONAL component is absent, then the
EMBED- VALUES encoding instruction has no effect. If the type also has afinal USE- NI L encoding instruction and the
OPTI ONAL component is present, then 25.3.1.4 applies. If a decoder determines that the OPTI ONAL component is
present, by the absence of anil identification attribute (or its presence with the value false), then 25.3.1.5 applies.

26 The GLOBAL- DEFAULTS encoding instruction

26.1 General
26.1.1 The"Globa Defaultslinstruction" is:

GlobalDefaultslnstruction ::=
GLOBAL- DEFAULTS TargetList DefaultSetting

DefaultSetting ::=
ControlNamespace |
MODI FI ED- ENCODI NGS

ControlNamespace ::=
CONTRCL- NAMVESPACE

QuotedURI
Prefix ?

26.1.2 The"TargetList" production isdefined in 14.2, and shdl be"empty".
26.1.3 "QuotedURI" and "Prefix" are defined in 29.1.1.

26.1.4 The "ControlNamespace" production specifies the name of the control namespace (the "URI" in the
"QuotedURI"), and a recommended prefix for that namespace. If this GLOBAL-DEFAULTS encoding instruction is not
present, the control namespace shall be that specified in 16.9.

26.1.5 The use of MODI FI ED-ENCODI NGS produces "ExtendedXMLVaues' that are modified in accordance
with 10.2.7 and 10.2.8.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 51

26.2 Restrictions

26.2.1 The GLOBAL-DEFAULTS encoding instruction shall be assigned only in an encoding control section and shall
not be preceded by any other encoding instructions except other GLOBAL-DEFAULTS encoding instructions.

26.2.2 Each of the alternatives of GLOBAL-DEFAULTS shall be used at most oncein any encoding control section.

26.2.3 The GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS, if present, shall be the first encoding instruction in the
XER encoding control sectioninan ASN.1 module.

26.3 Effect on encodings

26.3.1 The application of MODI FI ED-ENCODI NGS requires that encodings shall be modified as specified in 10.2.7
and 10.2.8.

26.3.2 The control namespace used for an entire XML document shall be the control namespace assigned to the
ASN.1 type whose encoding forms the root element of that XML document.

27 TheLl ST encoding instruction

27.1 General
27.1.1 The"ListInstruction" is:
ListInstruction ::=

LI ST
TargetList

27.1.2 The"TargetList" productionisdefinedin 14.2.

27.1.3 Thisencoding instruction requires that the "ExtendedX ML SequenceOfVaue' or "ExtendedX ML SetOfValue'
of a sequence-of or set-of type (see 17.7) be the "ExtendedXMLListVaue', producing a space-separated list for the
values of the component of the sequence-of or set-of.

NOTE — A common assignment of this encoding ingtruction is to a SEQUENCE OF | NTEGER, to which an ATTRI BUTE encoding
instruction (see clause 20) is aso assigned.

27.2 Restrictions
27.2.1 Thetypeto which thisencoding instruction is assigned shall be a sequence-of or a set-of type.

27.2.2 The component of the sequence-of or set-of type:
a) shall beacharacter-encodable type; and

b) shall be such that, for al of its abstract values, there is at least one "ExtendedXMLValue" encoding
(taking account of all encoder's options) that is not "empty" and that does not contain "white-space with
escapes’ (see 8.1.5).
NOTE 1 - The above restrictions imply that the component cannot itself be a sequence-of or set-of type with a LI ST encoding
ingtruction, or contain a nested sequence-of or set-of type with aLl ST encoding instruction at any depth.

NOTE 2 — The above restrictions will be satisfied if the type of the component of the sequence-of or set-of is the integer type, resl
type, object identifier type, relative object identifier type, or the Gener al i zedTi me and UTCTi me useful types. They will aso be
satisfied if it is a character string type constrained so that it aways has at least one character in the character string and none of its
vaues contains a "white-space" character.

NOTE 3 — It is recognized that some ASN.1 tools may not be able to staticaly check that the above rules are satisfied, but a
conforming encoder shall not generate encodings that violate b) above.

27.2.3 A typewiththisfinal encoding instruction shall not have afinal ANY- ATTRI BUTES encoding instruction.

NOTE - The following fina encoding instructions can never occur together with this encoding instruction because their application to
the type is forbidden: ANY- ELEMENT, BASE64, DECI MAL, EMBED- VALUES, TEXT, USE- NI L, USE- NUMBER, USE- ORDER, USE-
OQNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

27.2.4 There shall be no qualifying information in the " TargetList".

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 52

27.3 Effect on encodings
27.3.1 Thisencoding instruction affects only the encoding of the type to which it is applied.

27.3.2 The "ExtendedX ML SequenceOfVaue' or "ExtendedXMLSetOfVaue' production (see 17.7) shall be the
"ExtendedXMLListVaue' dternative. "ExtendedXMLListVaueis:

ExtendedXMLListValue ::=
empty |
Character EncodableValue ExtendedXMLListValue

27.3.3 Thee shdl be "whiteespace with escapes’ (see 8.1.5) between each par of adjacent
"CharacterEncodableVaue'sin the "ExtendedXMLListValue'.

27.3.4 The"CharacterEncodableValue' is defined in 20.3.3. Each "CharacterEncodableVaue" shall encode a value
of acomponent of the sequence-of or set-of.

27.3.5 The ader in which the "CharacterEncodableValue's appear in the "ExtendedXMLListVaue' shal be the
same order in which the corresponding "ExtendedXMLValue's would appear in an "ExtendedX ML SequenceOfVaue"
or "ExtendedXML SetOfVaue' if afinal LI ST encoding instruction were not present.

27.3.4 The "CharacterEncodableVaue's in the "ExtendedXMLListVaue' shall not be "empty" and shall not contain
"white-space with escapes’ (see 8.1.5).
NOTE — Subclause 27.2.2 b) ensures that thisis possible, but 27.3.4 may restrict encoder's options.

28 The NAME encoding instruction

28.1 General
28.1.1 The"Namelngtruction” is:

Namel nstruction ::=
NAMVE

TargetList
AS

NewNameOr K eywor d

NewNameOrKeyword ::=
NewName |

Keyword

NewName::=
RestrictedCharacter StringValue

Keyword ::=
CAPI TALI ZED |
UNCAPI TALI ZED |

UPPERCASED |
LOWERCASED

28.1.2 The"TargetList" productionisdefinedin 14.2.

28.1.3 Thisencoding instruction has five separate purposes:

a to change the associated tag name, the attribute name, or the value of a possible type identification
attribute ("NewName" with no "QualifyingInformation” in the "TargetList") of thetarget; or

b) to changethe case (or the case of theinitial letter) of the associated tag name, the attribute name, or the
value of a possible type identification attribute ("Keyword" with no "Qualifyinglnformation” in the
"TargetList") of the target(s); or

c) to change the element name used in an empty-element tag normally (as specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1) derived from a specified identifier used in the type definition ("NewName" with
"Qualifyinglnformation” in the "TargetList" whichisnot ALL) of the target; or

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 53

d) to change the case (or the case of the initial letter) of the element name used in an empty-element tag
normaly derived from a specified identifier used in the type definition ("Keyword"' with
"Qualifyinglnformation” in the "TargetList" whichisnot ALL) of the target(s); or

e) to change the case (or the case of the initial letter) of the element names used in the
"ExtendedXMLVaue" encoding derived from any identifier used in the type definition ("Keyword" with
"Qualifyinglnformation” in the "TargetList" which isALL) of the target(s)

NOTE 1 — "NewName" can be used to change the names used in an EXTENDED-XER encoding derived from identifiers or type
references, but is rarely useful if the new name could have been used in the first place as an ASN.1 identifier or type reference.
Thus the normal use of the NAME encoding instruction is for producing required XML eement or attribute names when they would
otherwise not be alowed because of ASN.1 rules on the case of the initial letter of identifiers or type reference names, or where the
ASN.1 rulesfor digtinct identifiers in sequence, set and choice constructions prevent a desired XML encoding.

NOTE 2 — Theuse of ALL I N ALL AS CAPI TALI ZED to capitalize al identifiersin a module can be particularly useful to provide
acommon style using initial upper case letters.

NOTE 3 — If a NAME encoding instruction is assigned using a target identified by an "identifier" or "typereference”, this affects the
name used in an EXTENDED-XER encoding, but does not affect the name that is used to identify the same target in subsequent
XER encoding ingtructions.

28.1.4 The"RestrictedCharacterStringValue" isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 37.

28.2 Restrictions
28.21 "NewName' shal not be used if the "Qudlifyinglnformation" iSALL.

28.2.2 The NAME encoding instruction with "Qualifyinglnformation” shall only be assigned to the following type
definitions:

a aboolean type definition; or

b) abitstring type definition with named bits; or
C) anenumerated type definition; or

d) aninteger type definition with named numbers.

28.2.3 The "RestrictedCharacterStringValue" in "NewName" when used in the NAME encoding instruction shall be
either an "NCName" defined in W3C XML Namespaces, clause 2, production 4, or an empty character string. It shall
not be an empty character string unless the NAME encoding instruction is applied to an alternative of a choice type with
afinal USE- UNI ON encoding instruction.
NOTE 1 — It is a requirement in W3C XML Namespaces that an "NCName" does not commence with characters that when
uppercased are "XML".

NOTE 2 — The "NewNameOrKeyword" production (and hence the "NewName" production) is also used in clause 31. The above
restrictions on "RestrictedCharacterStringValue' do not apply to the usein clause 31.

28.2.4 If thereisa GLOBAL- DEFAULTS encoding instruction with aMODI FI ED- ENCCODI NGS keyword, there shall be
no "Qudifyinglnformation” in the "TargetList".
NOTE — This is because empty-element tags are not used in this case. The TEXT encoding instruction can instead be used to
change the encoding of the individual values of atype.

28.2.5 Thisencoding instruction should not be used, as a prefixed encoding instruction in combination with any of
the prefixed encoding instructions ANY- ATTRI BUTES, ANY- ELEMENT or UNTAGGED to avoid confusing the reader.

