Session 6 - Operator Implementation Overview

Orange Labs

Philippe Fouquart, Research & Development 21 May 2011

Overview

- Introduction
- Problem statement for NP for an operator
 - Role and limitations of standards
- NP implementation issues Network impacts the "NP variants"
 - fixed NP LNP
 - mobile NP MNP
 - IMS/NGN NP
- Beyond: new drivers for NP
- Operator environment for centralised MNP/LNP data

INTRODUCTION

Introduction
Problem statement for NP for an operator
NP implementation issues"

fixed NP - LNP
mobile NP - MNP
IMS/NGN NP

Beyond: new drivers for NP
Environment for centralised MNP/LNP DB

Introduction

- Rationale: this talk will progress through the stepwise process of introducing NP in a operator's networks and systems
- Several implementation options for NP
 - But general trends towards ACQ
 - Sharing data =/= sharing dataBASE
- NP variants exist depending on the network and service type
- Not addressed here: service number NP
 - from day 1 they involve translation by nature
 - NP is then 'only' a matter of provisioning & process
- Notes:
 - national differences exist...
- this is just a perspective on NP implementation, not the Orange Labs - Research & Development - Operator Implementation Overview

PROBLEM STATEMENT

Introduction

•Problem statement for NP for an operator

•NP implementation issues"

- •fixed NP LNP
- •mobile NP MNP
- •IMS/NGN NP
- •Beyond: new drivers for NP
- Environment for centralised MNP/LNP DB

Constraints related to NP

- Internal technical constraints for routing
 - Some number ranges are dedicated to internal PSTN/PLMP
 - Some number ranges are dedicated to third-party operator's PSTN/PLMN
 - Some number ranges are dedicated to internal IP network (H323, IMS)
 - Some number ranges are dedicated to third-party operator (IP, PSTN)
- External constraints
 - Geographic location
 - national dependent policies
 - Tariffs consistency
 - Service structure
 - Porting time
 - main perceived driver for centralized databases
 - counterexamples

An NP infrastructure is not static

- Implementing NP is not a "blank slate / whiteboard exercise"
 - and since routing on number ranges is ALWAYS simpler and cheaper, the odds are that network design has been made with that principle in mind
- For operators, implementing NP can be a stepwise process
 - legacy implementation on PSTN or even GSM
 - upgrades necessary for
 - policy changes related to:
 - regulation: shorter porting times
 - numbering rules: geographic numbering policy
 - new network architectures:
 - IP-based conversational services
 - new services based on numbers (eg content sharing using mobile numbers)
 - market growth...

Recommendation: think ahead and plan for next steps (easier said...)

Where standards can help... and can't...

- In this stepwise process, standards can help for "Step 1"
 - standards have been defined for PSTN routing (OR, CD, QoR, ACQ) and MNP eg ETSI EN 301 716
 - signalling containers/parameters for call control protocols are specified
 - generic standards for NP database including IP-based network eg enum
 - interfaces to real-time NP databases are generally lightweight Q/R implementations of existing protocols: INAP IdP, LDAP, Enum, SIP redirect...
- Limits
 - Claim: "standards are not good at handling the « n+1 » step" (porting time etc)
 - IT system architectures are not standardized...
 - a number of constraints (process etc.) cannot be addressed by standardized mechanisms
 - internal real time NP databases are versatile
 - they can be used for other things than "just" NP routing optimizations

restricted

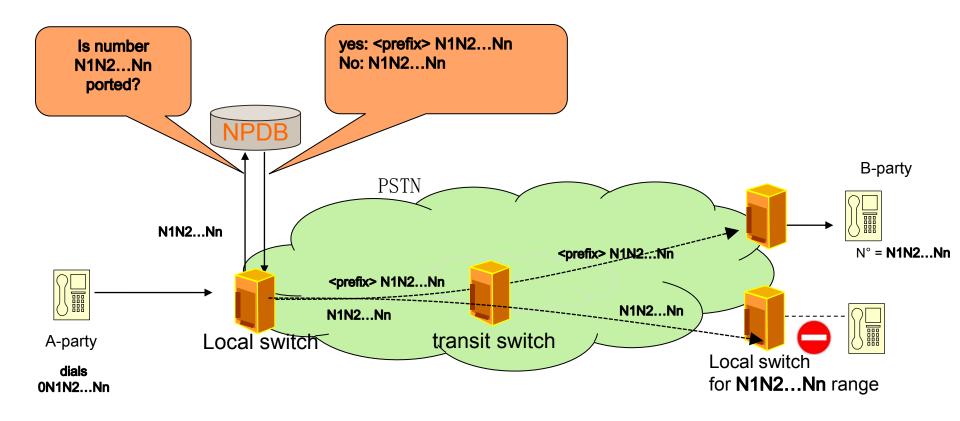
generally, the technical solutions ends up being quite specific

