#### QoS Targets for IP Networks & Services: Challenges and Opportunities

Dave Mustill Performance & QoS Standards BT Group Chief Technology Office

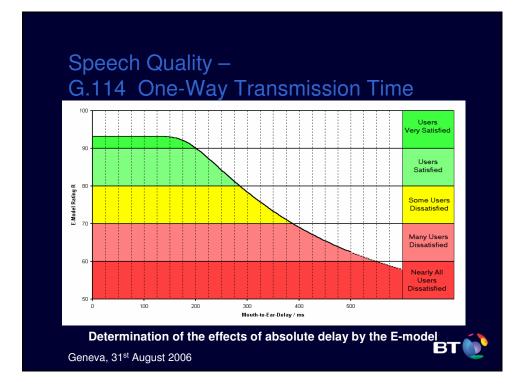
Geneva, 31st August 2006

#### **Presentation Outline**

- Speech quality in the PSTN and beyond
- · QoS requirements for data and multimedia
- Performance of the IP layer
- · The missing link true end-to-end QoS targets
- New opportunities
- Some closing comments



B


# Speech quality in the PSTN & beyond

#### Speech quality in the PSTN

- The digital PSTN has been optimised to transport G.711 coded speech at 64kbit/s.
- User experience of speech quality in digital networks is generally very good.
- Delay is usually short and echo increasingly well-controlled.
- Many users have some experience of "degraded" quality:
  - international calls over satellite and/or DCME compression;
  - mobile-mobile calls with low signal strength.
- The PSTN usually performs much better than international standards allow.

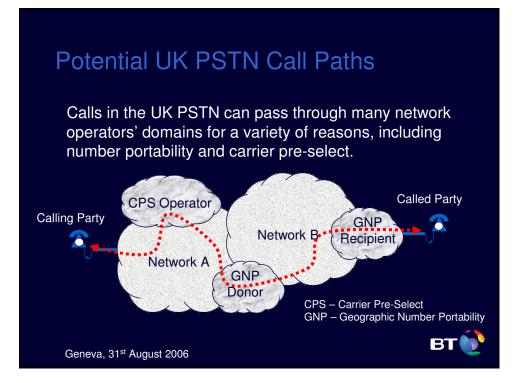


BT



#### G.109 Definition of Categories of Speech Transmission Quality

| R-value range          | Speech transmission<br>quality category | User satisfaction             |
|------------------------|-----------------------------------------|-------------------------------|
| 90 <u>&lt;</u> R < 100 | Best                                    | Very satisfied                |
| 80 <u>&lt;</u> R < 90  | High                                    | Satisfied                     |
| 70 <u>&lt;</u> R < 80  | Medium                                  | Some users dissatisfied       |
| 60 <u>&lt;</u> R < 70  | Low                                     | Many users dissatisfied       |
| 50 <u>&lt;</u> R < 60  | Poor                                    | Nearly all users dissatisfied |
| Connections with       | th R-values below 50 ar                 | e not recommended             |


Table 1/G.109

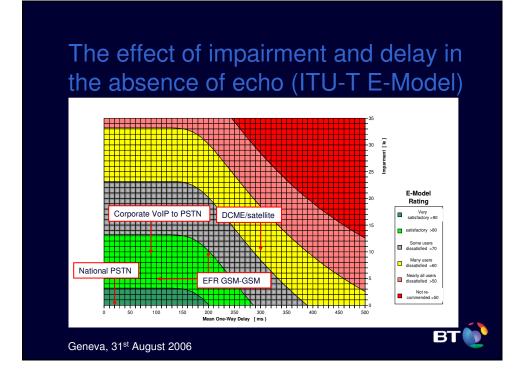
BT

#### Migrating the PSTN to IP-technology

- CAPEX considerations and the desire to offer new services are driving many operators, including BT, to migrate their telephone networks to IP-based technology.
- It is possible to engineer a high quality voice over IP (VoIP) service suitable for use in the PSTN, but several factors need to be carefully managed:
  - speech packetisation rates
  - low bit rate codecs
  - packet jitter and de-jitter buffers
  - call processing times
- Fairly easy to achieve "best" or "high" speech quality with a few interconnected IP networks with the right codecs.
- · More complex interconnect scenarios pose more of a problem...