28.3 Effect on encodings

28.3.1 If the type to which this encoding instruction is applied has afinal ATTRI BUTE encoding instruction, the
"AttributeName" (which isin this case an "ldentifierOrModifiedldentifier") of the "Attribute" (see 20.3.3) shall be the
"QudifiedOrUnqualifiedName" alternative as specified in 28.3.3 t0 28.3.6.

28.3.2 If the type to which this encoding instruction is applied does not have a finad ATTRI BUTE encoding
instruction, then the enclosing element tag name (which is "TagName' — see 17.5.1) shal be the
"QudifiedOrUnqualifiedName" alternative as specified in 28.3.3 t0 28.3.6.

28.3.3 The "ldentifierOrModifiedidentifier" and "QualifiedOrUnqualifiedName" alternatives shall be used. The
"UnprefixedName" in the "QualifiedOrUnqualifiedName"' shall be the "identifier" of the component modified
according the "NewNameOrK eyword" as specified below.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 54

28.3.4 If the"NewName" dternative is used, the "UnprefixedName' shall be replaced by the "NewName'.

28.3.5 |If the"Keyword" aternative is used, the "UnprefixedName" shall be modified as specified in the subclauses
of this28.3.5.

28.3.5.1 If the "Keyword" is CAPI TALI ZED, then if the first character of the "UnprefixedName" is alower-case | etter,
that character shall be replaced by the upper-case equival ent, otherwise the name is not affected.

28.3.5.2 If the "Keyword" is UNCAPI TALI ZED, then if the first character of the "UnprefixedName" is an upper-case
|etter, then that character shall be replaced by the lower-case equivalent, otherwise the name is not affected.

28.3.5.3 If the "Keyword" is UPPERCASED, then all characters of the "UnprefixedName" that are lower-case letters
shall be replaced by their upper-case equivalent. Other characters are unchanged.

28.3.5.4 If the "Keyword" is LONERCASED, then al characters of the "UnprefixedName" that are upper case letters
shall be replaced by their lower-case equivalent. Other characters are unchanged.

28.3.6 The"QuadifiedOrUnqualifiedName" shall be a namespace-quaified name if and only if the"Type" hasafind
NAMESPACE encoding instruction.

29 The NAMESPACE encoding instruction

29.1 General
29.1.1 The"Namespacel nstruction” is:
Namespacel nstruction ::=
NAMESPACE
TargetList
NamespaceSpecification ?
NamespaceSpecification ::=
AS

QuotedURI
Prefix ?

Prefix ::=
PREFI X
QuotedNCName

QuotedURI ::=
"t & URI& "

QuotedNCName::=
""" & NCName& """

29.1.2 The"TargetList" productionisdefinedin 14.2.
NOTE — The most common use of this encoding instruction is NAVESPACE ALL.

29.1.3 This encoding instruction enables a namespace name and recommended namespace prefix to be assigned to
the target(s).

29.1.4 The "URI" production is not defined in this Recommendation | International Standard, but consists of
characters that identify a Uniform Resource Identifier (URI). The syntax (and semantics) of aURI isdefined in IETF
RFC 2396, and commences with the name of a URI scheme. For allocations of namespace names with the
NAMESPACE encoding instruction, any URI scheme can be used.

29.1.5 If the "NamespaceSpecification” is absent, then a default is assigned with the recommended "Prefix" set to
the "modulereference” and the "URI" set asfollows:

a theURI scheme (see IETF RFC 2396) shall beur n;
b) the URN namespace identifier (see IETF RFC 2141) shall beoi d;

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 55

¢) the URN Namespace Specific String (see IETF RFC 2141) shall be the "Definitiveldentifier" of the
module expressed as an " XML ObjectldentifierVaue" (see IETF RFC 3061).

29.1.6 EXAMPLE: With an object identifier value of {i so standard 1564 nodul es(0) basic(1)} the
"URI" would be the character string " ur n: oi d: 1. 0. 1564. 0. 1"

29.1.7 The "NCName" production is defined in W3C XML Namespaces, clause 2, production 4, and shall not
commence with characters that when uppercased are "XM." .

NOTE — Thisis arequirement imposed by W3C XML Namespaces.

29.2 Restrictions

29.2.1 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI Fl ED-
ENCODI NGS encoding instruction in the encoding control section.

29.3 Effect on encodings

29.3.1 A namespace-qualified name can be required for an associated tag name, for an attribute name, or for the
value of atype identification attribute. A namespace-qualified name is required if the type generating the name has a
final NAMESPACE encoding instruction.

29.3.2 The"QudifiedOrUnqualifiedName" is:

QualifiedOrUnqualifiedName ::=
QualifiedName |
UnqualifiedName

QualifiedName::=
PrefixedName |
UnprefixedName

UnqualifiedName::=
UnprefixedName

PrefixedName::=
DeclaredPrefix & ":" & UnprefixedName

UnprefixedName ::= NCName
DeclaredPrefix ::= NCName

29.3.3 Theencoding of a namespace-qualified name requires either:
a the use of the "PrefixedName" aternative for "QualifiedName" with the addition to XML elements of
further attributes providing namespace declarations (as specified in W3C XML Namespaces); or

b) the useof the "UnprefixedName" aternative for "QualifiedName" with the addition to XML elements of
further attributes providing default namespace declarations (as specified in W3C XML Namespaces).

29.3.4 The choice of these two mechanisms and the XML elements to which the namespace declaration attributes
are added are an encoder's option.

NOTE 1 — W3C XML Namespaces specifies that a default namespace declaration has in its scope only the name of the element in
which it is declared (and of child element names), but not of attributes on that element or child elements.

NOTE 2 — It is recommended, but not required, that the recommended prefix in the NAVESPACE encoding instruction be used.

NOTE 3 — Use of the recommended prefix may be inappropriate if NAMESPACE encoding instructions with different namespace
names but the same recommended prefix are present in the module.

30 The Pl - OR- COMVENT encoding instruction

30.1 General
30.1.1 The"PIOrCommentlnstruction” is:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 56

PiOr Commentlnstruction ::=
Pl - OR- COVIVENT
TargetList
AS

RestrictedCharacter StringValue
Position
Position ::=
BEFORE- TAG
BEFORE- VALUE

AFTER- VALUE
AFTER- TAG

30.1.2 The"TargetList" productionisdefinedin 14.2.

30.1.3 This encoding instruction causes specified XML processing instructions and/or comments to be inserted
before or after the "ExtendedXMLValue" or before or after the associated tags.

NOTE — Subclause 10.2.5 permits an encoder (as an encoder's option) to insert additional XML processing instructions and XML
comments.

30.1.4 The"RestrictedCharacterStringVaue" isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 37.

30.2 Restrictions

30.2.1 The value of the "RestrictedCharacterStringVaue" shall be the concatenation of one or more character
strings each of which conformsto the syntax of an XML Processing Instruction specified in W3C XML 1.0, 2.6, or to
the syntax of an XML Comment specified in W3C XML 1.0, 2.5, and defines the processing instructions and/or
comments that are to be inserted in the XML document.

30.2.2 An ASN.1 type shal not have both a finad UNTAGGED encoding instruction and a final PI - OR- COMVENT
encoding instruction.

30.2.3 A type with this final encoding instruction shall not have any of the final encoding instructions ANY-
ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE or UNTAGGED.

30.24 There shal beno quaifying information in the "TargetList".

30.3 Effect on the encodings

30.3.1 If the"Position" is BEFORE- TAG, then the processing instructions and/or comments shall be inserted before
the associated start-tag or empty-element tag. If that start-tag or empty-element tag is the start of some enclosing
"ExtendedXMLVdue", then any processing instructions and/or comments inserted before that "ExtendedXMLvalug"
(using BEFORE- VAL UE on the corresponding type) shall precede these processing instructions and/or commentsin the
XML document.

30.3.2 If the "Position" is BEFORE- VALUE, then the processing instructions and/or comments shall be inserted at
the start of the "ExtendedXMLValue'. If that "ExtendedXMLVaue" starts with atag that is the associated start-tag of
some embedded "ExtendedXMLVaue"', then any processing instructions and/or comments inserted before that
associated start-tag (using BEFORE- TAG on the corresponding type) shall follow these processing instructions and/or
commentsin the XML document.

NOTE — In this case the contents of the associated tags is never empty, and the empty-element tag cannot be used.

30.3.3 If the"Position" is AFTER- VALUE, then the processing instructions and/or comments shall be inserted at the
end of the "ExtendedXMLVaue'. If that "ExtendedXMLVaue' ends with atag that is the associated end-tag of some
embedded "ExtendedXMLVaue", then any processing instructions and/or comments inserted after that associated
end-tag (using AFTER- TAG on the corresponding type) shall precede these processing instructions and/or comment in
the XML document.

NOTE — In this case the contents of the associated tags is never empty, and the empty-element tag cannot be used.

30.3.4 If the "Position” is AFTER- TAG, then the processing instructions and/or comments shall be inserted after the
associated end-tag or empty-element tag. If that end-tag or empty-element tag is the end of some enclosing
"ExtendedXMLValue', then any processing instructions and/or comments shall be inserted after that

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 57

"ExtendedXMLvalue' (usng AFTER- VALUE on the corresponding type) shall follow these processing instructions
and/or commentsin the XML document.

31 The TEXT encoding instruction

31.1 General
31.1.1 The"Textinstruction" is:

Textlnstruction ::=
TEXT

TargetList
TextToBeUsed ?

TextToBeUsed ::=
AS

NewNameOr K eywor d
31.1.2 The'"TargetList" productionisdefinedin 14.2.

31.1.3 The purpose of thisencoding instructioniis:

a in the absence of GLOBAL-DEFAULTS MODI FI ED-ENCODI NGS, to enable values of boolean types,
enumerated types, hitstrings with named bits, and integers with named numbers, to be encoded as
character strings instead of empty-element tags;

b) in the presence of GLOBAL-DEFAULTS MODI FI ED-ENCODI NGS, to enable the character strings that are
used for the values of boolean types, enumerated types, bitstrings with named bits, and integers with
named numbers, to be changed

31.1.4 The "NewNameOrKeyword" is defined in clause 28. The "NewName" in "NewNameOrKeyword" shdl
contain at least one character.