NP IMPLEMENTATION ISSUES

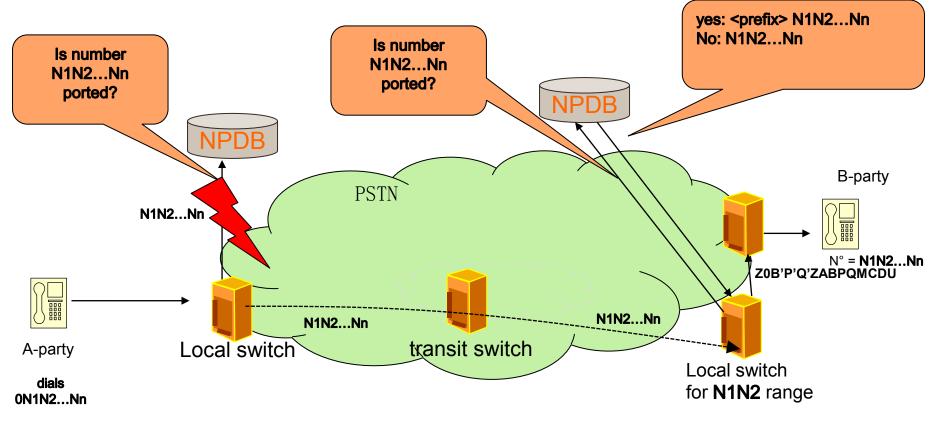
Introduction
Problem statement for NP for an operator
NP implementation issues"

fixed NP - LNP
mobile NP - MNP
IMS/NGN NP

Beyond: new drivers for NP
Environment for centralised MNP/LNP DB


PSTN number portability - basics

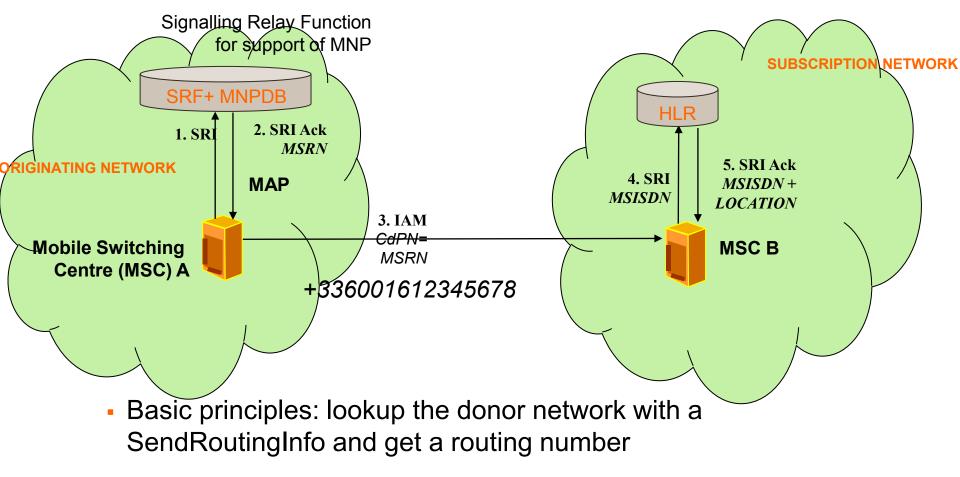
- Why?
 - dissociate the number from the service provider
 - same end user access
- How?
 - convert the dialed number into a routing number that conveys the information related to:
 - the *local switch* where the subscriber has been ported
 - the original called party number
 - use a local number portability database to do just that
- These routing numbers come in different shades
 - non E.164 hexadecimal strings
 - national-only prefixes
 - E.164 prefixes