вт





#### **Revised UK Transmission Plan**

- ND1701 Recommended Standard for the UK National Transmission Plan for Public Networks Issue 5 approved by NICC membership in March 2006.
- Contains guidance on the incorporation of IP-based technology into the PSTN including:

BT

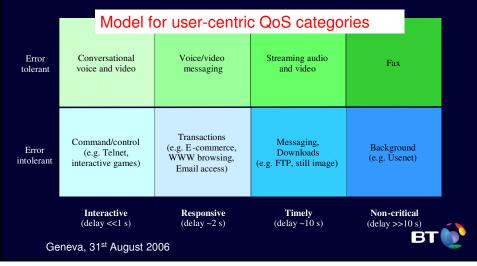
- delay and echo
- codec rules
- packet loss rules
- post dial delay







### What QoS characteristics do we want?

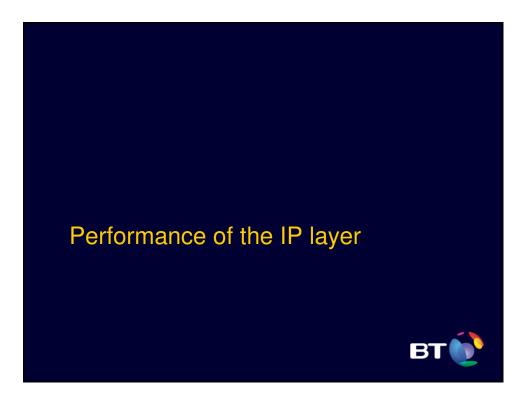

- For many sessions, including typical Internet applications like file transfer, web browsing and email we want:
  - sufficient bandwidth
  - that's about it TCP/IP can normally cope with delay, jitter etc.
- But for interactive sessions, such as conversations and videoconferencing we want:

BT

- low end-to-end delay and jitter
- low packet loss
- a guaranteed bandwidth

Geneva, 31st August 2006

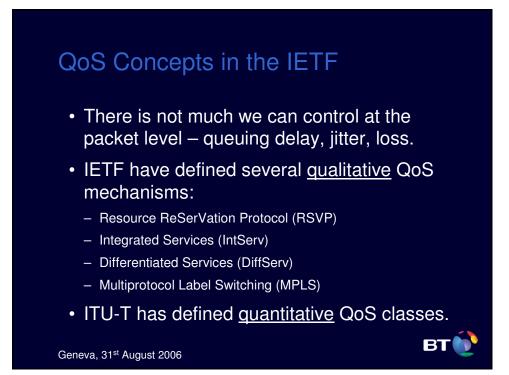
## G.1010 End-user multimedia QoS categories




#### Observations on the G.1010 Model

- Based on user perception so it is suitable for use with any underlying transmission technology.
- It indicates upper and lower bounds for delay and loss providing poorer quality for a given set of applications is likely to result in user dissatisfaction and providing higher quality may mean that networks resources are being wasted.
- It provides a simple way to assess the suitability of a given bearer channel for supporting particular applications.
- It shows how QoS classes for differentiating service performance can be appropriately grouped without implying that one class is better than another.
- Important G.1010 makes no recommendation on end-to-end QoS targets.

BT


Geneva, 31<sup>st</sup> August 2006



#### The Challenge of IP-Related QoS

- G.1000 highlights the fact that there are many issues presented by the use of IP-based networks and services, including:
- dynamic allocations of resources
- · assuring that end-to-end NP objectives can be met
- signalling of desired end-to-end QoS across both network and peer interfaces
- performance monitoring of IP-based networks and services that is meaningful to the user experience