31.2 Restrictions
31.2.1 This encoding instruction shall only be assigned to the following types, with qualifying information
identifying one or more of the identifiers used in the definition of the type (ort r ue or f al se for the boolean type):
a aboolean type definition; or
b) abitstring type definition with named bits; or
c) anenumerated type definition; or
d) aninteger type definition with named numbers.

31.2.2 Thefinal character strings used for the values of the type to which this encoding instruction is assigned shall
be distinct.

31.2.3 "NewName' in "NewNameOrKeyword" shall not be used if the "Qualifyinglnformation™ is ALL. Subclause
28.2.3 does not apply to this use of "NewNameOrKeyword".

31.2.4 Inthe absence of a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS encoding instruction, the set of final TEXT
encoding instructions for a type shall not produce text encodings for some abstract values and empty element
encodings for other abstract values.

NOTE — If thereis a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS encoding ingtruction, then al encodings are text encodings.
31.25 If the TEXT encoding instruction is applied to a bitstring type with named bits and "NewName" is used, the
"NewName" shal not contain "white-space with escapes” (see 8.1.5) and shall not commence witha"0" (DIGIT ZERO)
ora"l" (DIGIT ONE).

31.2.6 A typewiththisfinal encoding instruction shall not also have afinal USE- NUMBER encoding instruction.

NOTE - The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, BASE64, DEC| MAL, EMBED- VALUES, LI ST, USE- NI L, USE-
ORDER, USE- QNANE, USE- TYPE, USE- UNI ON, WHI TESPACE.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 58

31.2.7 The"Quadlifyinglnformation" shall aways be present.

313 Effect on encodings
31.3.1 Oneof thefollowing five subclauses (31.3.2 to 31.3.6) applies.

3132 If the type is not a bitstring type with named bits and the "TextToBeUsed' is absent, the
"ExtendedXMLValue" encoding of each value referenced by the qualifying information for this instruction shall be a
character string containing the characters of the identifier (or shall bet rue or f al se in the case of boolean types).
For integer types with named values, either the identifiers or the corresponding numbers shall be used (as an encoder's
option).

31.3.3 If thetypeisabitstring type with named bits and the "TextToBeUsed" is absent, a character string identical to
the identifier of the bit shall represent the bit when it is set. Each abstract value shall be encoded as the concatenation
(possibly empty) of these character strings for all the bits that are set, separated by "white-space with escapes’ (see
8.1.5).

31.3.4 If thetypeis not abitstring type with named bits and the "TextToBeUsed" is present, then the following sub-
clauses apply (but see31.3.5).

31.3.4.1 If the "NewName" alternative is used, the character string used to encode the value identified by the
"Qualifyinglnformation” is "NewName". Each occurrence of the characters "<", ">", and "&" in the "NewName" shdl be
replaced either by one of the escape sequences &l t ; ", " > ;", and "&anp; " respectively, or by an escape sequence of
theform "&#n; " or "&#xn; ", specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.15.8.

31.3.4.2 If the "Keyword" aternative is used, the character string used to encode values of the type is the identifier
name, modified as specified below.

31.3.4.3 If the "Keyword" is CAPI TALI ZED, then the first character of the name is replaced by the upper-case
equivalent, otherwise the name is not affected.

31.3.4.4 If the "Keyword" iSUNCAPI TALI ZED, then the name is unchanged.

31.3.4.5 If the "Keyword" is UPPERCASED, then al characters of the name that are lower-case |etters are replaced by
their upper-case equivaent. Other characters are unchanged.

31.3.4.6 If the "Keyword" is LONERCASED, then al characters of the name that are upper case-letters are replaced by
their lower-case equivalent. Other characters are unchanged.

31.35 If the type is an integer type with named values, the character strings produced by application of sub-
clauses 31.3.4.1 to 31.3.4.6 shall be used in place of theidentifiers. Either the character strings or the corresponding
numbers shall be used (as an encoder's option).

31.3.6 If the type is a hitstring type with named bits and the "TextToBeUsed" is present, sub-clauses 31.3.4.1
t0 31.3.4.6 shall be applied to each bit identifier to produce the character string that represents the bit when it is set.
The bhitstring value shall then be encoded as the concatenation (possibly empty) of these character strings for all the
bitsthat are set, separated by "white-space with escapes'.

32 The UNTAGGED encoding instruction

32.1 General
32.1.1 The"Untaggedinstruction” is:

UntaggedI nstruction ::=
UNTAGGED

TargetList
32.1.2 The"TargetLigt" production is definedin 14.2.

32.1.3 (Tutorial) An informal description of the effect of UNTAGGED on ASN.1 constructors is provided in Annex
B. Thisclause and its subclauses provide atutorial introduction illustrating some of the effects of using UNTAGGED.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 59

32.1.4 Used (possibly repeatedly and nested) in conjunction with sequence, set, choice, sequence-of, and set-of, it
enables an almost arbitrary pattern of XML elements to be specified. Its effect isto remove the XML start-tag that
precedes the "ExtendedXMLValue" of the "Type" to which it is applied and the XML end-tag that followsit, resulting
inthe XML elements normally contained between those tags becoming partial XML content.

32.1.5 Applied to a choice type as a component of a sequence or set, it specifies the inclusion at that point in the
sequence (set) of exactly one of the alternatives of the choice type (or none if the choice type is an OPTI ONAL
component). The identifier of the choice type does not appear in the encoding. Some alternatives of the choice type
may be XML elements, but others may be partial XML content containing an almost arbitrary pattern of multiple
elements, through use of UNTAGGED in the definition of those alternatives.

32.1.6 Applied to a sequence-of type as a component of a sequence or set, it specifiestheinclusion at that point in
the sequence (set) of a specified or arbitrary number of repetitions of the sequence-of component (which may
produce asingle XML element, or may produce partial XML content if it isitself UNTAGGED).

32.1.7 Applied to a sequence (or set) type or a sequence-of (or set-of) type as the aternative of a choice type, it
enables that alternative to consist of the partial XML content which isthe "ExtendedXMLValue" of the sequence, set,
sequence-of or set-of.

32.1.8 A separate function of UNTAGGED when applied to a character-encodable type is to enable character content
to appear in the encoding of a sequence, with no tags around that content. This use is restricted to a component of a
sequence which is not itself untagged.

NOTE — The regtriction isin order to smplify the rules needed to ensure easy and unambiguous decoding.

32.2 Restrictions
32.2.1 Inadl instances of use, the enclosing type shall be a sequence, set, choice, sequence-of, or set-of type.

32.2.2 If the type is a character-encodable type, the enclosing type shall be a sequence type without a final
UNTAGGED encoding instruction. The type shall not be marked OPTI ONAL or DEFAULT. All the other components of
the enclosing sequence type (if any) shall have afinal ATTRI BUTE or ANY- ATTRI BUTES encoding instruction.

32.2.3 If thetypeis not a character-encodable type, it shall be a sequence, a set, a choice, a sequence-of, a set-of,
an octetstring or bitstring type with a contained "Type" without ENCODED BY, or an open type.

NOTE — Annex B provides guidelines that can ensure that ambiguities do not result from the use of this encoding ingtruction.

32.2.4 Thisencoding instruction shall not be applied to atype that has an empty "ExtendedXMLValue" encoding for
one of its abstract values, if the typeisused as:

a acomponent of asequence or set type with OPTI ONAL or DEFAULT; or
b) the component of asequence-of or set-of type; or

c) an dternative of a choice type, if another alternative of the same choice type has an empty
"ExtendedXMLVaue' encoding for one of its abstract values and has a final UNTAGGED encoding
instruction.

EXAMPLE: A type that is a sequence type with all of its components OPTI ONAL has an abstract value with an empty
"ExtendedXMLValue" encoding, as does a sequence-of type where zero repetitions are allowed.

32.2.5 This encoding instruction shall not be assigned unless there is a G_.OBAL-DEFAULTS MODI FI ED-ENCODI NGS
encoding instruction in the encoding control section.

32.2.6 A type with this final encoding instruction shall not have any of the final encoding instructions ANY-
ATTRI BUTES, ANY- ELEVENT, ATTRI BUTE, DEFAULT- FOR- EMPTY, EMBED- VALUES, Pl - OR- COMVENT, USE- NI L, USE-
CORDER or USE- TYPE.

32.2.7 Thereshdl beno qualifying information in the "TargetList".

32.3 Effect on encodings
32.3.1 |If thetypeisencoded as atop-level type, thisencoding instruction shall beignored.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 60

32.3.2 If the enclosing type is a choice type, the "ExtendedXML ChoiceValue" (see 17.5.1) for this alternative of
the enclosed type shal be the "ExtendedXMLVaue' of the aternative (the second alternative in the
"ExtendedX ML ChoiceVaue" production).

NOTE — This "ExtendedXMLVauge' for the dternative may be a single XML element or may be partid XML content consisting of
multiple XML eements.

32.3.3 If the enclosing type is a sequence or set type, the "ExtendedXMLNamedValue' (see 17.6) for this
component of the enclosed type shall be replaced by the "ExtendedXMLValue" of the component (the second
dternativein the "ExtendedX MLNamedValue" production).

NOTE — This "ExtendedXMLVdue' may be a single XML element or may be partiadl XML content consisting of multiple XML
elements.

32.3.4 If the enclosing type is a sequence-of or set-of type, the "ExtendedXMLDelimiteditem” (if used - see 17.7)
of each repetition shall be replaced by the "ExtendedXMLVaue" enclosed in the"ExtendedX ML Delimitedltem”.

NOTE 1 — It is not possible to use UNTAGGED unless a GLOBAL- DEFAULTS of MODI FI ED- ENCODI NGS has been included in
the encoding control section, in which case "ExtendedXMLVauelist" is not permitted (see 17.7.2).