PSTN NP implementation – network impact shortlist

- « ACQ »... but not for all numbers
 - in local switch the only "potentially ported" called party numbers that trigger NP lookup must be marked
- Transit switch NP lookups
 - All local switches may not support NP interface: find the right rerouting synergies between local and transit switches for these calls
 - relevant if NP-correction is provided as a feature of a transit offering
- Engineering common practices and heuristics
 - prevent loops, use specific trunk groups for NP-corrected numbers
 - don't look up a number for "local" call (called and calling numbers are on the same range)
 - onward routing if NP DB lookup fails
- Undesirable interactions: call back, Calling Name Identity
 Presentation; etc: Operator Implementation Overview

PSTN number portability – basic call

PSTN number portability – basic call fallback for ACQ

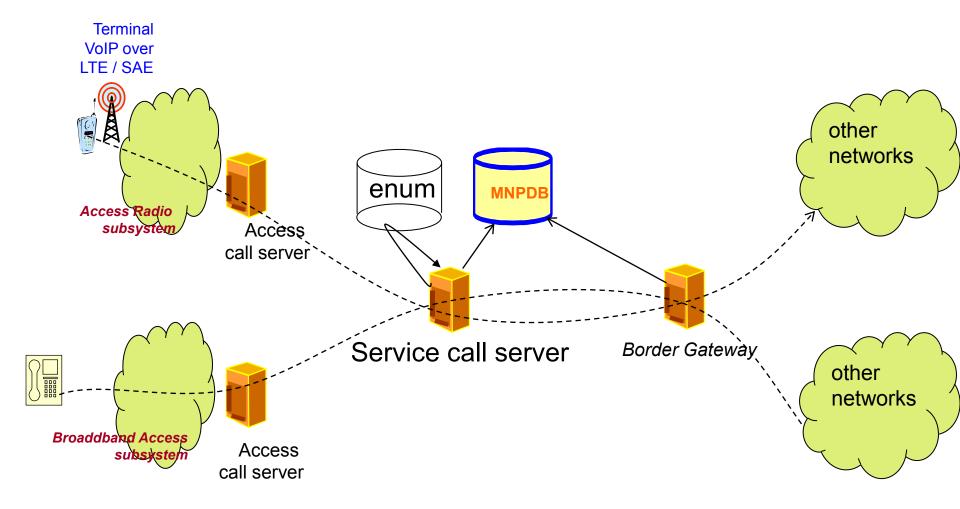

onward routing as fallback

Mobile number portability (MNP) basics

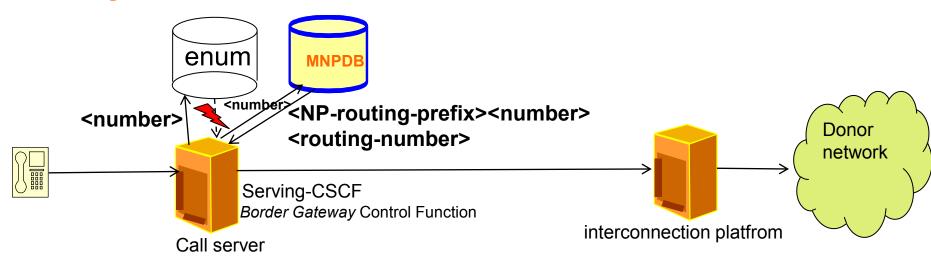
• Why?