BT

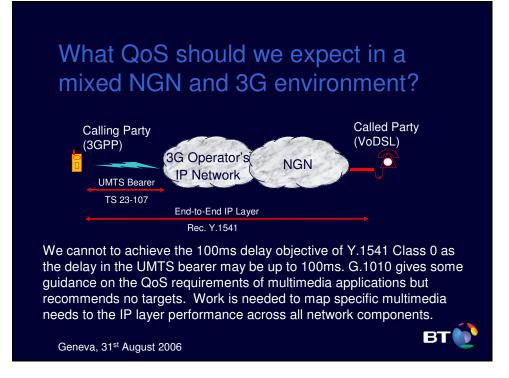


#### Y.1541 IP QoS Classes

| QoS Class | IPTD        | IPDV        | IPLR               | IPER               |
|-----------|-------------|-------------|--------------------|--------------------|
| Class 0   | 100ms       | 50ms        | 1x10 <sup>-3</sup> | 1x10 <sup>-4</sup> |
| Class 1   | 400ms       | 50ms        | 1x10 <sup>-3</sup> | 1x10 <sup>-4</sup> |
| Class 2   | 100ms       | unspecified | 1x10 <sup>-3</sup> | 1x10 <sup>-4</sup> |
| Class 3   | 400ms       | unspecified | 1x10 <sup>-3</sup> | 1x10 <sup>-4</sup> |
| Class 4   | 1s          | unspecified | 1x10 <sup>-3</sup> | 1x10 <sup>-4</sup> |
| Class 5   | unspecified | unspecified | unspecified        | unspecified        |
| Class 6   | 100ms       | 50ms        | 1x10 <sup>-5</sup> | 1x10⁻ <sup>6</sup> |
| Class 7   | 400ms       | 50ms        | 1x10 <sup>-5</sup> | 1x10 <sup>-6</sup> |

IPTD = IP packet transfer delay IPDV = IP packet delay variation IPLR = IP packet loss ratio IPER = IP packet error ratio

Geneva, 31st August 2006


Class 5 is equivalent to "Best Effort" Classes 6 & 7 are provisional classes



#### 3GPP UMTS QoS Classes

|                                      | Conversat-<br>ional Class             | Streaming<br>Class                    | Interactive<br>Class                        | Background<br>Class                         |  |
|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|--|
| Intended for:                        | Real-time conversation                | Real-time<br>streaming                | Interactive<br>best effort                  | Background best effort                      |  |
| Example<br>applications<br>supported | Speech                                | Streaming<br>video                    | Web<br>browsing                             | Background<br>download of<br>emails         |  |
| Transfer<br>delay                    | maximum<br>100ms                      | maximum<br>280ms                      | n/a                                         | n/a                                         |  |
| SDU error<br>ratio                   | 10 <sup>-2</sup> to10 <sup>-5</sup>   | 10 <sup>-2</sup> to10 <sup>-5</sup>   | 10 <sup>-3</sup> to10 <sup>-6</sup>         | 10 <sup>-3</sup> to10 <sup>-6</sup>         |  |
| Residual bit<br>error ratio          | 5x10 <sup>-2</sup> to10 <sup>-6</sup> | 5x10 <sup>-2</sup> to10 <sup>-6</sup> | 4x10 <sup>-3</sup> to<br>6x10 <sup>-8</sup> | 4x10 <sup>-3</sup> to<br>6x10 <sup>-8</sup> |  |
| Geneva, 31 <sup>st</sup> August 2006 |                                       |                                       |                                             |                                             |  |

# The missing link – true E2E objectives



#### New work in ETSI and ITU-T

- ETSI STQ and ITU-T SG12 are both working on standards on end-to-end requirements for multimedia applications.
- This work will build upon the general guidance given in G.1010, the aim being to make recommendations on the true end-to-end QoS to be achieved to support multimedia.
- Scope should include home network, corporate network and terminal aspects.
- ETSI (and maybe SG12) will create a set of end-toend QoS classes – these should be mapable to the Y.1541 IP layer classes.





#### Opportunities in the IP world

- Increased service innovation faster and easier to introduce new services. Easy for third parties to develop services. If it will fit into an IP packet the network can carry it.
- Service packages can be tailored to suit a corporation's or single user's needs.
- Different quality levels can be provided over the same network.

BT

• Potentially huge operational cost advantages.



#### Some closing comments

#### **Closing comments**

- IP technology and NGNs offer cost and service advantages to network operators, service providers and users.
- QoS targets need not be tied to PSTN levels although user requirements must still be considered. There is likely to be a need to still provide a plain telephony service (with PSTN reliability and performance) and to support fax, ISDN and other dial-up applications.
- Standards offer guidance on suitable QoS targets and how to achieve these across multiple networks.
- For many new services competition, innovation and user-specific tailoring can drive QoS levels.



B

#### Thank you for listening.

#### Any questions?

Dave Mustill Performance & QoS Standards BT Group Chief Technology Office

email: <u>dave.mustill@bt.com</u>