NOTE 2 — This "ExtendedXMLVaue' may be a sngle XML element or may be partial XML content congisting of multiple XML
elements.
32.35 If thetypeis an octetstring or bitstring type with a contained "Type" without ENCODED BY, or an open type,
the "ExtendedXMLValue" shdl be an "ExtendedXMLTypedVaue' (not an "xmlhstring” or an "XML Base64String™).

NOTE - Such types do not match the definition of character-encodable type (see 3.2.2ter). Subclause 32.3.5implies that when they
have afinal UNTAGGED encoding instruction, they are always encoded as XML elements.

33 The USE- NI L encoding instruction

33.1 General
33.1.1 The"UseNillnstruction" is:

UseNillnstruction ::=
USE- NI L

TargetList
33.1.2 The"TargetList" productionisdefinedin 14.2.

33.1.3 This encoding instruction provides an optimized EXTENDED-XER encoding for a sequence with a single
OPTI ONAL component whose other components (if any) al have a final ATTRI BUTE or ANY- ATTRI BUTES encoding
instruction, possibly preceded by aninitial sequence-of type supporting USE-ORDER (see clause 35).

33.1.4 Intheabsence of this encoding instruction, the optional component would encode as follows:

a (the "not missing but empty" case) if the component is present in the abstract value, with the abstract
vaue that has an empty "ExtendedXMLVaue' encoding, an "ExtendedXMLNamedVaue' for the
component is present in the XML document, usually as an empty-element tag (or with adjacent start and
end tags);

b) (the"missing" case) if the component is absent in the abstract value, the "ExtendedX MLNamedValue' is
not present;

¢) (the"not missing and not empty" case) if the component is present in the abstract value with an abstract
value that does not have an empty encoding, an "ExtendedXMLNamedValue" for the component is
present with norn-empty content.

33.15 Useof USE-NIL requires that the absence of the optional component (case b above) be signaled by the
inclusion of anil identification attribute with name "ni | " and avalue of either "t r ue" or "1".

33.1.6 Incasesa) and c) of 33.1.4, the nil identification attribute can either be omitted (as an encoder's option), or
it can be present with a value of either fal se" or '0". The optional component shall be encoded by omitting the
associated tags.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 61

33.2 Restrictions

33.2.1 The USE-NI L encoding instruction shall only be assigned to a sequence type that has an OPTI ONAL
component without a final ATTRI BUTE encoding instruction. All the other components of the sequence type, if any,
shdl have afinal ATTRI BUTE or ANY- ATTRI BUTES encoding instruction, or shall be the sequence-of components
supporting a USE- ORDER or an EMBED- VAL UES encoding instruction that are also final encoding instructions on the
sequence type.

33.2.2 The sequence type shall not have afinal UNTAGGED encoding instruction.

33.2.3 The OPTI ONAL component shall not have any of the final encoding instructions ANY- ELEMENT, ANY-
ATTRI BUTES, DEFAULT- FOR- EMPTY, EMBED- VALUES, Pl - OR- COMVENT, UNTAGGED, USE- NI L, USE- ORDER or USE-
TYPE.

NOTE - Apart from UNTAGGED, the encoding instructions listed above are those that cannot be applied to a type that has a fina
UNTAGCGED encoding ingtruction.

33.2.4 If the OPTI ONAL component is not a character-encodable type, then it shal be a sequence, set, choice,
sequence-of, set-of type, an open type, or an octetstring or bitstring type with a contained "Type" and without
ENCODED BY.

33.25 If the OPTI ONAL component is a sequence type, none of its components shall have afinal ATTRI BUTE or
ANY- ATTRI BUTES encoding instruction.

33.2.6 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED-
ENCODI NGS encoding instruction in the encoding control section.

33.2.7 A type with this final encoding instruction shall not aso have any of the fina encoding instructions
UNTAGCED or USE- QNAME.

NOTE - The following final encoding instructions can never occur together with this fina encoding instruction lecause their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, LI ST, TEXT, USE- NUMBER,
USE- TYPE, USE- UNI ON, WHI TESPACE.

33.2.8 Thereshal beno quaifying information in the "TargetList".

33.3 Effect on encodings

33.3.1 If the OPTI ONAL component is absent (case b of 33.1.4), then anil identification attribute with name "ni | "
and avalue of either "t rue" or "1" shall be added to the "AttributeList" of the enclosing element

33.3.2 If theOPTI ONAL component is present (cases aand c of 33.1.4), the nil identification attribute can either be
omitted (as an encoder's option), or it can be added to the "AttributeList" of the enclosing element with a value of
either "f al se" or "0". The optional component shall be encoded by omitting the associated tags.

34 The USE- NUMBER encoding instruction

34.1 General
34.1.1 The"UseNumberlnstruction” is:

UseNumberlnstruction ::=
USE- NUMBER

TargetList
34.1.2 The"TargetList" production isdefined in 14.2.
34.1.3 The purpose of this encoding instruction is to modify the encoding of an enumerated type so that the
numbersin the "NamedNumber" enumerations are used instead of the names.
34.2 Restrictions
34.2.1 Thisencoding instruction shall beignored unlessit is applied to an enumerated type.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 62

34.2.2 A typewith thisfinal encoding instruction shall not also have afinal TEXT encoding instruction.

NOTE - The following fina encoding instructions can never occur together with this fina encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEVENT, BASE64, DECI MAL, EMBED- VALUES, LI ST, USE- NI L, USE-
ORDER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

34.2.3 Thereshdl beno qualifying information in the "TargetList".

34.3 Effect on encodings
34.3.1 The"ExtendedXMLEnumeratedVaue' is.

ExtendedXMLEnumeratedValue ::=
EmptyElementEnumerated |
TextEnumerated |
XML SignedNumber

34.3.2 The "EmptyElementEnumerated” and "TextEnumerated” are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1,
19.8 and 19.9.

34.3.3 The"XMLSignedNumber" isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.9 and 18.12, and shall be the
number in the "NamedNumber" of the enumeration.

34.3.4 The XMLSignedNumber alternative shall be used if and only if the enumerated type has this final encoding
instruction.
NOTE — If a GLOBAL- DEFAULTS of MODI FI ED- ENCODI NGS is present in the XER Encoding Control Section but the

enumerated type does not have this final encoding instruction, then the second aternative is used. If there is no GLOBAL-
DEFAULTS of MODI FI ED- ENCODI NGS present in the XER Encoding Control Section, then the first aternative is used.

35 The USE- ORDER encoding instruction

35.1 General
35.1.1 The"UseOrderlnstruction” is:

UseOrderlInstruction ::=
USE- ORDER

TargetList
35.1.2 The"TargetList" production isdefined in 14.2.

35.1.3 The purpose of this encoding instruction isto allow an optimized EXTENDED-XER encoding of a sequence
type in which there is a sequence-of component that determines the semantic order of the values of the following
components of the sequence type that are encoded as elements. It can aso be used, if thereis dso afinal USE-NI L
encoding instruction (see clause 33), and the single OPTI ONAL component required by the use of USE-NIL is a
seguence, to determine the semantic order of the components of that OPTI ONAL sequence.

35.1.4 The sequence-of component that determines the semantic order is the first component of the sequence,
unless there is also a sequence-of component supporting a final EMBED-VALUES encoding instruction on the sequence
type. In this case, the sequence-of component supporting the EMBED- VALUES encoding instruction precedes the
seguence-of component supporting the USE- ORDER encoding instruction.

35.1.5 The component determining the semantic order is required to be a sequence-of type with a component that
is an enumerated type. That sequence-of type and its semantics depends on the presence or absence of a USE- NI L
encoding instruction on the sequence type, as described in the following subclauses.

35.1.5.1 Wherethereisno final USE- NI L encoding instruction, the names of the enumerations are identical to the
ASN.1 identifiers of the components of the sequence type. The order of the enumerations in each abstract value
determines the semantic order of the values of the following components of the sequence type that are present in the
encoding.

35.1.5.2 Where thereisaso afinal USE- NI L encoding instruction, the OPTI ONAL component required by the use of
USE- NI L isrequired to be a sequence type (B say), and the names of the enumerations are identical to the ASN.1

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 63

identifiers of the components of the sequence type B. The order of the enumerations in each abstract value
determines the semantic order of the values of the components of the sequence type B that are present in the
encoding.

35.2 Restrictions

35.2.1 This encoding instruction shall only be assigned to a sequence type. The sequence type shall contain a
component that is a sequence-of type (type A, say) with a component that is an enumerated type. If the sequence type
does not have aso afinal EMBED- VALUES encoding instruction, then type A shall be the first component, otherwise it
shall be the second component. If thereisno final USE- NI L encoding instruction, the sequence type shall also have at
least one other component with no final ATTRI BUTE or ANY- ATTRI BUTES encoding instruction (a non-attribute
component). If there is a fina USE-NIL encoding instruction, the OPTIONAL component supporting the USE-NIL
shall be asequence type, and it shall have at least one component.

35.2.2 The enumerated type shall have identifiers that depend on the presence or absence of a final USE-NI L
encoding instruction on the sequence type with the USE-ORDER encoding instruction, as specified in the following
subclauses.

35.2.2.1 If thereis no final USE- NI L encoding instruction, then the enumerated type shall have identifiers for the
enumerations that are in one-to-one correspondence (and are in the same textual order) with the identifiers of the
following non-attribute components (see 35.2.1) of the sequence. The sequence-of type shall be constrained so that
every abstract value contains exactly one identifier for each non-attribute component of the sequence that is present in
the abstract value.

35.2.2.2 If there is a fina USE-NI L encoding instruction, then the enumerated type shall have identifiers for the
enumerations that are in one-to-one correspondence (and are in the same textual order) with the identifiers of the
components of the OPTI ONAL component in the sequence type. The sequence-of type shall be constrained so that
every abstract value contains exactly one identifier for each component of the OPTI ONAL sequence that is present in
the abstract value.
NOTE - It is recommended that the constraint on the sequence type be expressed as:
(CONSTRAI NED BY {/* Shall conformto ITU-T Rec. X.693 | |SO/|IEC 8825-4, clause 35 */})

35.2.2.3 The "Enumerationltem”s in the enumerations shall al be "identifier's or shall al be "NamedNumber"s with
the value O for the first "Enumerationitem”, 1 for the second, and so on, up to the last " Enumerationltem".