- same as LNP: dissociate the number from the service provider
- port a number not the SIM card
- Main differences with LNP
 - routing numbers don't identify the local switch but « only the new Mobile Network » or Mobile Network Operator
- They generally use E.164 routing numbers (or non overlapping E.164 numbers conveyed in E.164 parameters eg hexadecimal strings)
 - E.164 is embedded in GSM/UMTS

Mobile number portability – MNP



issue: share the routing information


IP-network number portability (voice) - basics

- Why is that a specific case?
 - Ip-based technology for NP were meant to be different
 - late arrival: most of NP implementation complexity comes from the backend systems – this complexity still applies
 - contrary to CS networks there might actually be several IPbased core networks: SIP, IMS, "legacy H.323" etc. market specific networks/offers (enterprise, etc.)
- Theory: "surely you don't need routing numbers for IP based networks, do you?"
- Issue: what matters is the service
 - so you may port a number from IP to PSTN and vice versa
- Practice:
 - you need a solution applicable to all technologies (CS and IP)
 - => you need routing numbers they may identify a service provider (like MNP) or even a "server" (like LNP)

NGN/IMS number portability

Case study IMS – putting NP server and enum servers together

- IMS routing is supposed to rely on DNS-based technology called enum
- BUT it generally proves most costly (or simply unfeasible) to put NP data in enum than to lookup the legacy NP DB
- Consequences
 - use enum for local users URIs (not NP data)
 - legacy NP DB for NP data

BEYOND

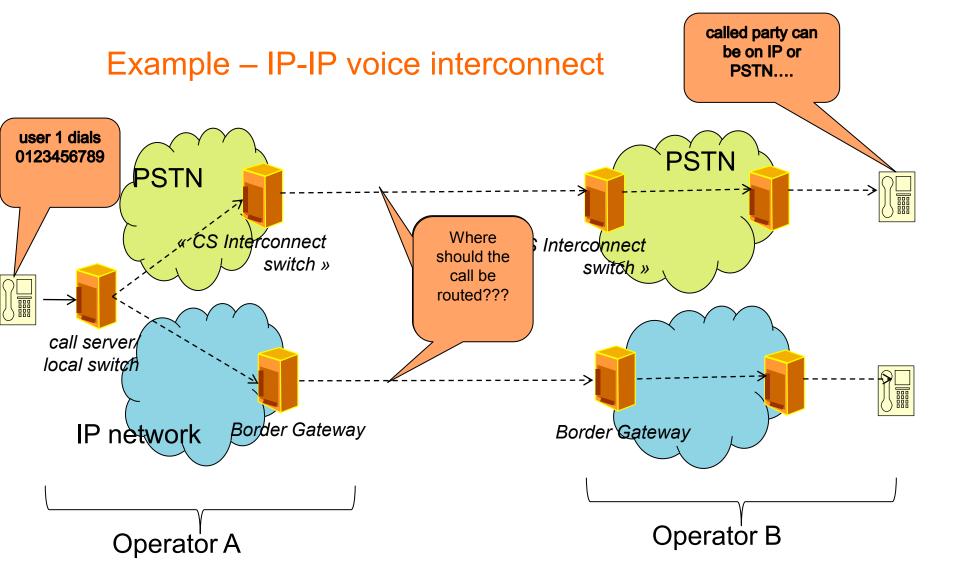
Introduction

•Problem statement for NP for an operator

•NP implementation issues"