35.2.3 The sequence-of type shall not be marked OPTI ONAL or DEFAULT.

35.2.4 The following components of the sequence (if there is no final USE-NI L encoding instruction), and the
components of the OPTI ONAL sequence (if there is a final USE-NI L encoding instruction) shall not be marked
DEFAULT unlessthey have afinal ATTRI BUTE encoding instruction.

35.2.5 No component of either the sequence with this final encoding instruction or the OPTI ONAL sequence (when
afinal USE- NI L encoding instruction is present) shall have a final UNTAGGED encoding instruction, whether the type
of that component is a character-encodable type or not.

35.2.6 No component of the sequence with this final encoding instruction shall have a final ANY- ELEMENT
encoding instruction.

35.2.7 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED-
ENCODI NGS encoding instruction in the encoding control section.

35.2.8 A typewiththisfinal encoding instruction shall not also have a final UNTAGGED encoding instruction.

NOTE - The following fina encoding instructions can never occur together with this final encoding ingtruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, LI ST, TEXT, USE- NUMBER,
USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

35.2.9 Thereshdl beno quaifying information in the "TargetList".

35.3 Effect on encodings
35.3.1 The sequence-of type with the enumerated component shall not be directly encoded.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 64

35.3.2 An encoder shall encode the semantics of this type (the semantic order of the sequence components or of
the OPTI ONAL sequence components) by encoding the components that are encoded as elements in the order
specified by the sequence-of type with the enumerated component. A decoder shall recover the value of the
sequence-of component by use of the order of the encoded elements.

36 The USE- QNAME encoding instruction

36.1 General
36.1.1 The"UseQNamelnstruction" is:
UseQNamel nstruction ::=

USE- QNAVE
TargetList

36.1.2 The"TargetList" productionisdefinedin 14.2.

36.1.3 The purpose of this encoding instruction isto modify the encoding of a sequence type, each of whose values
specifies an optional namespace name (a URI) and an unprefixed name, so that it encodes as an XML namespace-
qualified or unqualified name.

NOTE — This is provided because it is available in other schema notations. An example of a sequence type to which it could be
applied is the QName type defined in ITU-T Rec. X.694 | ISO/IEC 8825-5.

36.1.4 If the optional component is present in an abstract value of the sequence type, then that abstract value
represents a namespace-qualified name. If the optional component is absent, the sequence type represents an
unqualified name.

36.2 Restrictions

36.2.1 This encoding instruction shall only be assigned to a sequence with exactly two components, both of type
UTF8St ri ng. Thefirst component shall be OPTI ONAL.

36.2.2 Thefirst component shall be restricted to represent a URI (see RFC2396). The second component shall be
restricted to contain an "NCName" as specified in W3C XML Namespaces, clause 2, production 4, and shall not
commence with characters that when uppercased are "XM." .

36.2.3 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED-
ENCODI NGS encoding instruction in the encoding control section.

36.2.4 A typewiththisfinal encoding instruction shall not also have afinal USE- NI L encoding instruction.

NOTE - The following fina encoding instructions can never occur together with this final encoding ingtruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, BASE64, DECI MAL, EMBED- VALUES, LI ST, TEXT, USE-
NUMBER, USE- ORDER, USE- TYPE, USE- UNI ON, WHI TESPACE.

36.2.5 Thereshdl beno qualifying information in the "TargetList".

36.3 Effect on encodings

36.3.1 The presence of this encoding instruction on a type, if the optional component is present, requires that a
namespace declaration (or default namespace declaration) be in scope for the attribute value or element content that
encodes the value of thistype, in accordance with clause29. The attribute value or element content is then encoded as
specified for a namespace-qualified namein clause 29.

36.3.2 If the optional component is absent, a default namespace declaration shall not be in scope for the attribute
value or element content that encodes the value of this type.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 65

37 The USE- TYPE encoding instruction

37.1 General
37.1.1 The"UseTypelngruction” is:

UseTypel nstruction ::=
USE- TYPE

TargetList
37.1.2 The"TargetList" production isdefined in 14.2.

37.1.3 This encoding instruction optimizes the EXTENDED-XER encoding of a choice type. It requires a type
identification attribute to be encoded in the enclosing element to identify the alternative that has been encoded (unless
thisisthefirst alternative) and the removal of the start-tag and end-tag around the encoding of the alternatives.

37.1.4 The type identification attribute identifies the type of an XML element. The name of the attribute is
required to be the name 't ype" from the control namespace (see 16.9) and its value identifies an aternative of the
choice type to which this encoding instruction is applied (it provides aternative determination for the choice type).

37.2 Restrictions

37.2.1 The type to which USE-TYPE is assigned shall be a choice type without a final UNTAGGED encoding
instruction.

37.2.2 None of the alternatives of the choice type shall have afinal UNTAGGED encoding instruction.

37.2.3 None of the alternatives of the choice type shall itself be a choice type with a final USE-TYPE encoding
instruction.
NOTE - One or more alternatives of the choice type may be choice types with afinal USE- UNI ON encoding instruction.

37.2.4 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED-
ENCODI NGS encoding instruction in the encoding control section.

37.25 A type with this final encoding instruction shall not aso have any of the fina encoding instructions
UNTAGGED or USE- UNI ON.

NOTE - The fallowing fina encoding ingtructions can never occur together with this finad encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, DEFAULT- FOR- EMPTY,
EMBED- VALUES, LI ST, TEXT, USE- NI L, USE- NUMBER, USE- ORDER, USE- QNANE, WHI TESPACE.

37.2.6 Thereshal beno quaifying information in the "TargetList".

37.3 Effect on encodings

37.3.1 If the alternative of the choice being encoded is not the first alternative of that choice, then a type
identification attribute (see 37.3.3 and 37.3.4) shal be added to the "AttributeList" of the enclosing element,
unless 37.3.8 applies.

37.3.2 If the alternative of the choice being encoded is the first aternative, the type identification attribute may be
added or omitted as an encoder's option, unless 37.3.8 applies.

37.3.3 The type identification attribute $al be an instance of the "Attribute” production (see 20.3.3) with a
namespace-qualified "Control AttributeName" (see 20.3.5) of "t ype" from the control namespace (see 16.9).

37.34 The value of the type identification attribute shall be the identifier of the chosen aternative, possibly
modified in accordance with any final NAMVE and NAMESPACE encoding instructions.

37.35 If there is no type identification attribute present in an encoding of a type with this final encoding
instruction, a decoder shall assume that the first alternative of the choiceis present.

37.3.6 The presence of atype identification attribute with an unexpected value shall not result in a decoding error.
When encountering such an attribute in an encoding, a decoder shall assume that the first alternative of the choice has
been identified, and may ignore the type identification attribute (or pass it to the application). In addition, in such

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 66

cases, the decoder may ignore (or pass to the application) any other unexpected attributes and any unexpected child
elements encountered after all the expected child elementsin the "ExtendedXMLValue' of the dternative.

37.3.7 All the "Attribute's that would otherwise be in the "AttributeList" of the "ExtendedXML ChoiceVaue" shdll
be added to the "AttributeList" of the enclosing element and the "ExtendedX ML ChoiceValue" of the choice type shall
be replaced by the "ExtendedXMLVduge' in the"ExtendedX ML ChoiceValue'.

37.3.8 If one or more alternatives of the choice type with the USE-TYPE final encoding instruction are choice types
with a final USE- UNI ON encoding instruction, the type identification attribute may, as an encoder's option, identify
one of the alternatives of the choice type with the final USE-UNI ON instruction instead of an alternative of the choice
type with the USE-TYPE final encoding instruction.

38 The USE- UNI ON encoding instruction

38.1 General
38.1.1 The"UseUnionlnstruction" is:

UseUnionl nstruction ::=
USE- UNI ON

TargetList
38.1.2 The"TargetList" production isdefined in 14.2.

38.1.3 This encoding instruction optimizes the encoding of a choice type in cases where the encoding of the
abstract values of each alternative is sufficiently distinct from the encoding of abstract values of other alternatives for
adecoder to determine the abstract value represented by analysis of the encoding.

38.1.4 If the choice type with afinal USE- UNI ON encoding instruction does not also have afina ATTRI BUTE or a
final UNTAGGED encoding instruction, then this encoding instruction can result in the insertion of atype identification
attribute in the enclosing element to identify the alternative that has been encoded. If the choice type has a fina
ATTRI BUTE or UNTAGGED encoding instruction, or is the component of a sequence-of or set-of typewithaLl ST
encoding instruction, the insertion of the type identification attribute is not possible.

38.1.5 This encoding instruction causes the remova of the start-tag and end-tag around the encoding of the
dternative.

38.2 Restrictions
38.21 A typewithafina encoding instruction of USE- UNI ON shall be a choice type.

38.2.2 All the alternatives of the choice type shall be character-encodable types, but shall not be choice types with
afina USE- UNI ON encoding instruction.

38.2.3 If the choice type has afina ATTRI BUTE or UNTAGGED encoding instruction or is used in atype definition
as a component of a sequence-of or set-of type with afinal LI ST encoding instruction, the alternatives of the choice
type shall be constrained so that, for any alternative, al its abstract values have at least one encoding (its
"ExtendedXMLVaue") that isdifferent from al| the allowed encodings of all the textually-preceding alternatives.

NOTE - This requirement is imposed because it is impossible to insert a type-identification attribute determining the alternative that
was selected. Without this requirement, the encoding would be ambiguous.

38.2.4 In the following two subclauses, the term "identifier" means: identifier (possibly modified in accordance
with any final NAMVE and NAMESPACE encoding instructions) of an alternative (of the choice type).

38.2.5 If the choice type (type U, say) is being encoded as an alternative of an enclosing choice type (type E, say)
that has a final USE- TYPE encoding instruction, and the identifier of one of the alternatives of E isidentical to the
identifier of one of the alternatives of U, then each abstract value of that aternative of U shall have at least one
encoding that is different from all the encodings of the textually-preceding alternatives of U.

NOTE — This requirement is imposed because it in this case not possible to identify the aternative of U, as the identifier in a type
identification attribute for E would merely identify the whole of U.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 67

38.2.6 If the choice type (U1, say) is being encoded as an alternative of an enclosing choice type (E, say) with a
final USE- TYPE encoding instruction, and E contains another choice type (U2, say) with a USE- UNI ON encoding
instruction that textually follows U1 in E, and the identifier of any one of the alternatives of U2 isidentical to one of
the identifiersin U1, then each abstract value of that alternative of U2 shall have at |east one encoding that is different
from all the encodingsof al the aternatives of U1.

NOTE — This requirement is imposed because it in this case not possible to identify the aternative of U2, as the identifier in atype
identification attribute for E would identify the dternative in U1.

38.2.7 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED-
ENCODI NGS encoding instruction in the encoding control section.

38.2.8 A typewiththisfina encoding instruction shall not also have a final USE- TYPE encoding instruction.

NOTE - The following fina encoding instructions can never occur together with this final encoding ingtruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, BASE64, DECI MAL, EMBED- VALUES, LI ST, TEXT, USE-
NI L, USE- NUMBER, USE- ORDER, USE- QNAME, WHI TESPACE.

38.2.9 Thereshdl beno qualifying information in the "TargetList".

38.3 Effect on encodings

38.3.1 If the choice type does not have a final ATTRI BUTE or UNTAGGED encoding instruction and is not encoded
as the component of a sequence-of or set-of type with afinal LI ST encoding instruction, then a type identification
attribute may be added, as an encoder's option, to the "AttributeList" of the enclosing element (but see 38.3.8).

NOTE - If the choice type is encoded as an dternative of a choice with a USE- TYPE encoding ingtruction, the type identification

atribute specified by the USE-UNION encoding instruction can be used instead of the type identification attribute specified by the
USE- TYPE encoding instruction (see 37.3.8).

38.3.2 If every possible encoding of the abstract value being encoded is identical to one of the encodings of an
abstract value of atextually-preceding alternative, then atype identification attribute shall be added.

NOTE - This subclause 38.3.2 removes the encoder's option of subclause 38.3.1 and makes the addition of the type identification
attribute mandatory. The restrictions specified in 38.2.4to 38.2.6 ensure that this can only occur when the choice type is encoded as
an dement and when no ambiguity due to identica identifiersis possible.

38.3.3 If the choice type has afinal ATTRI BUTE or UNTAGGED encoding instruction or its enclosing type is a
sequence-of or set-of type with afinal LI ST encoding instruction, no type identification attribute can be inserted in
any element. In the case of the scenarios described in 38.2.4 to 38.2.6, atype identification attribute cannot be
inserted to precisely identify some of the aternatives of U or U2. Decoders shall therefore rely on the conditions of
38.2.4 to0 38.2.6 to determine the abstract value that has been encoded.
NOTE - These rules imply that a decoder is required, in the absence of a type identification (or in the presence of an ambiguous
one), to attempt to decode againgt the textually first aternative, then the next, and so on, accepting the first successful decode that is
found (or diagnosing an error if there is no successful decode).
38.34 The type identification attribute shall be an instance of the "Attribute" production (see 20.3.3) with a
namespace-qualified "Control AttributeName" (see 20.3.5) of "t ype" from the control namespace (see 16.9).

38.3.5 The value of the type identification attribute shall be the identifier of the chosen alternative, possibly
maodified in accordance with any final NAMVE and NAMESPACE encoding instructions.

38.3.6 All the "Attribute"s that would otherwise be in the "AttributeList" of the "ExtendedXML ChoiceVaue' shall
be added to the "AttributeList" of the enclosing element and the "ExtendedXM L ChoiceValue" of the choice type shall
be replaced by the "ExtendedXMLValue' in the"ExtendedX ML ChoiceValue'.

38.3.7 The "ExtendedXMLVaue" of the character-encodable type shall be one of the encodings that does not
contain any XML tags.

NOTE — Thismay restrict encoders' options.

38.3.8 If an dternative of the choice type has a final NAVE AS "" encoding instruction, no type identification
attribute shall be added for that aternative.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 68

39 TheWH TESPACE encoding instruction

39.1 General
39.1.1 The"WhiteSpacelnstruction" is.

WhiteSpacel nstruction ;:=
V\HI TESPACE

TargetList
WhiteSpaceAction
WhiteSpaceAction ::=
REPLACE |
COLLAPSE
39.1.2 The"TargetLigt" productionisdefined in 14.2.

39.1.3 Thisencoding instruction requires decoders to accept additional optionsin the encoding of the SPACE (32)
character and in the use of leading and trailing "white-space with escapes' (see 8.1.5) for character string encodings.

39.2 Restrictions
39.2.1 This encoding instruction can only be assigned to a restricted character string type that either does not
contain, or is constrained not to contain the following characters:
a HORIZONTAL TABULATION (9);
b) LINE FEED (10);
c) CARRIAGE RETURN (13).
39.2.2 If this encoding instruction has the COLLAPSE option, then it shall not be applied to a restricted character

string type unless that type is constrained not to have leading or trailing spaces or contain multiple adjacent spaces for
any abstract value.
NOTE - It is recognized that some ASN.1 tools may not be able to staticaly check that the above restriction will be satisfied for all
abstract values, but conforming encoders cannot generate encodings in which the "ExtendedXMLVaue" violates this restriction.

39.2.3 A type with this final encoding instruction shall not also have any of the final encoding instructions ANY-
ELEMENT or BASE64.

NOTE - The following find encoding instructions can never occur together with this find encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, DEC| MAL, EMBED- VALUES, LI ST, TEXT, USE- NI L, USE- NUMBER, USE-
ORDER, USE- QNANE, USE- TYPE, USE- UNI ON.

39.24 There shal beno quaifying information in the "TargetList".

39.3 Effect on encodings

39.3.1 If the keyword REPLACE is used, every SPACE (32) in the abstract value can be replaced, as an encoder's
option, by asingle character that is "white-space with escapes’ (see8.1.5).

39.3.2 If the keyword COLLAPSE is used, every SPACE (32) can be replaced, as an encoder's option, by any number
of "white-space with escapes' characters. In addition, one or more such characters can be added to the beginning
and/or to the end of the "ExtendedXMLVaue"' encoding as an encoder's option.

Replace the previously existing clause 10 and its subclauses with the following (noting that it has been
renumbered as clause 40):

40 Object identifier valuesreferencing the encoding rules

40.1 The encoding rules specified in this Recommendation | International Standard can be referenced and applied
whenever there is a need to specify an unambiguous character string representation for the values of asingleidentified
ASN.1type.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 69

40.2 The following object identifier and object descriptor values are assigned to identify the encoding rules
specified in this Recommendation | International Standard:

For BASIC-XER:
{joint-iso-itu-t asnl (1) xm-encoding (5) basic (0)}
"Basic XML encoding of a single ASN. 1 type"

For CXER:
{joint-iso-itu-t asnl (1) xm -encoding (5) canonical (1)}
"Canoni cal XML encoding of a single ASN. 1 type"

For EXTENDED-XER:
{joint-iso-itu-t asnl (1) xm -encoding (5) extended (2)}
"Ext ended XML encodi ng of a single ASN. 1 type"

Insert a new subclause 40.3 as follows:

40.3 The following object identifier and object descriptor values are assigned in order to identify the ASN.1
namespace (see16.9):

asnlNanespace OBJECT | DENTIFIER :: =
{joint-iso-itu-t asnl (1) xm -encoding (5) extended (2)
modul es (0) support (1) }
"ASN. 1 namespace for EXTENDED- XER support"

Replace Annex A with the following:

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 70

Annex A

Examples of BASIC-XER and CXER encodings
(This annex does not form an integral part of this Recommendation | International Standard)
This annex illustrates the use of the basic and canonical XML Encoding Rules specified in this Recommendation |

International Standard by showing XML Markup representations of a (hypothetical) personnel record which is defined
using ASN.1.

Al ASN.1 description of therecord structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in ITU-T
Rec. X.680 | ISO/IEC 8824-1. This is identical to the example defined in Annex A of ITU-T Rec. X.690 | ISO/IEC
8825-1.

Personnel Record ::= [APPLI CATION 0] IMPLICIT SET {
name Nane,
title [0] VisibleString,
nunber Enpl oyeeNunber,
dateOfHire [1] Date,
nanmeO Spouse [2] Nane,
children [3] IMPLICT
SEQUENCE OF Chi |l dl nformati on DEFAULT {} }
Childinformation ::= SET
{ nane Nane,
dateOBirth [0] Date}
Nane ::= [APPLI CATION 1] I MPLICI T SEQUENCE
{gi venNane Vi si bl eString,
initial Vi si bl eString,
fam | yNane Vi si bl eString}
Enpl oyeeNunber ::= [APPLI CATION 2] I MPLICIT | NTEGER
Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMVDD

NOTE — Tags are used in this example only because it was felt appropriate to use the identical example to that which appeared in
the earliest version of ITU-T Rec. X.680 | ISO/IEC 8824-1. They have no effect on BASIC-XER, CXER and EXTENDED-XER
encodings.