•fixed NP - LNP

•mobile NP - MNP

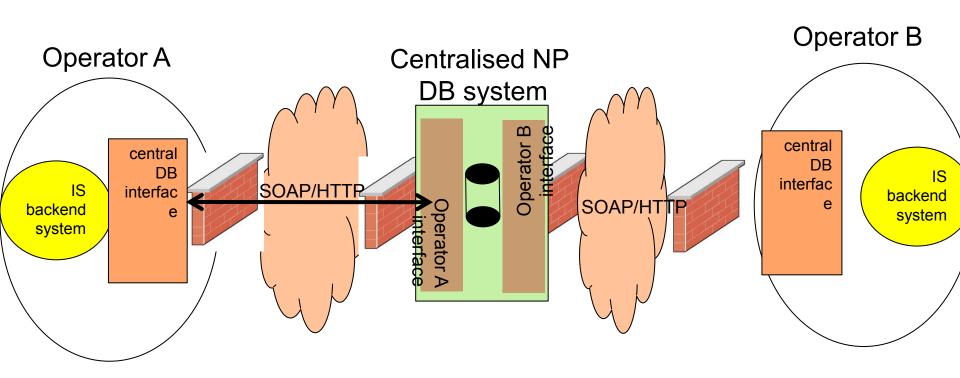

•IMS/NGN NP

•Beyond: new drivers for NP

•Environment for centralised MNP/LNP DB

Future uses of NP data for carriers

- New drivers for sharing NP data
 - least cost routing for international calls
 - need for routing a number to the "right" (NP-corrected) operator or at least find the shortest (cheapest) route
 - the drivers for sharing NP data go beyond national boundaries
 - IP-IP voice service interconnect you don't want to send an « call/session » to the wrong interface/Point of interconnection
 - codec conversion, suboptimal routing, rerouting and extratransit costs etc.
- What's next?
 - IP-IP interconnect
 - dedicated points of interconnection, dedicated offerings
 - non conversational services based on MSISDNs eg IM eg Rich Communication Suite

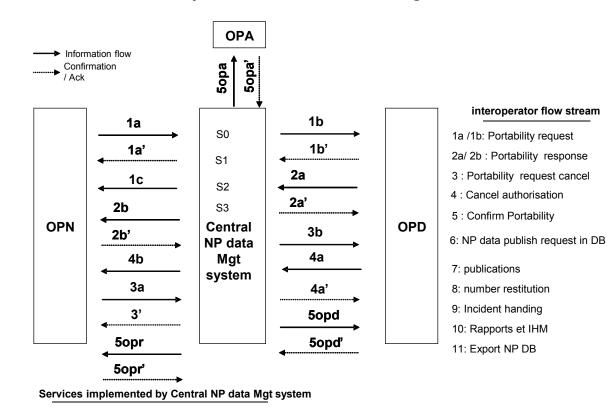

CENTRALISED M/LNP DATA

Introduction
Problem statement for NP for an operator
NP implementation issues"

fixed NP - LNP
mobile NP - MNP
IMS/NGN NP

Beyond: new drivers for NP
Environment for centralised MNP/LNP DB

Centralised NP database – architecture (example)



Technical requirements for centralised MNP data – examples

- A centralized managing authority must be able to
 - Authenticate the requesting party
 - Assess the validity of the request
 - coordinate phasing times between donor and recipient operator eg 7 day window + 4 hours of downtime, backtrack procedure
 - generate and manage portability request identifiers
 - notify the originating operator if subscriber cancels subscription (upon notification of the receiving operator)
 - typical NP ticket
 - MSISDN, donor operator, recipient operator, user portability authentication token, requesting date, porting date (< 2 months), porting hour slot.
 - be able to "push" NP data to all (requesting) operators updates applicable to "Day D" for direct routing
 - be able to answer pull request or export (full DB) on demand

Flow stream

Interoperator information diagram

SO : Ack (ex: 1a)

- S1 :Receipt + logs +treatment+ response
- S2 : Porting Confirmation (« Go » given by NP registry)
- S3: Publication in central aDB

Operational, commercial & process-related constraints

- It can be difficult to provide a definitive date+hour to customers when third parties are involved eg local unbundling
 - Sometimes NRA would accept that estimates be given and progress report made to customers
- Porting time: different applicable constraints may apply to different market, eg mobile, enterprise, fixed etc.
- How should the portability process and information be made available to customers?
- Partial portability for LNP: ported number not used as CLI for IP based lines.
- Consistency with national directory when it exists
- "Technology non-neutral" numbers: LNP impossible from IP to TDM
- Importance of backtracking: if something fails, be able to get back to "square 1" Orange Labs - Research & Development - Operator Implementation Overview

CONCLUSION

Introduction

•Problem statement for NP for an operator

•NP implementation issues"

•fixed NP - LNP

•mobile NP - MNP

•IMS/NGN NP

•Beyond: new drivers for NP

Environment for centralised MNP/LNP DB

Conclusion

- The complexity for an operator depends on
 - the heterogeneity of its networks: CS vs PS/IP based technologies
 - "how old their systems are": each network's NP implementation creates new constraints
 - the number of subscribers...
- The more "mature" the network, the more impacts you'll have
 - if you have PSTN, mobile network, and IP-based architectures, implementing NP turns out to be a very (very!) complex problem
 - migrating to a "brand new NP architecture" is generally a non starter
 - needless to say: incumbents will probably be more impacted