A.2 ASN.1 description of arecord value

The value of John Smith’s personnel record isformally described below using the basic ASN.1 value notation:

{ nane {gi venNane "John", initial "P", fam|lyNane "Smth"},
title "Director",
nunber 51,
dateOfHire "19710917",
nanedf Spouse {gi venNane "Mary", initial "T", fam|lyNane "Smth"},
children

{{nane {gi venNane "Ral ph", initial "T*, fam|lyName "Smith"},
dateOFBirth "19571111"},

{name {givenNane "Susan", initial "B", fam |yName "Jones"},
dateOBirth "19590717"}}}

A.3 Basic XML representation of thisrecord value

The representation of the record value given above (after applying the basic XML Encoding Rules defined in this
Recommendation | International Standard) is shown below assuming an empty prolog.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 71

The length of this encoding in BASIC-XER is 653 octets ignoring all "white-space’. For comparison, the same
Personnel Record value encoded with the UNALIGNED variant of PER (see ITU-T Rec. X.690 | ISO/IEC 8825-1) is
84 octets, with the ALIGNED variant of PER it is 94 octets, with BER (see ITU-T Rec. X.691 | ISO/IEC 8825-2)
using the definite length form it is a minimum of 136 octets, and with BER using the indefinite length form it is a
minimum of 161 octets.

<Per sonnel Recor d>
<nane>
<gi venNanme>John</ gi venNanme>
<initial>P</initial>
<fam | yName>Sni t h</ f anmi | yName>
</ nanme>
<title>Director</title>
<nunber >51</ nunber >
<dat ef Hi re>19710917</ dateCf Hi re>
<nameCf Spouse>
<gi venName>Mar y</ gi venNane>
<initial>T</initial>
<fam | yName>Sni t h</ f am | yName>
</ namef Spouse>
<chi | dren>
<Chi | dI nfornmati on>
<nane>
<gi venNanme>Ral ph</ gi venNanme>
<initial >T</initial>
<fam | yNane>Smi t h</f am | yNane>
</ nane>
<dateOF Bi rth>19571111</dateOBirt h>
</ Chi I dI nf or mati on>
<Chi | dl nfornmati on>
<nane>
<gi venNanme>Susan</ gi venNanme>
<initial>B</initial>
<fam | yNane>Jones</fan | yNane>
</ nane>
<dat eOF Bi rt h>19590717</dateOBirt h>
</ Chi I dI nf or mati on>
</ chil dren>
</ Per sonnel Recor d>

A4 Canonical XML representation of thisrecord value

The representation of the record value given above (after applying the Canonical XML Encoding Rules defined in this
Recommendation | International Standard) is shown below:

<Per sonnel Recor d><name><gi venNane>John</ gi venNane><i ni ti al >P</i ni ti al ><f ami | yNam
e>Smi t h</ f ami | yName></ name><nunber >51</ nunber><title>Director</titl e><dateO H re
>19710917</ dat eOf H r e><nanmed Spouse><gi venNanme>Mar y</ gi venNanme><i ni ti al >T</initi

al ><f am | yNanme>Smi t h</ f am | yNane></ nane Spouse><chi | dr en><Chi | dI nf or mat i on><nam
e><gi venNane>Ral ph</ gi venName><i ni ti al >T</ini ti al ><fam | yName>Sni t h</ f ani | yNane>
</ name><dat eX Bi rt h>19571111</ dat eOf Bi rt h></ Chi | dI nf or nat i on><Chi | dI nf or mat i on><
nanme><gi venNanme>Susan</ gi venNanme><i ni ti al >B</initi al ><fami | yNanme>Jones</fami | yNa
me></ nane><dat e Bi rt h>19590717</ dat eI Bi rt h></ Chi | dI nf or mat i on></ chi | dr en></ Per

sonnel Recor d>

Insert a new Annex B as follows:

Annex B

Partial XML content and deter ministic encodings
(Thisannex does not form an integral part of this Recommendation | International Standard)

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 72

B.1 Partial XML content
NOTE — This annex describes vaidity when MODI FI ED-ENCODI NGS isin use.

B.1.1 Thefollowing subclauses describe the construction of partial XML element content. This clause describes
what partial XML element content is produced as part of encodings, and B.2 specifies restrictions on partial XML
element content that are necessary to satisfy the requirement of 10.2.11. If an ASN.1 specification with XER
encoding instructions does not violate these restrictions, it is a legal specification, and tools can easily check its
legality. If the restrictions ar e violated, the specification may still not violate the normative requirements of 10.2.11,
but tools may find it hard to check that thisisthe case.

NOTE — The restrictions are designed to ensure that a decoder can easily and unambiguously recover the abstract values that were
used by an encoder in the production of the encoding.

B.1.2 A patiad XML element content is made up of a combination of single XML elements provided by an
[ELEMENT] SEQUENCE, SET, SEQUENCE OF, SET OF or CHO CE, and of other partial XML element content provided
by [UNTAGGED] SEQUENCE, SET, SEQUENCE OF, SET OF or CHOl CE.
NOTE — The boundary between partial XML element content within a larger partidl XML element content is not visible in the
encoding, but can be determined from the ASN.1 schema and restrictions on the names of elements.

B.1.3 Apartiad XML element content consists of either:
a asingle XML eement; or

b) a concatenation group, consisting of an ordered concatenation of zero, one or more partial XML
element content in which some of the partial XML element content may be absent in an instance of
encoding (representing the absence of an optiona abstract value; or

NOTE — An encoding of an [UNTAGGED] SEQUENCE or SET type will in general produce a concatenation group.
C) a repetition group, consisting of the repetition (unlimited or constrained) of partial XML element

content (called the repeated component) produced from the component of a SEQUENCE OF or SET OF;
or

NOTE — An encoding of an [UNTAGGED] SEQUENCE OF or SET OF type will in general produce a repetition group.
d) an alternatives group, consisting of the presence of asingle partial XML element content chosen from
aset of dternative partial XML element contents (of which exactly oneis present in an encoding).

NOTE — An encoding of a CHO CE type produces an alternatives group. Each aternative of the CHO CE type
produces one of the dternative partial XML element contents for that CHOI CE type.

B.2 Recommended restrictions on encodings producing partial XML element content

B.2.1 For the purposes of this clause only, any repetition group is treated as if it were optional, that is, may have
zero repetitions.

NOTE — The regtriction that the repetition group be treated as if it were optional is not strictly necessary if there are constraints that
require at least one repetition of the corresponding ASN.1 type, but isintroduced for smplicity.

B.2.2 For the purposes of this clause only, a requirement that element names be distinct should be interpreted as
follows:

a) al comparisons are made after the application of any final NAME and NAMESPACE encoding instructions
on the type that generated the name;

b) namesthat are namespace-qualified names are distinct from unqualified names;

c) namespace-qualified names aredistinct if and only if they differ in either their unprefixed name or their
namespace name or both.

B.2.3 For any resulting partial XML element content, there is possible ambiguity (and hence a possible violation
of 10.2.11) if the conditions specified in this subclause B.2 are not satisfied for all possible choices of alternativesin
an alternatives group, for all possible exercise of optionality in a concatenation group, for all possible repetitions of a
repeated group, and for all possible ordering of the encodings of the components of a set.

NOTE — In reading and implementing the following clauses, the above text saying "for all possible" is very important. Implementers

of tools that determine what is an unambiguous specification and what is not will need to analyze al possible combinations of choices,
optionality, repetitions and ordering.

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 73

B.24 (Ddimitation requirement) There should be no two adjacent partial XML element contents with the same
element name for the first element of the second partial XML element content and for the last element of the first
partial XML element content, unless the first partial XML element content is self-delimiting.

EXAMPLE 1: Partial XML element content produced by an [UNTAGGED] SEQUENCE is self-delimiting if it does not
end with an oPTI oNAL element.

EXAMPLE 2: Partial XML element content produced by an [UNTAGGED] SEQUENCE OF is self-delimiting if it hasa
fixed number of iterations, which themselves are self-delimiting. This means, inter alia, that SEQUENCE OF [UNTAGGED]
SEQUENCE OF | NTEGER is ambiguous and violates 10.2.11 unless the number of repetitions of the second SEQUENCE OF is
fixed.

EXAMPLE 3: Partial XML element content produced by an [UNTAGGED] SET is never self-delimiting if it has
any optional elements.

B.25 (Alternative determination requirement) The first XML elements of the aternative partial XML element
content in an alternatives group should have al have distinct element names.

NOTE — The above text ignores the possible use of USE-TYPE and USE-UNI ON, which are beyond the scope of this annex.
EXAMPLE 4: An encoding of:

BadExanpl e ::= CHO CE {
-- First alternative partial XM el ement content
altl [UNTAGGED] SEQUENCE {
nane UTF8Stri ng,
zi p- code UTF8String },
al t2 [UNTAGGED] SEQUENCE {
nane UTF8Stri ng,
post-code UTF8String } }

is not in fact an ambiguous EXTENDED-XER encoding (for a human decoder), but it violates the above requirement
and also violates 10.2.11. Itisanillegal use of encoding instructions.

B.2.6 (Optionality determination requirement) The XML element names of the first XML element of al
consecutive optional partial XML element content plus that of the next following mandatory partial XML element
content should be distinct.
NOTE — This means, inter aia, that any optional partial XML element content at the end of a group that is being repeated and any
optiona partiadl XML element content at its start have to have distinct XML element names unless the number of repetitions is

restricted to a maximum of 1. If the entire partid XML element content of the group that is being repeated is optiond, then their
XML eement names should al be distinct.

EXAMPLE 5: An encoding of:

BadExanpl e2 :: = SEQUENCE OF {
[UNTAGGED] SEQUENCE {
first [UNTAGGED] Commonl ni ti al Par s,
second Mai nl nf or mat i on,
third [UNTAGGED] CommonEndParns } }
where
Conmonlnitial Parns ::= SEQUENCE { date GeneralizedTi me OPTI ONAL,
nmarri ed BOOLEAN}
ComonEndParns :: = SEQUENCE { name UTF8Stri ng,

date CeneralizedTi me OPTI ONAL}

violates the optionality determination reguirement and also violates 10.2.11. Itisanillegal use of encoding
instructions.

B.2.7 (Repetition count determination requirement) All repetition groups that have a number of repetitions that is
not fixed should be followed by a partial XML element content whose first XML element has a name that is distinct
from the name of the first XML element of the partial XML element content that is being repeated.

EXAMPLE 6: An encoding of:

BadExanpl e3::= SEQUENCE {
required-items [UNTAGGED] SEQUENCE OF Book,
optional -items [UNTAGGED] SEQUENCE OF Book }

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 74

violates the repetition count determination requirement and also violates 10.2.11. It is an illega use of encoding
instructions. Alternatively:
GoodExanpl el ;1= SEQUENCE {
required-items [UNTAGGED] SEQUENCE OF required- books Book ,
optional -items [UNTAGGED] SEQUENCE OF opti onal - books Book }

would be alegal use of encoding instructions.

B.2.8 (Set component determination requirement) The first XML element in the partial XML content of the
components of a concatenation group that is an encoding of a set type should have an XML element name that is
distinct from the name of thefirst XML element in the partial XML content of all other components.

EXAMPLE 7: An encoding of:

BadExanpl e4::= SET {
uk-mai | ing [UNTAGGED] SEQUENCE {name UTF8String, post-code UTF8Stri ng}
us-mai ling [UNTAGGED] SEQUENCE {name UTF8String, zip-code UTF8String}}

violates the component determination requirement and also violates 10.2.11. It is an illega use of encoding
instructions. Alternatively:
GoodExanpl e2 ii= SET {
uk-mai I ing [UNTAGGED] SEQUENCE {uk-nane UTF8String, post-code UTF8String}
us-mailing [UNTAGGED] SEQUENCE {us-nane UTF8String, zip-code UTF8String}}

would be alegal use of encoding instructions.

Insert a new Annex C as follows:

Annex C

Examples of EXTENDED-XER encodings usng XER encoding ingtructions
(This annex does not form an integral part of this Recommendation | International Standard)

C.1 I ntroduction

C.1.1 Thisannex providestutorial information and examples on the application of XER encoding instructions.
NOTE — All ASN.1 examplesin this annex assume an environment of AUTOMATI C TAGS.

C.1.2 Encoding instructions normally need to be assigned to an ASN.1 specification only if the designer has a
requirement for the actual form of the XML encoding to match that defined by other schema specifications, or
expected by other XML tools. Otherwise, ASN.1 alone (with BASIC-XER or CXER encoding) can be used.

C.13 If ASN.1 is used as the schema definition notation, then additional use of encoding instructions will in
general provide more compact XML encodings than use of ASN.1 alone, but the encodings are still far more verbose
than use of ASN.1 with PER.

NOTE — The examples (and the identifiers and type names used) are designed to illustrate features of EXTENDED-XER, and do
not in generd represent real-world specifications.

C.14 XER encading instructions broadly fall into two categories.

C.15 Thefirst category is encoding instructions that are likely to be generally useful in designing the form of an
XML document. These are generaly alowed even when GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS isabsent. The
two most useful of these are ATTRI BUTE and LI ST, and C.2 provides simple examples of their use.

C.16 The second category is encoding instructions that are designed to support the mapping from W3C XML

Schema specified in ITU-T Rec. X.694 | ISO/IEC 8825-5. These generaly require the presence of GLOBAL-

DEFAULTS MODI FI ED- ENCODI NGS in an Encoding Control Section, but that is not shown in the examples. In these
examples, any type reference commencing with "X SD." is assumed to be imported from Annex A of ITU-T Rec. X.694
| ISO/IEC 8825-5. C.3 provides examples of their use. These examplesare not complete ASN.1 modules, nor are
they complete XML documents. module headers are generaly omitted;, and any XML attribute commencing
"asnl: " is assumed to be a control attribute using the asnl namespace for the control attribute, where the prefix

"asnl" isassumed to be aready declared. (In practice, if the encoding is derived from W3C XML Schema, the prefix
"xsi " ismore likely to be used, with the XSI namespace.)

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 75

C.1.7 In amost al cases, prefixed encoding instructions are used for clarity, athough in a real specification
greater brevity (and a clearer separation of abstract syntax definition from encoding issues) will be obtained by the use
of an Encoding Control Section.

C.2 Simple examples

C.21 Abaseball card

BBCard ::= SEQUENCE {
nane [ATTRI BUTE] | A5String
team [ATTRIBUTE] |A5String,
age | NTEGER,
position I A5String
handedness ENUVERATED {
| ef t - handed
ri ght - handed
ambi dextrous 1},
batting-average REAL }

Ignoring the encoding instructions (BASIC-XER), we could get:

<BBCar d>
<name>Jor ge Posada</ nanme>
<t eanpNew York Yankees</teane
<age>29</ age>
<posi ti on>C</ positi on>
<handedness><ri ght - handed/ ></ handedness>
<batti ng- average>0. 277</ batti ng- aver age>
</ BBCar d>

The EXTENDED-XER encoding (with MODIFIED-ENCODINGS) of the same valueis:

<BBCard> nanme = “Jorge Posada” team = “New York Yankees” >
<age>29</ age>
<posi tion>C</ position>
<handedness>ri ght - handed</ handedness>
<batti ng- average>0. 277</ batti ng- aver age>

</ BBCar d>

C.22 Anemployee

Enpl oyee ::= [NAME AS UNCAPI TALI ZED] SEQUENCE {
id [ATTRI BUTE] | NTEGER(O. . MAX),
recruited XSD. Date
sal ari es [LI ST] SEQUENCE

OF salary REAL }

Ignoring the encoding instructions (BASIC-XER), we could get:

<Enpl oyee>
<i d>239</i d>
<recruited>27-11-2002</recruited>
<sal ari es>
<sal ary>29876</ sal ary>
<sal ary>54375</ sal ary>
<sal ary>98435</ sal ary>
</sal ari es>
</ Enpl oyee>

The EXTENDED-XER encoding of the same valueis:

<enpl oyee id = "239">
<recruited>27-11-2002</recruited>
<sal ari es>29876 54375 98435</sal ari es>
</ enpl oyee>

Using an XER Encoding Control Section, we would have;

Enpl oyee ::= SEQUENCE ({

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 76

id I NTEGER(0. . MAX) ,
recruited Date,
sal ari es SEQUENCE

OF salary REAL }

ENCODI NG- CONTROL XER
NAME Enpl oyee AS UNCAPI TALI ZED
ATTRI BUTE Enpl oyee.id
LI ST Enpl oyee. sal ari es

C.3 Mor e complex examples

C.3.1 Usingaunion of two simpletypes

Int-or-boolean ::= [USE-UNI ON] CHO CE {
int | NTEGER,
bool ean BOCLEAN }

Encodings could be;

<l nt - or - bool ean><i nt >39</i nt ></ | nt - or - bool ean> -- BASI C- XER

<l nt-or - bool ean><bool ean><tr ue/ ></ bool ean></ | nt - or - bool ean> -- BASI C XER
<l nt-or-bool ean>39</ I nt - or - bool ean> - - EXTENDED- XER
<l nt-or-bool ean>true</ | nt-or-bool ean> - - EXTENDED- XER

C.32 Usingatypeidentification attribute

Int-or-boolean ::= [USE-TYPE] CHO CE {
int | NTEGER,
bool ean BOCLEAN }

Encodings could be;

<l nt - or - bool ean><i nt >39</i nt ></ | nt - or - bool ean> -- BASI C- XER

<l nt-or - bool ean><bool ean><tr ue/ ></ bool ean></ | nt - or - bool ean> -- BASI C XER
<l nt-or-bool ean asnl:type="int">39</I|nt-or-bool ean> - - EXTENDED- XER
<Int-or-bool ean asnl:type="bool ean">true</Int-or-bool ean> -- EXTENDED- XER

C.33 Using enumeration values

Pri mesUnder 30 ::= [USE- NUMBER] ENUNMERATED {
int2(2), int3(3), int5(5), int7(7), int11(11), int13(13),
int17(17), int19(19), int23(23), int29(29)}

I nput Val ues ::= [ATTRI BUTE] [LIST] SEQUENCE COF PrimesUnder 30

PrimeProducts ::= SEQUENCE {
i nput | nput Val ues,
out put [ATTRI BUTE] [DECI MAL] REAL}

Encodings could be:

<Pri mePr oduct s>
<i nput ><i nt 2/ ><i nt 7/ ><i nt 17/ ><i nt 23/ ><i nt 29/ ><i nt 3/ ></ i nput >
<out put >476338. 00E5</ out put >

</ Pri meProduct s> -- BASI G XER

<PrimeProducts input="2 7 17 23 29 3" output="476338.00"/>
- - EXTENDED- XER

C.34 Usingan empty encoding for a default value

Responses ::= ENUMERATED {ri ngi ng, engaged, nunber-not-known }
Cal | Details ::= [DEFAULT- FOR- EMPTY nunber - not - known] SEQUENCE {
nunber [ATTRI BUTE] NunericString

response Response }

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version 77

Encodings could be;

<Cal | Det ai | s>
<nunber >0164593746</ nunber >
<r esponse><nunber - not - known/ ></ r esponse>
</ Cal | Detail s> -- BASI G- XER

<Cal | Detai | s nunber="0164593746"/ > - - EXTENDED- XER

C.35 Using embedded-valuesfor notification of a payment due

Notification ::= SEQUENCE {
text [EMBED- VALUES] SEQUENCE OF UTF8Stri ng,
account | NTEGER,

anount - due | NTEGER,
payabl e-by XSD: Date } (CONSTRAI NED BY {/* Shall conformto ITU T Rec.
| 1SO1EC 8825-4, 25.2 */})

A valuein basic ASN.1 value notation could be:

firstNotification Notification ::= {
text {"Please note the follow ng details:",
"(your business account)",

"This is in excess of your normal nonthly all owance"

"or earlier"},
account 568903,
anount - due 536,
payabl e-by "27-08-2003" }

The EXTENDED-XER encoding would be:

<Noti fi cati on>
Pl ease note the foll owi ng details:
<account >568903</ account >
(your business account)
<anount - due>536</ anount - due>
This is in excess of your normal nonthly all owance
<payabl e- by>27- 09- 2003</ payabl e- by>
or earlier
</ Notification>

ITU-T Rec. 693 (2001)/Amd.1 (10/2003) — Prepublished version

X. 693

78

